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How to address fault-tolerance at exascale?

Most classical approach: rollback-recovery

@ What is the most appropriate protocol?
(cf. yesterday's talk by Amina Guermouche)

@ How efficient will checkpointing protocols be?

@ Can some external mechanisms improve efficiency and
resilience of checkpointing protocols?



How to address fault-tolerance at exascale?

Most classical approach: rollback-recovery

@ What is the most appropriate protocol?
(cf. yesterday's talk by Amina Guermouche)

@ How efficient will checkpointing protocols be?

@ Can some external mechanisms improve efficiency and
resilience of checkpointing protocols?

Alternative approach: replication
@ Systematic replication: efficiency < 50%

@ Can replication+checkpointing be more efficient than
checkpointing alone?

e Claim by Ferreira et al. [Supercomputing 2011]: yes

Our aim: revisit their study
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Model

by Ferreira et al. [Supercomputing 2011]

A parallel application comprising n (sequential) processes
Each process replicated g > 2 times — replica-group

A processing element executes a single replica
Two replicas, even from two different application processes, cannot
run on the same PE

When a replica is hit by a failure, it is not restarted
Underlying assumption: the whole application runs at the speed of
the lowest replica

The application fails when all replicas in one replica-group
have been hit by failures

Failures of different PEs are not correlated
Study for g = 2 by Ferreira et al., SC'2011



Question: what is the value of the MNFTI?

What is the mean number of processing element failures needed to
interrupt the application?

In other words: What is the mean number of processing element
failures needed to kill all replicas in (at least) one replica-group?
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@ Process replication

@ Analogy with birthday problem (when g = 2)



The birthday problem

Classical formulation
What is the probability, in a set of m people, that two of them
have same birthday 7

Relevant formulation
What is the average number of people required to find a pair with
same birthday?

z n!
F(n):1+27(n_k)!‘nk
k=1

The analogy

Two people with same birthday

Two failures hitting same replica-group
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Failure uniformly distributed over 2n — 1 PEs

Probability that replica-group i is hit by failure: 1/(2n — 1)
Probability that replica-group # i is hit by failure: 2/(2n — 1)
Failure not uniformly distributed over replica-groups:

this is not the birthday problem
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Differences with birthday problem

1 2 i n

n processes; each replicated twice
Uniform distribution of failures
First failure: each replica-group has probability 1/n to be hit

Nothing is restarted (neither on failed PE nor elsewhere)
Second failure can hit failed PE

Suppose the failure hit replica-group i

If the failure hit the failed PE: application survives

If the failure hit the running PE: application killed

Not all failures hitting the same replica-group are equal:
this is not the birthday problem



Computing MNFTI'? (1/4)

@ Hypothesis: failures can only hit running PEs

@ Each application process has 2 replicas: g =2

@ ns: number of replica-groups already hit by failures

o nf PEs have failed
@ 2n — n¢ PEs still running



Computing MNFTI™ (2/4)

Case nf = n
Next PE failure induces application failure

E(NFTI™|n) = 1



Computing MNFTI™ (3/4)

General case

v

1 2




Computing MNFTI™ (3/4)

General case

i

1 2

1

Failure hit one of the nf already hit replica-groups

ng
n— nf¢

Probability: 5

Average number of failures needed for the application to fail:

1



Computing MNFTI™ (3/4)

General case
1 2 3 4

Failure hit one replica-group with two running PEs

2(n — ny)

n— ng

Probability:

Average number of failures needed for the application to fail:

1+ E(NFTI*P|ns + 1)



Computing MNFTI'? (4/4)

Theorem

If the failure inter-arrival times on the different PEs are i.i.d. then
using process replication with g =2, MNFTI'™® = E(NFTI'?|0)
where

1 ifnf=n
p — 7
E(NFTI™®|ns) = { 14 2220 |B(NFTI™|ng + 1)  otherwise.

2n—nf




Computing MNFTI'? (4/4)

Theorem

If the failure inter-arrival times on the different PEs are i.i.d. then
using process replication with g =2, MNFTI'™® = E(NFTI'?|0)
where

1 ifnf=n
p — 7
E(NFTI™®|ns) = { 14 2220 |B(NFTI™|ng + 1)  otherwise.

2n—nf

If the failure inter-arrival times on the different PEs are i.i.d. and
independent from the PE failure history, then

MNFTI* = 1 + MNFTI™




Generalization to any value of g

If the failure inter-arrival times on the different PEs are i.i.d.

MNFTI"™ =E | NFTI'?| 0,...,0 | where:
~———

g—1 zeros

E (NFT/fP\n(fl), n(g‘”) —1
( Zg 11 ”g))

rpy (1) (2) (g=1)

+ ST n,(c) (NFT/ Iny”, n”, ..., n¢ )
+Z (g i) nf
Sen-Yi i ”

-]E(NFTFP|n§1,...,n‘f’ D=1, a1 nl D, )
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@ Computing the MTTI



From MNFTI to MTTI

MTTI = systemMTBF (g - n) x MNFTI*"(n)

True for exponential distribution of failures

What about other distributions?



MTTI for any failure distribution

R(t) probability that application still running at time t
@ All replica-groups have at least one replica running
o Exponential: R(t) = (1— (1— e‘”)g)n

o Weibull: R(t) = (1 - (1 - e—(i)k>g>n

MTTI
+o0
e MTTI :/ R(t)dt — closed-form formulas
0
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@ Numerical evaluation



Numerical evaluation of the MNFTI

[ Number of processes n | 20 | 21 [ 22 [ 23 [ 2% [ 2° | 2° |
Ferreira et al. 2 25 [ 322|425 | 5.7 | 7.77 | 10.7
This work 3 3.67 | 466 | 6.09 | 8.15 | 11.1 | 15.2

% Relative Difference -33 | -32 | -31 | -30 | -30 -30 -30

Number of processes n | 27 | 28 | 2° | 210 | 211 | 212 | 213 |
Ferreira et al. 149|207 | 29 |40.8|57.4| 809 | 114
This work 21.1 1294 | 41.1 | b7.7 | 81.2 | 114 161
% Relative Difference | =30 | -29 | -29 | -29 | -29 | -29 | -29

Number of processes n | 214 | 21% | 216 | 217 | 218 | 219 | 220 |
Ferreira et al. 161 | 228 | 322 | 454 | 642 | 908 | 1284

This work 228 | 322 | 455 | 643 | 908 | 1284 | 1816
% Relative Difference 29 | 229 | -29 | -29 | -29 -29 -29
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The question

Ferreira et al. use Daly’s checkpointing period

(without and with replication)

Does this matter?



Without replication

Weibull distribution with k = 0.7, PE MTBF of 125 years
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The checkpointing period can have a significant impact



With replication

Weibull distribution with k = 0.7, PE MTBF of 125 years
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Daly’s period appears to be an excellent choice



Checkpoints are almost useless with replication

Weibull distribution

# of application failures | % of PE failures
# of processes | k = 0.7 k=05 k=07| k=05
214 1.95 4.94 0.35 0.39
215 1.44 3.77 0.25 0.28
216 0.88 2.61 0.15 0.19
217 0.45 1.67 0.075 0.12
218 0.20 1.11 0.034 | 0.076
219 0.13 0.72 0.022 0.049
220 0.083 0.33 0.014 | 0.023

@ Applications rarely rollback

@ Daly’s approximation is good enough
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© Combining process replication and checkpointing

@ Evaluating replication



Methodology

Ferreira et al.
@ Compare checkpointing without and with replication using
Daly's period
@ Problem: when g =1 Daly's period may be suboptimal

@ Conclusion: shows when replication is beneficial to Daly's
periodic checkpointing

Our approach
@ Compare checkpointing without and with replication using
best period
@ Conclusion: shows when replication is beneficial to periodic
checkpointing



Exponential distribution

Dashed line: Ferreira et al. Solid line: this work
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@ No difference between both approaches

@ Replication beneficial if MTBF is low enough, checkpoints are
large enough, the number of PEs is large enough



Weibull distribution with kK = 0.7

Dashed line: Ferreira et al. Solid line: this work
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Weibull distribution with kK = 0.7
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@ Significant difference between both approaches

@ Other conclusions are still valid



Weibull distribution with kK = 0.5

Dashed line: Ferreira et al. Solid line: this work
—_ C=150
1000000 4 __ ¢ 300
— C= 600
" | — c=900
§ 800000 — C— 1200
g — C= 2400
2 600000
5
£ 400000
=
200000
0

1 10 100
Processor MTBF (in years)

@ Significant difference between both approaches

@ Other conclusions are still valid
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Conclusion

@ Theoretical study by Ferreira et al. was flawed

@ In practice, the theoretical flaw has no impact

@ Simulation study by Ferreira et al. was flawed

@ The flaw favored replication

@ Depending of the failure distribution, replication can be quite
less interesting than predicted Ferreira et al.

@ Main flaws of this study:

o Non correlated failures
e Coordinated checkpointing
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