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Overview

Context

Failure-prone platform, small MTBF

Very large number of processors (N = 16K to N = 1024K )

Fault predictor characterized by its recall and precision

Resilience: combine coordinated & preventive checkpointing

Objective

Design efficient checkpointing policies

Compute expected waste

Assess impact of predictions
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Exascale platforms (courtesy Jack Dongarra)

Potential System Architecture 
with a cap of $200M and 20MW  
 Systems 2011 

K computer 
2019  Difference 

Today & 2019 

System peak 10.5 Pflop/s 1 Eflop/s O(100) 

Power 12.7 MW ~20 MW 

System memory 1.6 PB 32 - 64 PB O(10) 

Node performance 128 GF 1,2  or 15TF O(10) – O(100) 

Node memory BW 64 GB/s 2 - 4TB/s O(100) 

Node concurrency 8 O(1k) or 10k O(100) – O(1000) 

Total Node Interconnect BW 20 GB/s 200-400GB/s O(10) 

System size (nodes) 88,124 O(100,000) or O(1M) O(10) – O(100) 

Total concurrency 705,024 O(billion) O(1,000) 

MTTI days O(1 day) - O(10) 
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Exascale platforms

Hierarchical
• 105 or 106 nodes
• Each node equipped with 104 or 103 cores

Failure-prone

MTBF – one node 1 year 10 years 120 years
MTBF – platform 30sec 5mn 1h

of 106 nodes

More nodes ⇒ Shorter MTBF (Mean Time Between Failures)
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Error sources (courtesy Franck Cappello)

•  Analysis of error and failure logs 

•  In 2005 (Ph. D. of CHARNG-DA LU) : “Software halts account for the most number of 
outages (59-84 percent), and take the shortest time to repair (0.6-1.5 hours). Hardware 
problems, albeit rarer, need 6.3-100.7 hours to solve.” 

•  In 2007 (Garth Gibson, ICPP Keynote): 

•  In 2008 (Oliner and J. Stearley, DSN Conf.): 
50% 

Hardware 

Conclusion: Both Hardware and Software failures have to be considered 

Software errors: Applications, OS bug (kernel panic), communication libs, File system error and other. 

Hardware errors, Disks, processors, memory, network   
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A few definitions

Many types of faults: software error, hardware malfunction,
memory corruption

Many possible behaviors: silent, transient, unrecoverable

Restrict to faults that lead to application failures

This includes all hardware faults, and some software ones

Will use terms fault and failure interchangeably
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Failure distributions: with several processors

Processor (or node): any entity subject to failures
⇒ approach agnostic to granularity

If the MTBF is µ with one processor,
what is its value with p processors?

Well, it depends /
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With rejuvenation

Rebooting all p processors after a failure

Platform failure distribution
⇒ minimum of p IID processor distributions

With p distributions Exp(λ):

min
(
Exp(λ1),Exp(λ2)

)
= Exp(λ1 + λ2)

µ =
1

λ
⇒ µp =

µ

p

With p distributions Weibull(k, λ):

min
1..p

(
Weibull(k , λ)

)
= Weibull(k , p1/kλ)

µ =
1

λ
Γ(1 +

1

k
)⇒ µp =

µ

p1/k
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Without rejuvenation

Rebooting only faulty processor

Platform failure distribution
⇒ superposition of p IID processor distributions

Simple formula for arbitrary distributions:

µp =
µ

p

with p processors of MTBF µ

Rejuvenation does not matter for Exponential

Rejuvenation harmful for Weibull with k < 1
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MTBF with p processors (1/2)

Theorem: µp = µ
p for arbitrary distributions

With one processor:

n(F ) = number of failures until time F is exceeded

Xi iid random variables for inter-arrival times, with E (Xi ) = µ∑n(F )−1
i=1 Xi ≤ F ≤

∑n(F )
i=1 Xi

Wald’s equation: (E (n(F ))− 1)µ ≤ F ≤ E (n(F ))µ

limF→+∞
E(n(F ))

F = 1
µ
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MTBF with p processors (2/2)

Theorem: µp = µ
p for arbitrary distributions

With p processors:

n(F ) = number of platform failures until time F is exceeded

mq(F ) = number of those failures that strike processor q

nq(F ) = mq(F ) + 1 = number of failures on processor q until
time F is exceeded (except for processor with last-failure)

Yi iid random variables for platform inter-arrival times, with
E (Yi ) = µp

limF→+∞
n(F )
F = 1

µp
as above

limF→+∞
n(F )
F = p

µ because n(F ) =
∑p

q=1 mq(F )

Hence µp = µ
p
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Values from the literature

MTBF of one processor: between 10 and 125 years

Shape parameters for Weibull: k = 0.5 or k = 0.7

Failure trace archive from INRIA
(http://fta.inria.fr)

Computer Failure Data Repository from LANL
(http://institutes.lanl.gov/data/fdata)
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Checkpointing cost

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunkProcessing the first chunk

Time

Time spent checkpointing

Time spent working

Blocking model: while a checkpoint is taken, no computation can
be performed
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Framework

Periodic checkpointing policy of period T

Independent and identically distributed failures

Applies to a single processor with MTBF µ = µind
Applies to a platform with p processors with MTBF µ = µind

p

coordinated checkpointing
tightly-coupled application
progress ⇔ all processors available

Waste: fraction of time not spent for useful computations

yves.robert@ens-lyon.fr Checkpointing & fault prediction 16/ 54



Introduction Young/Daly’s approximation Failure Prediction Experiments Conclusion

Waste in fault-free execution

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunkProcessing the first chunk

Time

Time spent checkpointing

Time spent working Timebase: application base time

TimeFF: with periodic checkpoints
but failure-free

TimeFF = Timebase + #checkpoints × C

#checkpoints =

⌈
Timebase

T − C

⌉
≈ Time[base]

T − C
(valid for large jobs)

TimeFF = Timebase
T

T − C
and Waste[FF ] =

TimeFF −Timebase

TimeFF

Waste[FF ] =
C

T

yves.robert@ens-lyon.fr Checkpointing & fault prediction 17/ 54



Introduction Young/Daly’s approximation Failure Prediction Experiments Conclusion

Waste due to failures

Timebase: application base time

TimeFF: with periodic checkpoints but failure-free

Timefinal: expectation of time with failures

Timefinal = TimeFF + Nfaults × Tlost

Nfaults number of failures during execution
Tlost: average time lost par failures

Nfaults =
Timefinal

µ

Tlost?
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Computing Tlost

T

CT − CRDTlost

P1

P0

P3

P2

Time spent working Time spent checkpointing

Recovery timeDowntime Time

Tlost = D + R +
T

2

⇒ Instants when periods begin and failures strike are independent
⇒ Valid for all distribution laws, regardless of their particular shape
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Waste due to failures

Timefinal = TimeFF + Nfaults × Tlost

Timefinal = TimeFF +
Timefinal

µ
×
(
D + R +

T

2

)

Waste[fail ] =
Timefinal −TimeFF

Timefinal

Waste[fail ] =
1

µ

(
D + R +

T

2

)
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Total waste

TimeFF =TimeFinal (1-Waste[Fail]) TimeFinal ×Waste[Fail ]

TimeFinal

T -C C T -C C T -C C T -C C T -C C

Waste =
Timefinal −Timebase

Timefinal

(1−Waste[fail ])(1−Waste[FF ])Timefinal = Time[base]

1−Waste = (1−Waste[FF ])(1−Waste[fail ])

Waste =
C

T
+

(
1− C

T

)
1

µ

(
D + R +

T

2

)
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Waste minimization

Waste =
C

T
+

(
1− C

T

)
1

µ

(
D + R +

T

2

)
Waste =

u

T
+ v + wT

u = C
(
1− D + R

µ

)
v =

D + R − C/2

µ
w =

1

2µ

Waste minimized for T =
√

u
w

T =
√

2(µ− (D + R))C
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Comparison with Young/Daly

TimeFF =TimeFinal (1-Waste[Fail]) TimeFinal ×Waste[Fail ]

TimeFinal

T -C C T -C C T -C C T -C C T -C C

(
1−Waste[fail ]

)
Timefinal = TimeFF

⇒ T =
√

2(µ− (D + R))C

Daly: Timefinal =
(
1 + Waste[fail ]

)
TimeFF

⇒ T =
√

2(µ+ (D + R))C + C

Young: Timefinal =
(
1 + Waste[fail ]

)
TimeFF and D = R = 0

⇒ T =
√

2µC + C

yves.robert@ens-lyon.fr Checkpointing & fault prediction 23/ 54



Introduction Young/Daly’s approximation Failure Prediction Experiments Conclusion

Validity of the approach (1/3)

Technicalities

E (Nfaults) = Timefinal
µ and E (Tlost) = T

2
but expectation of product is not product of expectations
(not independent RVs here)

Enforce C ≤ T to get Waste[FF ] ≤ 1

Enforce D + R ≤ µ and bound T to get Waste[fail ] ≤ 1
but µ = µind

p too small for large p, regardless of µind
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Validity of the approach (2/3)

Several failures within same period?

Waste[fail] accurate only when two or more faults do not
take place within same period

Cap period: T ≤ γµ, where γ is some tuning parameter

Poisson process of parameter θ = T
µ

Probability of having k ≥ 0 failures : P(X = k) = θk

k! e
−θ

Probability of having two or more failures:
π = P(X ≥ 2) = 1− (P(X = 0) +P(X = 1)) = 1− (1 +θ)e−θ

γ = 0.27 ⇒ π ≤ 0.03
⇒ overlapping faults for only 3% of checkpointing segments
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Validity of the approach (3/3)

Enforce T ≤ γµ, C ≤ γµ, and D + R ≤ γµ

Optimal period
√

2(µ− (D + R))C may not belong to
admissible interval [C , γµ]

Waste is then minimized for one of the bounds of this
admissible interval (by convexity)
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Wrap up

Capping periods, and enforcing a lower bound on MTBF
⇒ mandatory for mathematical rigor /

Not needed for practical purposes ,
• actual job execution uses optimal value
• account for multiple faults by re-executing work until success

Approach surprisingly robust ,
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Framework

Predictor

Exact prediction dates (at least C seconds in advance)

Recall r : fraction of faults that are predicted

Precision p: fraction of fault predictions that are correct

Events

true positive: predicted faults

false positive: fault predictions that did not materialize as
actual faults

false negative: non-predicted faults

r =
TrueP

TrueP + FalseN
and p =

TrueP
TrueP + FalseP
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Fault rates

µ: mean time between failures (MTBF)

µP mean time between predicted events (both true positive
and false positive)

µNP mean time between unpredicted faults (false negative).

µe : mean time between events (including all three event
types)

(1− r)

µ
=

1

µNP
r

µ
=

p

µP

1

µe
=

1

µP
+

1

µNP
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Hypotheses

Regular (coordinated) checkpoints

Checkpoint cost: C

Downtime: D

Recovery cost after failure: R

Two scenarios

¬ Exact date predictions

­ Window-based predictions

Lead times

Predictions must be provided at least C seconds in advance

yves.robert@ens-lyon.fr Checkpointing & fault prediction 32/ 54



Introduction Young/Daly’s approximation Failure Prediction Experiments Conclusion

Outline

1 Young/Daly’s approximation

2 Failure Prediction
Framework
Exact date predictions
Prediction windows

3 Experiments

4 Conclusion

yves.robert@ens-lyon.fr Checkpointing & fault prediction 33/ 54



Introduction Young/Daly’s approximation Failure Prediction Experiments Conclusion

Algorithm

1 While no fault prediction is available:
• checkpoints taken periodically with period T

2 When a fault is predicted at time t:
• take a checkpoint ALAP (completion right at time t)
• after the checkpoint, complete the execution of the period
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Computing the waste

1 Fault-free execution: Waste[FF ] = C
T

2 Unpredicted faults: 1
µNP

[
D + R + T

2

]
3 Predictions: 1

µP
[p(C + D + R) + (1− p)C ]

Waste[fail ] =
1

µ

[
(1− r)

T

2
+ D + R +

r

p
C

]

Topt ≈
√

2µC

1− r
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Algorithm (v2)

While no fault prediction is available:
⇒ Periodic checkpointing with period T

When a fault is predicted:
⇒ Decide whether to take prediction into account or not

With probability 1− q: ignore prediction
With probability q: trust prediction

If enough time before prediction date, checkpoint ALAP
Otherwise, start new period
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Algorithm (v2)

TimeT -C T -C Tlost T -C

failure

C C C D R C

(a) Unpredicted fault
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Algorithm (v2)

TimeT -C T -C

Predicted failure

T -C T -C

C C C C C

(b) Prediction cannot be taken into account - no actual fault

TimeT -C Tlost

failure Predicted failure

T -C T -C T -C

C C D R C C C

(c) Prediction cannot be taken into account - with actual fault
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Algorithm (v2)

TimeT -C T -C

Predicted failure

T -C T -C

C C C C C

(d) Prediction not taken into account by choice - no actual fault

TimeT -C Tlost

failure Predicted failure

T -C T -C

C C D R C C

(e) Prediction not taken into account by choice - with actual fault
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Algorithm (v2)

TimeT -C Wreg

Predicted failure

T -Wreg -C T -C T -C

C C C C C C

(f) Prediction taken into account - no actual fault

TimeT -C Wreg

failure Predicted failure

T -Wreg -C T -C

C C C D R C C

(g) Prediction taken into account - with actual fault
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Waste minimization

Waste(q) minimized either for q = 0 or for q = 1

either never trust the predictor . . .
. . . or always trust it!

Optimal period:

Topt ≈

√
2µC

1− rq

Capping: Topt ≤ γµe
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Strategies

Hypotheses

Predictor gives a time window for each prediction

Predictor generates predictions at least C seconds before
beginning of time window

Description of strategies
Two modes for scheduling algorithm:

Regular: Periodic checkpointing with period TR

Proactive (Several variants):

Instant: Ignore time-window (⇔ exact date)
NoCkptI: No checkpoint during time window
WithCkptI: Several checkpoints during time window
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Algorithm

Algorithm 1: WithCkptI.

if fault happens then
After downtime, execute recovery;
Enter regular mode;

if in proactive mode for a time greater than or equal to I then
Switch to regular mode

if Prediction made with interval [t, t + I ] and prediction taken into
account then

Let tC be the date of the last checkpoint under regular mode
to start no later than t − C ;
if tC + C < t − C then (enough time for an extra checkpoint)

Take a checkpoint starting at time t − C

else (no time for the extra checkpoint)
Work in the time interval [tC + C , t]

Wreg ← max (0, t − C − (tC + C )) ;
Switch to proactive mode at time t;

while in regular mode and no predictions are made and no faults
happen do

Work for a time TR-Wreg -C and then checkpoint;
Wreg ← 0;

while in proactive mode and no faults happen do
Work for a time TP-C and then checkpoint;
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Outline of Algorithm

TimeTR-C TR-C Tlost TR-C

failure

Time
Regular mode Proactive mode
TR-C Wreg

I

TP-C TP-C TP-C TR-C
-Wreg

Time
Regular mode Proactive mode
TR-C Wreg

I

TP-C TP-C TR-C
-Wreg

failure

Regular mode C C C D R C

Prediction without failure C C C C C C C

Prediction with failure C C C C C D R C

Outline of strategy WithCkptI
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Prediction and failure distributions

Failure traces (predicted and non predicted failures):

Exponential failure distribution
Weibull distribution law with shape parameter 0.5 and 0.7

False predictions:

Same distribution as failure trace
Uniform distribution

Number of processors D C ,R µind W

16, 384 to 524, 288 60 s 600 s 125 y 400 y

Simulation parameters
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Job execution times for a Weibull distribution (k = 0.7)

Execution time (hours) Execution time (hours)
I = 300 (p = 0.82,r = 0.85) (p = 0.4,r = 0.7)

216 procs 219 procs 216 procs 219 procs
Young 81.3 30.1 81.2 30.1

ExactPrediction 65.9 (19%) 15.9 (47%) 69.7 (14%) 19.3 (36%)
NoCkptI 66.5 (18%) 16.9 (44%) 70.3 (13%) 20.5 (32%)
Instant 66.5 (18%) 17.0 (44%) 70.3 (13%) 20.7 (31%)

Execution time (hours) Execution time (hours)
I = 3, 000 (p = 0.82,r = 0.85) (p = 0.4,r = 0.7)

216 procs 219 procs 216 procs 219 procs
Young 81.2 30.1 81.2 30.1

ExactPrediction 66.0 (19%) 15.9 (47%) 69.8 (14%) 19.3 (36%)
NoCkptI 71.1 (12%) 24.6 (18%) 75.2 (7.3%) 28.9 (4.0%)

WithCkptI 70.0 (14%) 22.6 (25%) 75.4 (7.1%) 27.2 (9.7%)
Instant 71.2 (12%) 24.2 (20%) 75.0 (7.6%) 28.3 (6.0%)

Comparing job execution times for a Weibull distribution
(k = 0.7), and reporting gain when comparing to Young.
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Job execution times for a Weibull distribution (k = 0.5)

Execution time (hours) Execution time (hours)
I = 300 (p = 0.82,r = 0.85) (p = 0.4,r = 0.7)

216 procs 219 procs 216 procs 219 procs
Young 125.4 171.8 125.5 171.7

ExactPrediction 75.8 (40%) 39.4 (77%) 82.9 (34%) 51.8(70%)
NoCkptI 77.3 (38%) 44.8 (74%) 84.6 (33%) 58.2 (66%)
Instant 77.4 (38%) 45.1 (74%) 84.7 (33%) 59.1 (66%)

Execution time (hours) Execution time (hours)
I = 3, 000 (p = 0.82,r = 0.85) (p = 0.4,r = 0.7)

216 procs 219 procs 216 procs 219 procs
Young 125.4 171.9 125.4 172.0

ExactPrediction 76.1 (39%) 39.4 (77%) 83.0 (34%) 51.7 (70%)
NoCkptI 90.0 (28%) 71.8 (58%) 98.3 (22%) 84.5 (51%)

WithCkptI 87.8 (30%) 66.6 (61%) 98.0 (22%) 82.2 (52%)
Instant 89.8 (28%) 70.9 (59%) 98.2 (22%) 83.2 (52%)

Comparing job execution times for a Weibull distribution
(k = 0.5), and reporting gain when comparing to Young.
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Waste with p = 0.82, r = 0.85 and I = 300s
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(e) Weibull k = 0.5
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Waste with p = 0.82, r = 0.85 and I = 3000s
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Waste with p = 0.4, r = 0.7 and I = 300s
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Waste with p = 0.4, r = 0.7 and I = 3000s
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Impact of precision for a fixed recall (Weibull k = 0.7)
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Impact of the precision for a fixed recall
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Impact of recall for a fixed precision (Weibull k = 0.7)
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Outline

1 Young/Daly’s approximation

2 Failure Prediction
Framework
Exact date predictions
Prediction windows

3 Experiments

4 Conclusion
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Conclusion and perspectives

Model is quite accurate

Unified formula for optimal checkpointing period:

√
2µC

1− rq

Simulations fully validate the model:

Significant gain even for mid-range recall and precision
Best period always very close to one given by unified formula

Recall has more impact on waste than precision

Future work
Use trace-based failure and prediction logs from current
large-scale supercomputers
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