
In-Situ Interactive Visualization
of HPC Simulations with Damaris

Matthieu Dorier
KerData Team
Inria Rennes
ENS Cachan

Joint work involving
Matthieu Dorier, Gabriel Antoniu, Dave Semeraro,
Roberto Sisneros and Leigh Orf

June 13th 2012

7th workshop of the
Joint Laboratory for Petascale Computing
June 13nth 2012

Introduction: when offline visualization
does not work anymore…

In-Situ Interactive Visualization of HPC Simulations with Damaris - 2 June 13th 2012

•  The old fashioned way
- Offline visualization:

–  Run your simulation for days
–  Write a bunch of files periodically, using HDF5, NetCDF, etc.
–  Move the files to an analysis cluster
–  Analyze your data
–  Find something scientifically relevant notice the simulation didn’t behave as expected

Introduction: when offline visualization
does not work anymore…

In-Situ Interactive Visualization of HPC Simulations with Damaris - 3 June 13th 2012

•  Motivations
-  I/O becoming a bottleneck: need to drastically reduce storage demands
- Longer, more complex simulations: need to reduce the time-to-insight
- Migrations of data to a visualization cluster become intractable
- Visualization software also suffer from the I/O bottleneck
- Need to adapt the output format from simulations to input readable from visualization

Towards inline visualization strategies

In-Situ Interactive Visualization of HPC Simulations with Damaris - 4 June 13th 2012

•  Loosely coupled strategy
- Visualization runs on a separate, remote set of resources
- Partially or fully asynchronous
- Solutions include staging areas, file format wrappers (HDF5 DSM, ADIOS, …)

•  Tightly coupled strategy
- Visualization is collocated with the simulation
- Synchronous (time-partitioning): the simulation periodically stops
- Solution by code instrumentation
- Memory constrained

Four main goals

In-Situ Interactive Visualization of HPC Simulations with Damaris - 5 June 13th 2012

Low impact on simulation code

Adaptability
(to different simulations and visualization scenarios)

Low impact on simulation run time

Good resource utilization
(low memory footprint, use of GPU,…)

User friendliness

Performance

Driving the acceptance of any approach

Towards inline visualization strategies

In-Situ Interactive Visualization of HPC Simulations with Damaris - 6 June 13th 2012

Coupling Tight Loose ?
Impact on code High Low Minimal

Adaptability
Interactivity Yes None Yes
Instrumentation High Low Minimal

Impact on run time High Low Minimal
Resource usage Good Non-optimal Better

•  Researchers seldom accept tightly-coupled in-situ visualization
- Because of development overhead, performance impact…
-  “Users are stupid, greedy, lazy slobs” [1]

•  Is there a solution achieving all these goals?

[1] D. Thompson, N. Fabian, K. Moreland, L. Ice, “Design issues for performing in-situ analysis of simulation data”, Tech. Report, Sandia National Lab

Outline

In-Situ Interactive Visualization of HPC Simulations with Damaris - 7

•  Introduction
•  In-situ capabilities in diverse software
•  Recall on the Damaris approach
•  Using Damaris for in-situ visualization
•  Conclusion

June 13th 2012

An overview of VisIt (LLNL)

In-Situ Interactive Visualization of HPC Simulations with Damaris - 8

•  Provides the libsim library è simulation instrumentation
•  Data is exposed through a set of callback functions (in C or Fortran)

- About 10 to 20 lines of code per variable/object to expose
- Need to re-write the simulation’s mainloop

•  Works in a time-partitioning manner: simulation stops
-  If a user connected to the simulation è interactively answers its requests

•  Can work on data in memory without any copy

June 13th 2012

// This function is called to retrieve the mesh!
visit_handle get_mesh_data(int domain, const char *name, void *cbdata) {!
 visit_handle h = VISIT_INVALID_HANDLE;!
 if(strcmp(name, "my_mesh") == 0) {!
 if(VisIt_RectilinearMesh_alloc(&h) == VISIT_OKAY) {!
 visit_handle hxc, hyc, hzc;!
 VisIt_VariableData_alloc(&hxc);!
 // ... idem for hyc and hzc!
 VisIt_VariableData_setDataF(hxc, VISIT_OWNER_SIM, 1, NX, mesh_x);!
 // ... idem for hyc and hzc!
 VisIt_RectilinearMesh_setCoordsXYZ(h hxc,hyc,hzc);!
 }!
 }!
 return h;!
 }!
}!

Other visualization software

In-Situ Interactive Visualization of HPC Simulations with Damaris - 9

•  ParaView
-  In-situ interface based on VTK, only available in C++

–  Not convenient for Fortran simulations

- Fixed visualization pipeline, no interactivity
- Possibility to write the visualization pipeline in Python

–  ParaView can generate a Python script from a user behavior

- Possibility to redirect the output of the pipeline to a remote cluster
(loosely coupled visualization capability)

•  EzViz
-  Interface in C++ also, functionalities similar to ParaView

•  …

June 13th 2012

The case of Enzo and YT (UCSD,…)

In-Situ Interactive Visualization of HPC Simulations with Damaris - 10

•  Enzo: AMR astrophysical simulation developed by UC
San Diego and other labs

•  Has its own visualization system: YT, written in Python
on top of MatplotLib

•  Enzo wraps its data into NumPy structures, and
periodically loads a user-provided Python script

Enzo is an example of simulation for which
-  A specific visualization system has been designed
-  A specific instrumentation has been done (using the

Python/C interface)
-  Yet the Enzo developers admit that time-partitioning is

not appropriate [1], as it interrupts the simulation
-  Moreover, loading Python modules have an increasing

impact at large scale [2]

June 13th 2012

[1] “YT: A multi-code analysis toolkit for astrophysical simulation data”, M. J. Turk, B. D. Smith, J. S. Oishi, S. Skory, S. W. Skillman, T. Abel, M. L Norman, in
The astrophysical journal supplement series, January 2011
 [2] Personal experiments on JaguarPF, and private discussions with J. M. Favre

Outline

In-Situ Interactive Visualization of HPC Simulations with Damaris - 11

•  Introduction
•  In-situ capabilities in diverse software
•  Recall on the Damaris approach
•  Using Damaris for in-situ visualization
•  Conclusion

June 13th 2012

Damaris at a glance

In-Situ Interactive Visualization of HPC Simulations with Damaris - 12 June 13th 2012

•  Dedicated Adaptable Middleware for
Application Resources Inline Steering

•  Main idea: dedicate one or a few cores
in each SMP node for data management

•  Features:
-  Shared-memory-based communications
-  Plugin system (C,C++, Python)
-  XML external description of data

Damaris: efficiently leveraging shared-memory

In-Situ Interactive Visualization of HPC Simulations with Damaris - 13 June 13th 2012

•  Two versions of the data
•  Direct allocation in shared-memory

- DC_alloc(“varname”,iteration)
•  Overlap read-access on past iterations
•  Avoids copy of data

Results on I/O with the CM1 application
Damaris achieves almost perfect scalability

In-Situ Interactive Visualization of HPC Simulations with Damaris - 14 June 13th 2012

0

2000

4000

6000

8000

10000

0 5000 10000
Sc

al
ab

ili
ty

 fa
ct

or

Number of cores

Perfect scaling

Damaris

File-per-process

Collective-I/O

Weak scalability factor S = N Tbase
T

N: number of cores
Tbase: time of an iteration on one core w/ write
T: time of an iteration + a write

0

200

400

600

800

1000

576 2304 9216

R
un

 ti
m

e
(s

ec
)

Number of cores

In-Situ Interactive Visualization of HPC Simulations with Damaris - 15 June 13th 2012

0
100
200
300
400
500
600
700
800
900

576 2304 9216

D
ur

at
io

n
of

 th
e

w
rit

e
(s

ec
)

Number of cores

Collective-I/O

File-per-
process

0

2

4

6

8

10

0 10 20 30

Ti
m

e
to

 w
rit

e
(s

ec
)

Total amount of data (GB)

Kraken Cray XT5
Average and maximum write time

28MB per process

BluePrint Power5, 1024 cores
Average, max and min write time

Results on I/O with the CM1 application
Damaris hides the I/O jitter

In-Situ Interactive Visualization of HPC Simulations with Damaris - 16 June 13th 2012

0,0625
0,125

0,25
0,5

1
2
4
8

16

0 5000 10000

A
gg

re
ga

te
 th

ro
ug

hp
ut

(G

B
/s

)

Number of cores

File-per-process
Damaris
Collective-I/O

Average aggregate throughput from the writer processes

Results on I/O with the CM1 application
Damaris increases effective throughput

In-Situ Interactive Visualization of HPC Simulations with Damaris - 17 June 13th 2012

0
50

100
150
200
250
300

576 2304 9216

Ti
m

e
(s

ec
)

Number of cores

0

50

100

150

200

250

0,05 5,8 15,1 24,7
Ti

m
e

(s
ec

)
Total amount of data (GB)

Spare time
Used time

BluePrint Power5 (1024 cores) Kraken Cray XT5

Time spent by Damaris writing data and time spent waiting

Damaris spares time?
Let’s use it for visualization!

Results on I/O with the CM1 application

Outline

In-Situ Interactive Visualization of HPC Simulations with Damaris - 18

•  Introduction
•  In-situ capabilities in diverse software
•  Recall on the Damaris approach
•  Using Damaris for in-situ visualization
•  Conclusion

June 13th 2012

Let’s take a representative example

In-Situ Interactive Visualization of HPC Simulations with Damaris - 19 June 13th 2012

// rectilinear grid coordinates
float mesh_x[NX];
float mesh_y[NY];
float mesh_z[NZ];
// temperature field
double temperature[NX][NY][NZ];

“Instrumenting” with Damaris

In-Situ Interactive Visualization of HPC Simulations with Damaris - 20 June 13th 2012

!
DC_write(“mesh_x”,iteration,mesh_x);!
DC_write(“mesh_y”,iteration,mesh_x);!
DC_write(“mesh_z”,iteration,mesh_x);!
!
DC_write(“temperature”,iteration,temperature);!
!

(Yes, that’s all)

Now describe your data in an XML file

In-Situ Interactive Visualization of HPC Simulations with Damaris - 21 June 13th 2012

<parameter name="NX" type="int" value="4"/>!
<layout name="px" type="float" dimensions="NX"/>!
<variable name="mesh_x" layout="px">!
<!-- idem for PTY and PTZ, py and pz, mesh_y and mesh_z -->!
!
<layout name="data_layout" type="double” dimensions="NX,NY,NZ"/>!
<variable name="temperature" layout="data_layout” mesh=“my_mesh” />!
!
<mesh type=“rectilinear” name=“my_mesh” topology=“3”>!
 <coord name=“mesh_x” unit=“cm” label=“width” />!
 <coord name=“mesh_y” unit=“cm” label=“depth” />!
 <coord name=“mesh_z” unit=“cm” label=“height” />!
</mesh>!

•  Unified data description for different visualization software
•  Damaris translates this description into the right function calls to any such software

(right now: Python and VisIt)
•  Damaris handles the interactivity by synchronizing and un-synchronizing dedicated cores

Using Damaris plugins system

In-Situ Interactive Visualization of HPC Simulations with Damaris - 22 June 13th 2012

var = damaris.open("temperature")!
for chunks in var.select(iteration = 1)!
 print numpy.average(chunks.data)!

•  Plugins can be written in C, C++ or Python
•  Very simple API from the simulation:

- DC_signal(“event_name”,iteration)!
•  Different scopes of event: core, node, global
•  Events are also exposed to VisIt: users can trigger an event

himself from VisIt’s interface è enhanced interactivity

•  Plugin system already used to implement an HDF5 persistency layer
•  Connection between VisIt and Damaris was initially implemented as a plugin written

by Roberto Sisneros (NCSA): very good feedback on usability
- Now fully integrated within Damaris

•  New challenge rising with Python: loading modules from many cores, doesn’t scale

Outline

In-Situ Interactive Visualization of HPC Simulations with Damaris - 23

•  Introduction
•  In-situ capabilities in diverse software
•  Recall on the Damaris approach
•  Using Damaris for in-situ visualization
•  Conclusion

June 13th 2012

Conclusion:
Using Damaris for in-situ visualization

In-Situ Interactive Visualization of HPC Simulations with Damaris - 24 June 13th 2012

Coupling Tight Loose Damaris
Impact on code High Low Minimal

Adaptability
Interactivity Yes None Yes
Instrumentation High Low Minimal

Impact on run time High Low Minimal
Resource usage Good Non-optimal Better

-  Impact on code: 1 line per object (variable or event)
-  Adaptability to multiple visualization software (Python, VisIt, ParaView, etc.)

–  Plugins, XML
-  Interactivity through VisIt
-  Impact on run time: simulation run time independent of visualization
-  Resources usage:

–  preserves the “zero-copy” capability of VisIt thanks to shared-memory,
–  can asynchronously use GPU attached to Cray XK6 nodes

thank you!

