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How to address fault-tolerance at exascale?

Most classical approach: rollback-recovery

What is the most appropriate protocol?
(cf. yesterday’s talk by Amina Guermouche)

How efficient will checkpointing protocols be?

Can some external mechanisms improve efficiency and
resilience of checkpointing protocols?

Alternative approach: replication

Systematic replication: efficiency < 50%

Can replication+checkpointing be more efficient than
checkpointing alone?

Claim by Ferreira et al. [Supercomputing 2011]: yes

Our aim: revisit their study
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Model by Ferreira et al. [Supercomputing 2011]

A parallel application comprising n (sequential) processes

Each process replicated g ≥ 2 times → replica-group

A processing element executes a single replica
Two replicas, even from two different application processes, cannot

run on the same PE

When a replica is hit by a failure, it is not restarted
Underlying assumption: the whole application runs at the speed of

the lowest replica

The application fails when all replicas in one replica-group
have been hit by failures

Failures of different PEs are not correlated

Study for g = 2 by Ferreira et al., SC’2011



Question: what is the value of the MNFTI?

What is the mean number of processing element failures needed to
interrupt the application?

In other words: What is the mean number of processing element
failures needed to kill all replicas in (at least) one replica-group?
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The birthday problem

Classical formulation
What is the probability, in a set of m people, that two of them
have same birthday ?

Relevant formulation
What is the average number of people required to find a pair with
same birthday?

F (n) = 1 +
n∑

k=1

n!

(n − k)! · nk

The analogy

Two people with same birthday
≡

Two failures hitting same replica-group
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Second failure
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Computing MNFTI rp (1/4)

Hypothesis: failures can only hit running PEs

Each application process has 2 replicas: g = 2

nf : number of replica-groups already hit by failures

nf PEs have failed
2n − nf PEs still running



Computing MNFTI rp (2/4)

Case nf = n

Next PE failure induces application failure

E(NFTI rp|n) = 1
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Computing MNFTI rp (3/4)

General case

1 2 3 4 . . . n

Failure hit one of the nf already hit replica-groups

Probability:
nf

2n − nf

Average number of failures needed for the application to fail:

1



Computing MNFTI rp (3/4)

General case

1 2 3 4 . . . n

Failure hit one replica-group with two running PEs

Probability:
2(n − nf )

2n − nf

Average number of failures needed for the application to fail:

1 + E(NFTI rp|nf + 1)



Computing MNFTI rp (4/4)

Theorem

If the failure inter-arrival times on the different PEs are i.i.d. then
using process replication with g = 2, MNFTI rp = E(NFTI rp|0)
where

E(NFTI rp|nf ) =

{
1 if nf = n,

1 + 2n−2nf
2n−nf E(NFTI rp|nf + 1) otherwise.

Theorem

If the failure inter-arrival times on the different PEs are i.i.d. and
independent from the PE failure history, then

MNFTI ah = 1 + MNFTI rp
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Generalization to any value of g

Theorem

If the failure inter-arrival times on the different PEs are i.i.d.

MNFTI rp = E

NFTI rp| 0, ..., 0︸ ︷︷ ︸
g−1 zeros

 where:

E
(

NFTI rp|n(1)
f , ..., n

(g−1)
f

)
= 1

+
g ·
(

n −
∑g−1

i=1 n
(i)
f

)
g · n −

∑g−1
i=1 i · n(i)

f

· E
(

NFTI rp|n(1)
f , n

(2)
f , ..., n

(g−1)
f

)
+

g−2∑
i=1

(g − i) · n(i)
f

g · n −
∑g−1

i=1 i · n(i)
f

·E
(

NFTI rp|n(1)
f , ..., n

(i−1)
f , n

(i)
f −1, n

(i+1)
f +1, n

(i+2)
f , ..., n

(g−1)
f

)
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From MNFTI to MTTI

MTTI = systemMTBF (g · n)×MNFTI ah(n)

True for exponential distribution of failures

What about other distributions?



MTTI for any failure distribution

R(t) probability that application still running at time t

All replica-groups have at least one replica running

Exponential: R(t) =
(
1−

(
1− e−λt

)g)n
Weibull: R(t) =

(
1−

(
1− e−( t

λ)
k
)g)n

MTTI

MTTI =

∫ +∞

0
R(t)dt → closed-form formulas
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Numerical evaluation of the MNFTI

Number of processes n 20 21 22 23 24 25 26

Ferreira et al. 2 2.5 3.22 4.25 5.7 7.77 10.7

This work 3 3.67 4.66 6.09 8.15 11.1 15.2

% Relative Difference -33 -32 -31 -30 -30 -30 -30

Number of processes n 27 28 29 210 211 212 213

Ferreira et al. 14.9 20.7 29 40.8 57.4 80.9 114

This work 21.1 29.4 41.1 57.7 81.2 114 161

% Relative Difference –30 -29 -29 -29 -29 -29 -29

Number of processes n 214 215 216 217 218 219 220

Ferreira et al. 161 228 322 454 642 908 1284

This work 228 322 455 643 908 1284 1816

% Relative Difference -29 -29 -29 -29 -29 -29 -29
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The question

Ferreira et al. use Daly’s checkpointing period

(without and with replication)

Does this matter?



Without replication

Weibull distribution with k = 0.7, PE MTBF of 125 years
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The checkpointing period can have a significant impact



With replication

Weibull distribution with k = 0.7, PE MTBF of 125 years
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Daly’s period appears to be an excellent choice



Checkpoints are almost useless with replication

Weibull distribution

# of application failures % of PE failures

# of processes k = 0.7 k = 0.5 k = 0.7 k = 0.5

214 1.95 4.94 0.35 0.39
215 1.44 3.77 0.25 0.28
216 0.88 2.61 0.15 0.19
217 0.45 1.67 0.075 0.12
218 0.20 1.11 0.034 0.076
219 0.13 0.72 0.022 0.049
220 0.083 0.33 0.014 0.023

Applications rarely rollback

Daly’s approximation is good enough



Outline

1 Process replication
Model
Analogy with birthday problem (when g = 2)
Computing the MTTI
Numerical evaluation

2 Combining process replication and checkpointing
Impact of checkpointing period
Evaluating replication

3 Conclusion



Methodology

Ferreira et al.

Compare checkpointing without and with replication using
Daly’s period

Problem: when g = 1 Daly’s period may be suboptimal

Conclusion: shows when replication is beneficial to Daly’s
periodic checkpointing

Our approach

Compare checkpointing without and with replication using
best period

Conclusion: shows when replication is beneficial to periodic
checkpointing



Exponential distribution

Dashed line: Ferreira et al. Solid line: this work
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No difference between both approaches

Replication beneficial if MTBF is low enough, checkpoints are
large enough, the number of PEs is large enough



Weibull distribution with k = 0.7
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Weibull distribution with k = 0.5
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Conclusion

Theoretical study by Ferreira et al. was flawed

In practice, the theoretical flaw has no impact

Simulation study by Ferreira et al. was flawed

The flaw favored replication

Depending of the failure distribution, replication can be quite
less interesting than predicted Ferreira et al.

Main flaws of this study:

Non correlated failures
Coordinated checkpointing
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