
In-Situ Interactive Visualization 
of HPC Simulations with Damaris 

Matthieu Dorier 
KerData Team 
Inria Rennes 
ENS Cachan 

Joint work involving  
Matthieu Dorier, Gabriel Antoniu, Dave Semeraro, 
Roberto Sisneros and Leigh Orf  

June 13th 2012 

7th workshop of the 
Joint Laboratory for Petascale Computing 
June 13nth 2012 



Introduction: when offline visualization 
does not work anymore… 
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•  The old fashioned way 
- Offline visualization:  

–  Run your simulation for days 
–  Write a bunch of files periodically, using HDF5, NetCDF, etc. 
–  Move the files to an analysis cluster 
–  Analyze your data 
–  Find something scientifically relevant notice the simulation didn’t behave as expected 



Introduction: when offline visualization 
does not work anymore… 
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•  Motivations 
-  I/O becoming a bottleneck: need to drastically reduce storage demands 
- Longer, more complex simulations: need to reduce the time-to-insight 
- Migrations of data to a visualization cluster become intractable 
- Visualization software also suffer from the I/O bottleneck 
- Need to adapt the output format from simulations to input readable from visualization 



Towards inline visualization strategies 
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•  Loosely coupled strategy 
- Visualization runs on a separate, remote set of resources  
- Partially or fully asynchronous 
- Solutions include staging areas, file format wrappers (HDF5 DSM, ADIOS, …) 
 

•  Tightly coupled strategy 
- Visualization is collocated with the simulation 
- Synchronous (time-partitioning): the simulation periodically stops 
- Solution by code instrumentation 
- Memory constrained 



Four main goals 
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Low impact on simulation code 

Adaptability  
(to different simulations and visualization scenarios) 

Low impact on simulation run time 

Good resource utilization 
(low memory footprint, use of GPU,…) 

User friendliness 

Performance 

Driving the acceptance of any approach 



Towards inline visualization strategies 
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Coupling Tight Loose ? 
Impact on code High Low Minimal 

Adaptability 
Interactivity Yes None Yes 
Instrumentation High Low Minimal 

Impact on run time High Low Minimal 
Resource usage Good Non-optimal Better 

•  Researchers seldom accept tightly-coupled in-situ visualization 
- Because of development overhead, performance impact… 
-  “Users are stupid, greedy, lazy slobs” [1] 

•  Is there a solution achieving all these goals? 

[1] D. Thompson, N. Fabian, K. Moreland, L. Ice, “Design issues for performing in-situ analysis of simulation data”, Tech. Report, Sandia National Lab 



Outline 
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An overview of VisIt (LLNL) 
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•  Provides the libsim library è simulation instrumentation 
•  Data is exposed through a set of callback functions (in C or Fortran) 

- About 10 to 20 lines of code per variable/object to expose 
- Need to re-write the simulation’s mainloop 

•  Works in a time-partitioning manner: simulation stops 
-  If a user connected to the simulation è interactively answers its requests 

•  Can work on data in memory without any copy 

June 13th 2012 

// This function is called to retrieve the mesh!
visit_handle get_mesh_data(int domain, const char *name, void *cbdata) {!
  visit_handle h = VISIT_INVALID_HANDLE;!
  if(strcmp(name, "my_mesh") == 0) {!
    if(VisIt_RectilinearMesh_alloc(&h) == VISIT_OKAY) {!
      visit_handle hxc, hyc, hzc;!
      VisIt_VariableData_alloc(&hxc);!
      // ... idem for hyc and hzc!
      VisIt_VariableData_setDataF(hxc, VISIT_OWNER_SIM, 1, NX, mesh_x);!
      // ... idem for hyc and hzc!
      VisIt_RectilinearMesh_setCoordsXYZ(h hxc,hyc,hzc);!
      }!
    }!
    return h;!
  }!
}!



Other visualization software 
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•  ParaView 
-  In-situ interface based on VTK, only available in C++ 

–  Not convenient for Fortran simulations 

- Fixed visualization pipeline, no interactivity 
- Possibility to write the visualization pipeline in Python 

–  ParaView can generate a Python script from a user behavior 

- Possibility to redirect the output of the pipeline to a remote cluster 
(loosely coupled visualization capability) 

•  EzViz 
-  Interface in C++ also, functionalities similar to ParaView 

•  … 
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The case of Enzo and YT (UCSD,…) 
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•  Enzo: AMR astrophysical simulation developed by UC 
San Diego and other labs 

•  Has its own visualization system: YT, written in Python 
on top of MatplotLib 

•  Enzo wraps its data into NumPy structures, and 
periodically loads a user-provided Python script 

Enzo is an example of simulation for which 
-  A specific visualization system has been designed 
-  A specific instrumentation has been done (using the 

Python/C interface) 
-  Yet the Enzo developers admit that time-partitioning is 

not appropriate [1], as it interrupts the simulation 
-  Moreover, loading Python modules have an increasing 

impact at large scale [2] 
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[1] “YT: A multi-code analysis toolkit for astrophysical simulation data”, M. J. Turk, B. D. Smith, J. S. Oishi, S. Skory, S. W. Skillman, T. Abel, M. L Norman, in 
The astrophysical journal supplement series, January 2011   
                                [2] Personal experiments on JaguarPF, and private discussions with J. M. Favre 



Outline 

In-Situ Interactive Visualization of HPC Simulations with Damaris - 11 

•  Introduction 
•  In-situ capabilities in diverse software 
•  Recall on the Damaris approach 
•  Using Damaris for in-situ visualization 
•  Conclusion 

June 13th 2012 



Damaris at a glance 
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•  Dedicated Adaptable Middleware for 
Application Resources Inline Steering 

•  Main idea: dedicate one or a few cores 
in each SMP node for data management 

•  Features: 
-  Shared-memory-based communications 
-  Plugin system (C,C++, Python) 
-  XML external description of data 



Damaris: efficiently leveraging shared-memory 
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•  Two versions of the data 
•  Direct allocation in shared-memory 

- DC_alloc(“varname”,iteration) 
•  Overlap read-access on past iterations 
•  Avoids copy of data 



Results on I/O with the CM1 application 
Damaris achieves almost perfect scalability 
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Results on I/O with the CM1 application 
Damaris hides the I/O jitter 
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Damaris increases effective throughput 
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Let’s take a representative example 

In-Situ Interactive Visualization of HPC Simulations with Damaris - 19 June 13th 2012 

// rectilinear grid coordinates 
float mesh_x[NX]; 
float mesh_y[NY]; 
float mesh_z[NZ]; 
// temperature field  
double temperature[NX][NY][NZ]; 



“Instrumenting” with Damaris 
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!
DC_write(“mesh_x”,iteration,mesh_x);!
DC_write(“mesh_y”,iteration,mesh_x);!
DC_write(“mesh_z”,iteration,mesh_x);!
!
DC_write(“temperature”,iteration,temperature);!
!

(Yes, that’s all) 



Now describe your data in an XML file 

In-Situ Interactive Visualization of HPC Simulations with Damaris - 21 June 13th 2012 

<parameter name="NX" type="int" value="4"/>!
<layout name="px" type="float" dimensions="NX"/>!
<variable name="mesh_x" layout="px">!
<!-- idem for PTY and PTZ, py and pz, mesh_y and mesh_z -->!
!
<layout name="data_layout" type="double” dimensions="NX,NY,NZ"/>!
<variable name="temperature" layout="data_layout” mesh=“my_mesh” />!
!
<mesh type=“rectilinear” name=“my_mesh” topology=“3”>!
   <coord name=“mesh_x” unit=“cm” label=“width” />!
   <coord name=“mesh_y” unit=“cm” label=“depth” />!
   <coord name=“mesh_z” unit=“cm” label=“height” />!
</mesh>!

•  Unified data description for different visualization software 
•  Damaris translates this description into the right function calls to any such software   

(right now: Python and VisIt) 
•  Damaris handles the interactivity by synchronizing and un-synchronizing dedicated cores 



Using Damaris plugins system 
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var = damaris.open("temperature")!
for chunks in var.select( iteration = 1 )!
        print numpy.average(chunks.data)!

•  Plugins can be written in C, C++ or Python 
•  Very simple API from the simulation:  

- DC_signal(“event_name”,iteration)!
•  Different scopes of event: core, node, global 
•  Events are also exposed to VisIt: users can trigger an event 

himself from VisIt’s interface è enhanced interactivity 

•  Plugin system already used to implement an HDF5 persistency layer 
•  Connection between VisIt and Damaris was initially implemented as a plugin written 

by Roberto Sisneros (NCSA): very good feedback on usability 
- Now fully integrated within Damaris 

•  New challenge rising with Python: loading modules from many cores, doesn’t scale 
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Conclusion:  
Using Damaris for in-situ visualization 

In-Situ Interactive Visualization of HPC Simulations with Damaris - 24 June 13th 2012 

Coupling Tight Loose Damaris 
Impact on code High Low Minimal 

Adaptability 
Interactivity Yes None Yes 
Instrumentation High Low Minimal 

Impact on run time High Low Minimal 
Resource usage Good Non-optimal Better 

-  Impact on code: 1 line per object (variable or event) 
-  Adaptability to multiple visualization software (Python, VisIt, ParaView, etc.) 

–  Plugins, XML 
-  Interactivity through VisIt 
-  Impact on run time: simulation run time independent of visualization 
-  Resources usage:  

–  preserves the “zero-copy” capability of VisIt thanks to shared-memory,  
–  can asynchronously use GPU attached to Cray XK6 nodes 



thank you! 


