Combining Process Replication and Checkpointing for Resilience

Henri Casanova¹, Yves Robert^{2,3,4}, Frédéric Vivien^{5,2}, and Dounia Zaidouni^{5,2}

1. University of Hawai'i

2. Ecole Normale Supérieure de Lyon

3. Institut Universitaire de France

4. University of Tennessee Knoxville

5. INRIA

June 14, 2012

How to address fault-tolerance at exascale?

Most classical approach: rollback-recovery

- What is the most appropriate protocol?
 (cf. yesterday's talk by Amina Guermouche)
- How efficient will checkpointing protocols be?
- Can some external mechanisms improve efficiency and resilience of checkpointing protocols?

How to address fault-tolerance at exascale?

Most classical approach: rollback-recovery

- What is the most appropriate protocol? (cf. yesterday's talk by Amina Guermouche)
- How efficient will checkpointing protocols be?
- Can some external mechanisms improve efficiency and resilience of checkpointing protocols?

Alternative approach: replication

- Systematic replication: efficiency < 50%
- Can replication+checkpointing be more efficient than checkpointing alone?
- Claim by Ferreira et al. [Supercomputing 2011]: yes

Our aim: revisit their study

- Process replication
- 2 Combining process replication and checkpointing
- 3 Conclusion

- Process replication
 - Model
 - Analogy with birthday problem (when g = 2)
 - Computing the MTTI
 - Numerical evaluation
- 2 Combining process replication and checkpointing
 - Impact of checkpointing period
 - Evaluating replication
- 3 Conclusion

- Process replication
 - Model
 - Analogy with birthday problem (when g = 2)
 - Computing the MTTI
 - Numerical evaluation
- Combining process replication and checkpointing
 - Impact of checkpointing period
 - Evaluating replication
- 3 Conclusion

Model by Ferreira et al. [Supercomputing 2011]

- \bullet A parallel application comprising n (sequential) processes
- Each process replicated $g \ge 2$ times \rightarrow replica-group
- A processing element executes a single replica
 Two replicas, even from two different application processes, cannot run on the same PE
- When a replica is hit by a failure, it is not restarted Underlying assumption: the whole application runs at the speed of the lowest replica
- The application fails when all replicas in one replica-group have been hit by failures
- Failures of different PEs are not correlated
- Study for g = 2 by Ferreira et al., SC'2011

Question: what is the value of the MNFTI?

What is the mean number of processing element failures needed to interrupt the application?

In other words: What is the mean number of processing element failures needed to kill all replicas in (at least) one replica-group?

- Process replication
 - Model
 - Analogy with birthday problem (when g = 2)
 - Computing the MTTI
 - Numerical evaluation
- Combining process replication and checkpointing
 - Impact of checkpointing period
 - Evaluating replication
- 3 Conclusion

The birthday problem

Classical formulation

What is the probability, in a set of m people, that two of them have same birthday ?

Relevant formulation

What is the average number of people required to find a pair with same birthday?

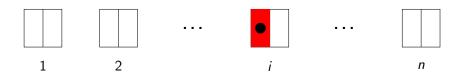
$$F(n) = 1 + \sum_{k=1}^{n} \frac{n!}{(n-k)! \cdot n^k}$$

The analogy

Two people with same birthday

Two failures hitting same replica-group

- n processes; each replicated twice
- Uniform distribution of failures



- *n* processes; each replicated twice
- Uniform distribution of failures
- First failure: each replica-group has probability 1/n to be hit
- Nothing is restarted (neither on failed PE nor elsewhere)

- n processes; each replicated twice
- Uniform distribution of failures
- First failure: each replica-group has probability 1/n to be hit
- Nothing is restarted (neither on failed PE nor elsewhere)
- Second failure: can the failed PE be hit?

- *n* processes; each replicated twice
- Uniform distribution of failures
- First failure: each replica-group has probability 1/n to be hit
- Nothing is restarted (neither on failed PE nor elsewhere)
- Second failure cannot hit failed PE
 - Failure uniformly distributed over 2n-1 PEs

- *n* processes; each replicated twice
- Uniform distribution of failures
- First failure: each replica-group has probability 1/n to be hit
- Nothing is restarted (neither on failed PE nor elsewhere)
- Second failure cannot hit failed PE
 - Failure uniformly distributed over 2n-1 PEs
 - Probability that replica-group i is hit by failure: 1/(2n-1)

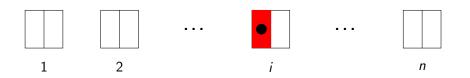
- *n* processes; each replicated twice
- Uniform distribution of failures
- First failure: each replica-group has probability 1/n to be hit
- Nothing is restarted (neither on failed PE nor elsewhere)
- Second failure cannot hit failed PE
 - Failure uniformly distributed over 2n-1 PEs
 - Probability that replica-group i is hit by failure: 1/(2n-1)
 - ullet Probability that replica-group eq i is hit by failure: 2/(2n-1)

- *n* processes; each replicated twice
- Uniform distribution of failures
- First failure: each replica-group has probability 1/n to be hit
- Nothing is restarted (neither on failed PE nor elsewhere)
- Second failure cannot hit failed PE
 - Failure uniformly distributed over 2n-1 PEs
 - Probability that replica-group i is hit by failure: 1/(2n-1)
 - ullet Probability that replica-group eq i is hit by failure: 2/(2n-1)

- *n* processes; each replicated twice
- Uniform distribution of failures
- First failure: each replica-group has probability 1/n to be hit
- Nothing is restarted (neither on failed PE nor elsewhere)
- Second failure cannot hit failed PE
 - Failure uniformly distributed over 2n 1 PEs
 - Probability that replica-group i is hit by failure: 1/(2n-1)
 - Probability that replica-group $\neq i$ is hit by failure: 2/(2n-1)
 - Failure not uniformly distributed over replica-groups: this is not the birthday problem

- n processes; each replicated twice
- Uniform distribution of failures
- First failure: each replica-group has probability 1/n to be hit
- Nothing is restarted (neither on failed PE nor elsewhere)
- Second failure can hit failed PE

- *n* processes; each replicated twice
- Uniform distribution of failures
- First failure: each replica-group has probability 1/n to be hit
- Nothing is restarted (neither on failed PE nor elsewhere)
- Second failure can hit failed PE
 - Suppose the failure hit replica-group i



- *n* processes; each replicated twice
- Uniform distribution of failures
- First failure: each replica-group has probability 1/n to be hit
- Nothing is restarted (neither on failed PE nor elsewhere)
- Second failure can hit failed PE
 - Suppose the failure hit replica-group i
 - If the failure hit the failed PE: application survives

- *n* processes; each replicated twice
- Uniform distribution of failures
- First failure: each replica-group has probability 1/n to be hit
- Nothing is restarted (neither on failed PE nor elsewhere)
- Second failure can hit failed PE
 - Suppose the failure hit replica-group *i*
 - If the failure hit the failed PE: application survives
 - If the failure hit the running PE: application killed
 - Not all failures hitting the same replica-group are equal: this is not the birthday problem

Computing $MNFTI^{rp}$ (1/4)

- Hypothesis: failures can only hit running PEs
- Each application process has 2 replicas: g = 2
- \bullet n_f : number of replica-groups already hit by failures
 - n_f PEs have failed
 - $2n n_f$ PEs still running

Computing MNFTI^{rp} (2/4)

Case
$$n_f = n$$

Next PE failure induces application failure

$$\mathbb{E}(\mathit{NFTI}^{\mathrm{rp}}|n) = 1$$

Computing MNFTI^{rp} (3/4)

General case

3

n

Computing MNFTI^{rp} (3/4)

General case

Failure hit one of the n_f already hit replica-groups

Probability:
$$\frac{n_f}{2n - n_f}$$

Average number of failures needed for the application to fail:

Computing MNFTI^{rp} (3/4)

General case

Failure hit one replica-group with two running PEs

Probability:
$$\frac{2(n-n_f)}{2n-n_f}$$

Average number of failures needed for the application to fail:

$$1 + \mathbb{E}(\mathsf{NFTI}^{\mathrm{rp}}|\mathsf{n}_f + 1)$$

Computing MNFTI^{rp} (4/4)

Theorem

If the failure inter-arrival times on the different PEs are i.i.d. then using process replication with g=2, MNFTI^{rp} = $\mathbb{E}(NFTI^{\rm rp}|0)$ where

$$\mathbb{E}(\mathsf{NFTI^{\mathrm{rp}}}|n_f) = \left\{ egin{array}{ll} 1 & \textit{if } n_f = n, \\ 1 + rac{2n - 2n_f}{2n - n_f} \mathbb{E}(\mathsf{NFTI^{\mathrm{rp}}}|n_f + 1) & \textit{otherwise}. \end{array}
ight.$$

Computing $MNFTI^{rp}$ (4/4)

Theorem

If the failure inter-arrival times on the different PEs are i.i.d. then using process replication with g=2, $MNFTI^{\rm rp}=\mathbb{E}(NFTI^{\rm rp}|0)$ where

$$\mathbb{E}(\mathsf{NFTI}^{\mathrm{rp}}|n_f) = \left\{ egin{array}{ll} 1 & \textit{if } n_f = n, \\ 1 + rac{2n - 2n_f}{2n - n_f} \mathbb{E}(\mathsf{NFTI}^{\mathrm{rp}}|n_f + 1) & \textit{otherwise}. \end{array}
ight.$$

$\mathsf{Theorem}$

If the failure inter-arrival times on the different PEs are i.i.d. and independent from the PE failure history, then

$$MNFTI^{ah} = 1 + MNFTI^{rp}$$

Generalization to any value of g

Theorem

If the failure inter-arrival times on the different PEs are i.i.d.

$$MNFTI^{\text{rp}} = \mathbb{E}\left(NFTI^{\text{rp}}|\underbrace{0,...,0}_{g-1 \text{ zeros}}\right)$$
 where:

$$\begin{split} & \mathbb{E}\left(\textit{NFTI}^{\text{rp}}|\textit{n}_{f}^{(1)},...,\textit{n}_{f}^{(g-1)}\right) = 1 \\ & + \frac{g \cdot \left(n - \sum_{i=1}^{g-1} n_{f}^{(i)}\right)}{g \cdot n - \sum_{i=1}^{g-1} i \cdot n_{f}^{(i)}} \cdot \mathbb{E}\left(\textit{NFTI}^{\text{rp}}|\textit{n}_{f}^{(1)},\textit{n}_{f}^{(2)},...,\textit{n}_{f}^{(g-1)}\right) \\ & + \sum_{i=1}^{g-2} \frac{\left(g - i\right) \cdot n_{f}^{(i)}}{g \cdot n - \sum_{i=1}^{g-1} i \cdot n_{f}^{(i)}} \\ & \cdot \mathbb{E}\left(\textit{NFTI}^{\text{rp}}|\textit{n}_{f}^{(1)},...,\textit{n}_{f}^{(i-1)},\textit{n}_{f}^{(i)} - 1,\;\textit{n}_{f}^{(i+1)} + 1,\textit{n}_{f}^{(i+2)},...,\textit{n}_{f}^{(g-1)}\right) \end{split}$$

- Process replication
 - Model
 - Analogy with birthday problem (when g = 2)
 - Computing the MTTI
 - Numerical evaluation
- Combining process replication and checkpointing
 - Impact of checkpointing period
 - Evaluating replication
- 3 Conclusion

From MNFTI to MTTI

$$MTTI = systemMTBF(g \cdot n) \times MNFTI^{ah}(n)$$

True for exponential distribution of failures

What about other distributions?

MTTI for any failure distribution

R(t) probability that application still running at time t

- All replica-groups have at least one replica running
- Exponential: $R(t) = \left(1 \left(1 e^{-\lambda t}\right)^{g}\right)^{n}$
- Weibull: $R(t) = \left(1 \left(1 e^{-\left(\frac{t}{\lambda}\right)^k}\right)^g\right)^n$

MTTI

•
$$MTTI = \int_0^{+\infty} R(t) dt$$
 \rightarrow closed-form formulas

- Process replication
 - Model
 - Analogy with birthday problem (when g = 2)
 - Computing the MTTI
 - Numerical evaluation
- 2 Combining process replication and checkpointing
 - Impact of checkpointing period
 - Evaluating replication
- Conclusion

Numerical evaluation of the MNFTI

Number of processes n	2 ⁰	2 ¹	2 ²	2 ³	2 ⁴	2 ⁵	2 ⁶
Ferreira et al.	2	2.5	3.22	4.25	5.7	7.77	10.7
This work	3	3.67	4.66	6.09	8.15	11.1	15.2
% Relative Difference	-33	-32	-31	-30	-30	-30	-30

Number of processes <i>n</i>	27	2 ⁸	2 ⁹	2 ¹⁰	2 ¹¹	2^{12}	2^{13}
Ferreira et al.	14.9	20.7	29	40.8	57.4	80.9	114
This work	21.1	29.4	41.1	57.7	81.2	114	161
% Relative Difference	-30	-29	-29	-29	-29	-29	-29

Number of processes n	2 ¹⁴	2^{15}	2^{16}	2^{17}	2^{18}	2 ¹⁹	2 ²⁰
Ferreira et al.	161	228	322	454	642	908	1284
This work	228	322	455	643	908	1284	1816
% Relative Difference	-29	-29	-29	-29	-29	-29	-29

- Process replication
 - Model
 - Analogy with birthday problem (when g = 2)
 - Computing the MTTI
 - Numerical evaluation
- 2 Combining process replication and checkpointing
 - Impact of checkpointing period
 - Evaluating replication
- Conclusion

Outline

- Process replication
 - Model
 - Analogy with birthday problem (when g = 2)
 - Computing the MTTI
 - Numerical evaluation
- 2 Combining process replication and checkpointing
 - Impact of checkpointing period
 - Evaluating replication
- 3 Conclusion

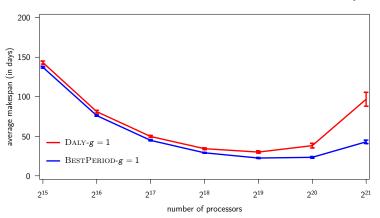
The question

Ferreira et al. use Daly's checkpointing period (without and with replication)

Does this matter?

Without replication

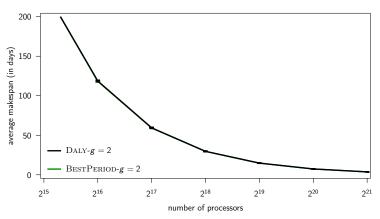
Weibull distribution with k = 0.7, PE MTBF of 125 years



The checkpointing period can have a significant impact

With replication

Weibull distribution with k = 0.7, PE MTBF of 125 years



Daly's period appears to be an excellent choice

Checkpoints are almost useless with replication

Weibull distribution

	# of application failures		% of PE failures	
# of processes	k = 0.7	k = 0.5	k = 0.7	k = 0.5
2 ¹⁴	1.95	4.94	0.35	0.39
2 ¹⁵	1.44	3.77	0.25	0.28
2 ¹⁶	0.88	2.61	0.15	0.19
2 ¹⁷	0.45	1.67	0.075	0.12
2 ¹⁸	0.20	1.11	0.034	0.076
2 ¹⁹	0.13	0.72	0.022	0.049
2 ²⁰	0.083	0.33	0.014	0.023

- Applications rarely rollback
- Daly's approximation is good enough

Outline

- Process replication
 - Model
 - Analogy with birthday problem (when g = 2)
 - Computing the MTTI
 - Numerical evaluation
- 2 Combining process replication and checkpointing
 - Impact of checkpointing period
 - Evaluating replication
- 3 Conclusion

Methodology

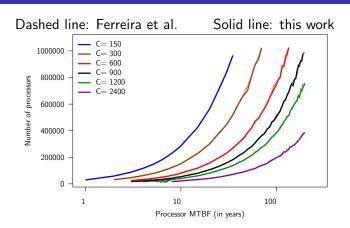
Ferreira et al.

- Compare checkpointing without and with replication using Daly's period
- Problem: when g = 1 Daly's period may be suboptimal
- Conclusion: shows when replication is beneficial to Daly's periodic checkpointing

Our approach

- Compare checkpointing without and with replication using best period
- Conclusion: shows when replication is beneficial to periodic checkpointing

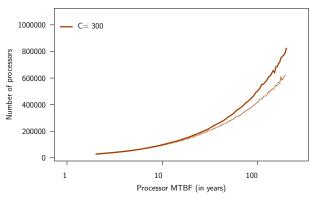
Exponential distribution



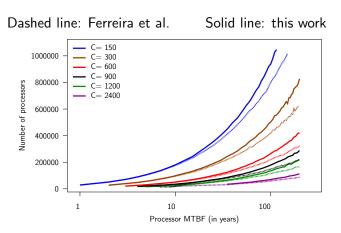
- No difference between both approaches
- Replication beneficial if MTBF is low enough, checkpoints are large enough, the number of PEs is large enough

Weibull distribution with k = 0.7

Dashed line: Ferreira et al. Solid line: this work



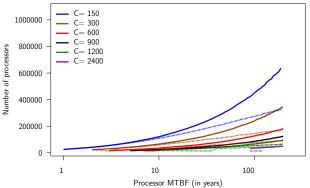
Weibull distribution with k = 0.7



- Significant difference between both approaches
- Other conclusions are still valid

Weibull distribution with k = 0.5

Dashed line: Ferreira et al. Solid line: this work



- Significant difference between both approaches
- Other conclusions are still valid

Outline

- Process replication
 - Model
 - Analogy with birthday problem (when g = 2)
 - Computing the MTTI
 - Numerical evaluation
- Combining process replication and checkpointing
 - Impact of checkpointing period
 - Evaluating replication
- 3 Conclusion

Conclusion

- Theoretical study by Ferreira et al. was flawed
- In practice, the theoretical flaw has no impact
- Simulation study by Ferreira et al. was flawed
- The flaw favored replication
- Depending of the failure distribution, replication can be quite less interesting than predicted Ferreira et al.
- Main flaws of this study:
 - Non correlated failures
 - Coordinated checkpointing