Checkpointing and fault prediction

Guillaume Aupy¹, Yves Robert^{1,2}, Frédéric Vivien¹, & Dounia Zaidouni¹

1 – ENS Lyon & INRIA 2 – University of Tennessee Knoxville

http://graal.ens-lyon.fr/~yrobert/slides/prediction.pdf

Joint Lab - Nov. 20, 2012

Introduction	Young/Daly's approximation	Failure Prediction	Experiments	Conclusion
Overview				

Context

- Failure-prone platform, small MTBF
- Very large number of processors (N = 16K to N = 1024K)
- Fault predictor characterized by its recall and precision
- Resilience: combine coordinated & preventive checkpointing

Objective

- Design efficient checkpointing policies
- Compute expected waste
- Assess impact of predictions

Experiments

Conclusion

Exascale platforms (courtesy Jack Dongarra)

Potential System Architecture with a cap of \$200M and 20MW

Systems	2011 K computer	2019	Difference Today & 2019
System peak	10.5 Pflop/s	1 Eflop/s	O(100)
Power	12.7 MW	~20 MW	
System memory	1.6 PB	32 - 64 PB	O(10)
Node performance	128 GF	1,2 or 15TF	O(10) - O(100)
Node memory BW	64 GB/s	2 - 4TB/s	O(100)
Node concurrency	8	O(1k) or 10k	O(100) - O(1000)
Total Node Interconnect BW	20 GB/s	200-400GB/s	O(10)
System size (nodes)	88,124	O(100,000) or O(1M)	O(10) - O(100)
Total concurrency	705,024	O(billion)	O(1,000)
MTTI	days	O(1 day)	- O(10)

Exascale platforms

• Hierarchical

- $\bullet~10^5~{\rm or}~10^6~{\rm nodes}$
- Each node equipped with 10^4 or 10^3 cores

• Failure-prone

MTBF – one node	1 year	10 years	120 years
MTBF – platform	30sec	5mn	1h
of 10 ⁶ nodes			

More nodes \Rightarrow Shorter MTBF (Mean Time Between Failures)

Experiments

Conclusion

Exascale platforms

Sources of failures

- Analysis of error and failure logs
- In 2005 (Ph. D. of CHARNG-DA LU): "Software halts account for the most number of outages (59-84 percent), and take the shortest time to repair (0.6-1.5 hours). Hardware problems, albeit rarer, need 6.3-100.7 hours to solve."

Software errors: Applications, OS bug (kernel panic), communication libs, File system error and other. Hardware errors, Disks, processors, memory, network

Conclusion: Both Hardware and Software failures have to be considered

A few definitions

- Many types of faults: software error, hardware malfunction, memory corruption
- Many possible behaviors: silent, transient, unrecoverable
- Restrict to faults that lead to application failures
- This includes all hardware faults, and some software ones
- Will use terms *fault* and *failure* interchangeably

Processor (or node): any entity subject to failures
 ⇒ approach agnostic to granularity

 If the MTBF is μ with one processor, what is its value with p processors?

7/54

Processor (or node): any entity subject to failures
 ⇒ approach agnostic to granularity

• If the MTBF is μ with one processor, what is its value with *p* processors?

• Well, it depends 🙂

Introduction	Young/Daly's approximation	Failure Prediction	Experiments	Conclusion
With rejuv	enation			

- Rebooting all p processors after a failure
- Platform failure distribution
 ⇒ minimum of *p* IID processor distributions
- With *p* distributions $Exp(\lambda)$:

$$\min (Exp(\lambda_1), Exp(\lambda_2)) = Exp(\lambda_1 + \lambda_2)$$

$$\mu = \frac{1}{\lambda} \Rightarrow \mu_{p} = \frac{\mu}{p}$$

• With *p* distributions $Weibull(k, \lambda)$:

$$\min_{1..p} (Weibull(k,\lambda)) = Weibull(k,p^{1/k}\lambda)$$

$$\mu = \frac{1}{\lambda} \Gamma(1 + \frac{1}{k}) \Rightarrow \mu_p = \frac{\mu}{p^{1/k}}$$

Introduction	Young/Daly's approximation	Failure Prediction	Experiments	Conclusion
Without re	ejuvenation			

- Rebooting only faulty processor
- Platform failure distribution
 - \Rightarrow superposition of *p* IID processor distributions
- Simple formula for arbitrary distributions:

$$\mu_{p} = \frac{\mu}{p}$$

with ${\it p}$ processors of MTBF μ

- Rejuvenation does not matter for Exponential
- Rejuvenation harmful for Weibull with k < 1

Introduction Young/Daly's approximation Failure Prediction Experiments Conclusion MTBF with p processors (1/2)

Theorem: $\mu_p = \frac{\mu}{p}$ for arbitrary distributions

With one processor:

- n(F) = number of failures until time F is exceeded
- X_i iid random variables for inter-arrival times, with $\mathbb{E}(X_i) = \mu$

•
$$\sum_{i=1}^{n(F)-1} X_i \le F \le \sum_{i=1}^{n(F)} X_i$$

• Wald's equation: $(\mathbb{E}(n(F)) - 1)\mu \leq F \leq \mathbb{E}(n(F))\mu$

•
$$\lim_{F \to +\infty} \frac{\mathbb{E}(n(F))}{F} = \frac{1}{\mu}$$

Theorem: $\mu_p = \frac{\mu}{p}$ for arbitrary distributions

With *p* processors:

- n(F) = number of platform failures until time F is exceeded
- $m_q(F)$ = number of those failures that strike processor q
- n_q(F) = m_q(F) + 1 = number of failures on processor q until time F is exceeded (except for processor with last-failure)
- Y_i iid random variables for platform inter-arrival times, with $\mathbb{E}(Y_i) = \mu_p$

•
$$\lim_{F \to +\infty} \frac{n(F)}{F} = \frac{1}{\mu_p}$$
 as above

•
$$\lim_{F \to +\infty} \frac{n(F)}{F} = \frac{p}{\mu}$$
 because $n(F) = \sum_{q=1}^{p} m_q(F)$

• Hence $\mu_p = \frac{\mu}{p}$

Values from the literature

- MTBF of one processor: between 10 and 125 years
- Shape parameters for Weibull: k = 0.5 or k = 0.7
- Failure trace archive from INRIA (http://fta.inria.fr)
- Computer Failure Data Repository from LANL (http://institutes.lanl.gov/data/fdata)

Outline

Young/Daly's approximation

2 Failure Prediction

- Framework
- Exact date predictions
- Prediction windows

3 Experiments

.≣⇒

1 Young/Daly's approximation

ailure Prediction

- Framework
- Exact date predictions
- Prediction windows

3 Experiments

4 Conclusion

э

Introduction	Young/Daly's approximation	Failure Prediction	Experiments	Conclusion
Framework	<			

- Periodic checkpointing policy of period T
- Independent and identically distributed failures
- Applies to a single processor with MTBF $\mu = \mu_{ind}$
- Applies to a platform with p processors with MTBF $\mu = \frac{\mu_{ind}}{p}$
 - coordinated checkpointing
 - tightly-coupled application
 - progress \Leftrightarrow all processors available

Waste: fraction of time not spent for useful computations

Young/Daly's approximation

Failure Prediction

Experiments

Conclusion

Waste in fault-free execution

- TIME_{base}: application base time
- T_{IMEFF} : with periodic checkpoints but failure-free

$$TIME_{\mathsf{FF}} = TIME_{\mathsf{base}} + \# checkpoints \times C$$
$$\# checkpoints = \left\lceil \frac{TIME_{\mathsf{base}}}{T - C} \right\rceil \approx \frac{Time[base]}{T - C} \text{ (valid for large jobs)}$$

$$\text{TIME}_{\mathsf{FF}} = \text{TIME}_{\mathsf{base}} \frac{\mathcal{T}}{\mathcal{T} - \mathcal{C}} \text{ and } \text{WASTE}[\mathcal{FF}] = \frac{\text{TIME}_{\mathsf{FF}} - \text{TIME}_{\mathsf{base}}}{\text{TIME}_{\mathsf{FF}}}$$

WASTE[*FF*] = $\frac{C}{T}$

(B)

Introduction	Young/Daly's approximation	Failure Prediction	Experiments	Conclusion
Waste due	to failures			

- $\bullet~T{\rm IME}_{\text{base}}:$ application base time
- $\bullet\ {\rm TIME}_{\text{FF}}$: with periodic checkpoints but failure-free
- $TIME_{final}$: expectation of time with failures

 $\text{TIME}_{final} = \text{TIME}_{FF} + \textit{N}_{faults} \times \textit{T}_{lost}$

 N_{faults} number of failures during execution T_{lost} : average time lost par failures

$$N_{faults} = rac{\mathrm{TIME}_{\mathrm{final}}}{\mu}$$
 T_{lost} ?

Introduction	Young/Daly's approximation	Failure Prediction	Experiments	Conclusion
Waste due	to failures			

- $\bullet~T{\rm IME}_{\text{base}}:$ application base time
- $\bullet\ {\rm TIME}_{\text{FF}}$: with periodic checkpoints but failure-free
- $TIME_{final}$: expectation of time with failures

 $\text{TIME}_{final} = \text{TIME}_{FF} + \textit{N}_{faults} \times \textit{T}_{lost}$

 N_{faults} number of failures during execution T_{lost} : average time lost par failures

$$N_{faults} = rac{\mathrm{TIME_{final}}}{\mu}$$

 T_{lost} ?

 \Rightarrow Instants when periods begin and failures strike are independent \Rightarrow Valid for all distribution laws, regardless of their particular shape

Intro	d	101	 \sim	٦
IIIUU	uι	10	21	

Young/Daly's approximation

Failure Prediction

Experiments

Conclusion

Waste due to failures

$$\begin{aligned} \text{TIME}_{\text{final}} &= \text{TIME}_{\text{FF}} + N_{\text{faults}} \times T_{\text{lost}} \\ \text{TIME}_{\text{final}} &= \text{TIME}_{\text{FF}} + \frac{\text{TIME}_{\text{final}}}{\mu} \times \left(D + R + \frac{T}{2}\right) \\ \text{WASTE}[fail] &= \frac{\text{TIME}_{\text{final}} - \text{TIME}_{\text{FF}}}{\text{TIME}_{\text{final}}} \\ \text{WASTE}[fail] &= \frac{1}{\mu} \left(D + R + \frac{T}{2}\right) \end{aligned}$$

(日) (周) (三) (三)

 $(1 - \text{WASTE}[fail])(1 - \text{WASTE}[FF])\text{TIME}_{final} = Time[base]$ 1 - WASTE = (1 - WASTE[FF])(1 - WASTE[fail])

WASTE =
$$\frac{C}{T} + \left(1 - \frac{C}{T}\right) \frac{1}{\mu} \left(D + R + \frac{T}{2}\right)$$

- 4 週 ト - 4 三 ト - 4 三 ト -

Experiments

Conclusion

Waste minimization

$$WASTE = \frac{C}{T} + \left(1 - \frac{C}{T}\right) \frac{1}{\mu} \left(D + R + \frac{T}{2}\right)$$
$$WASTE = \frac{u}{T} + v + wT$$
$$u = C\left(1 - \frac{D + R}{\mu}\right) \qquad v = \frac{D + R - C/2}{\mu} \qquad w = \frac{1}{2\mu}$$

WASTE minimized for $T = \sqrt{\frac{u}{w}}$

 $T = \sqrt{2(\mu - (D+R))C}$

Introduction Young/Daly's approximation Failure Prediction Experiments Conclusion Comparison with Young/Daly

$$(1 - \text{WASTE}[fail])$$
TIME_{final} = TIME_{FF}
 $\Rightarrow T = \sqrt{2(\mu - (D + R))C}$

Daly: TIME_{final} =
$$(1 + \text{WASTE}[fail])$$
TIME_{FF}
 $\Rightarrow T = \sqrt{2(\mu + (D + R))C} + C$

Young: TIME_{final} = (1 + WASTE[fail])TIME_{FF} and D = R = 0 $\Rightarrow T = \sqrt{2\mu C} + C$

過 ト イ ヨ ト イ ヨ ト

Introduction Young/Daly's approximation Failure Prediction Experiments Conclusion Validity of the approach (1/3)

Technicalities

- E (N_{faults}) = ^{TIME}_μ and E (T_{lost}) = ^T/₂
 but expectation of product is not product of expectations
 (not independent RVs here)
- Enforce $C \leq T$ to get $WASTE[FF] \leq 1$
- Enforce $D + R \le \mu$ and bound T to get $\text{WASTE}[fail] \le 1$ but $\mu = \frac{\mu_{ind}}{p}$ too small for large p, regardless of μ_{ind}

Several failures within same period?

- WASTE[fail] accurate only when two or more faults do not take place within same period
- Cap period: $\mathcal{T} \leq \gamma \mu$, where γ is some tuning parameter
 - Poisson process of parameter $\theta = \frac{T}{\mu}$
 - Probability of having $k \ge 0$ failures : $P(X = k) = \frac{\theta^k}{k!} e^{-\theta}$

• Probability of having two or more failures: $\pi = P(X \ge 2) = 1 - (P(X = 0) + P(X = 1)) = 1 - (1 + \theta)e^{-\theta}$

•
$$\gamma = 0.27 \Rightarrow \pi \le 0.03$$

 \Rightarrow overlapping faults for only 3% of checkpointing segments

通 と く ヨ と く ヨ と

• Enforce $T \leq \gamma \mu$, $C \leq \gamma \mu$, and $D + R \leq \gamma \mu$

• Optimal period $\sqrt{2(\mu - (D + R))C}$ may not belong to admissible interval $[C, \gamma \mu]$

• Waste is then minimized for one of the bounds of this admissible interval (by convexity)

Introduction	Young/Daly's approximation	Failure Prediction	Experiments	Conclusion
Wrap up				

Capping periods, and enforcing a lower bound on MTBF
 ⇒ mandatory for mathematical rigor ☺

- Not needed for practical purposes ⁽²⁾
 - actual job execution uses optimal value
 - account for multiple faults by re-executing work until success

• Approach surprisingly robust 😳

Outline

1 Young/Daly's approximation

Failure Prediction

- Framework
- Exact date predictions
- Prediction windows

3 Experiments

4 Conclusion

→ ∃ →

Experiments

Conclusion

Outline

Young/Daly's approximation

Conclusio

<ロ> (日) (日) (日) (日) (日)

Predictor

- Exact prediction dates (at least C seconds in advance)
- Recall r: fraction of faults that are predicted
- Precision p: fraction of fault predictions that are correct

Events

- true positive: predicted faults
- *false positive*: fault predictions that did not materialize as actual faults
- false negative: non-predicted faults

$$r = \frac{True_P}{True_P + False_N}$$
 and $p = \frac{True_P}{True_P + False_P}$

Introduction	Young/Daly's approximation	Failure Prediction	Experiments	Conclusion
Fault rat	es			

- μ : mean time between failures (MTBF)
- μ_P mean time between predicted events (both true positive and false positive)
- μ_{NP} mean time between unpredicted faults (false negative).
- μ_e : mean time between events (including all three event types)

$$\frac{(1-r)}{\mu} = \frac{1}{\mu_{NP}}$$
$$\frac{r}{\mu} = \frac{p}{\mu_{P}}$$
$$\frac{1}{\mu_{e}} = \frac{1}{\mu_{P}} + \frac{1}{\mu_{NP}}$$

Introduction	Young/Daly's approximation	Failure Prediction	Experiments	Conclusion
Hypothese	5			

Regular (coordinated) checkpoints

- Checkpoint cost: C
- Downtime: D
- Recovery cost after failure: R

Two scenarios

- ① Exact date predictions
- ② Window-based predictions

Lead times

• Predictions must be provided at least C seconds in advance

Outline

Young/Daly's approximation

Conclusio

yves.robert@ens-lyon.fr

Checkpointing & fault prediction 33

<ロ> (日) (日) (日) (日) (日)

. ∃3/ 54

Algorithm

- While no fault prediction is available:
 - ullet checkpoints taken periodically with period ${\mathcal T}$
- When a fault is predicted at time t:
 - take a checkpoint ALAP (completion right at time t)
 - after the checkpoint, complete the execution of the period

Conclusion

Computing the waste

- **4** Fault-free execution: WASTE $[FF] = \frac{C}{T}$
- **②** Unpredicted faults: $\frac{1}{\mu_{NP}} \left[D + R + \frac{T}{2} \right]$
- S Predictions: $\frac{1}{\mu_P} \left[p(C+D+R) + (1-p)C \right]$

WASTE[fail] =
$$\frac{1}{\mu} \left[(1-r)\frac{T}{2} + D + R + \frac{r}{p}C \right]$$

$$T_{opt} \approx \sqrt{rac{2\mu C}{1-r}}$$

くぼう くほう くほう

- While no fault prediction is available:
 - \Rightarrow Periodic checkpointing with period T

- When a fault is predicted:
 - \Rightarrow Decide whether to take prediction into account or not
 - With probability 1 q: ignore prediction
 - With probability q: trust prediction
 - If enough time before prediction date, checkpoint ALAP
 - Otherwise, start new period

Introduction	Young/Daly's approximation	Failure Prediction ○○○○○○○●○○○○○	Experiments	Conclusion
Algorithm	(v2)			

(a) Unpredicted fault

æ

< ∃→

(b) Prediction cannot be taken into account - no actual fault

(c) Prediction cannot be taken into account - with actual fault

.∋...>

(d) Prediction not taken into account by choice - no actual fault

(e) Prediction not taken into account by choice - with actual fault

ラト

(g) Prediction taken into account - with actual fault

Introduction	Young/Daly's approximation	Failure Prediction ○○○○○○○○●○○○○	Experiments	Conclusion
Waste m	inimization			

- WASTE(q) minimized either for q = 0 or for q = 1
 - either never trust the predictor ...
 - ... or always trust it!

Optimal period:

$$T_{opt} pprox \sqrt{rac{2 \mu C}{1 - rq}}$$

Capping:
$$T_{opt} \leq \gamma \mu_e$$

- 4 ⊒ →

Outline

Young/Daly's approximation

B Experimen

Conclusi

<ロ> (日) (日) (日) (日) (日)

Introduction	Young/Daly's approximation	Failure Prediction	Experiments	Conclusion
Strategies				

Hypotheses

- Predictor gives a time window for each prediction
- Predictor generates predictions at least *C* seconds before beginning of time window

Description of strategies

Two modes for scheduling algorithm:

- Regular: Periodic checkpointing with period T_R
- Proactive (Several variants):
 - INSTANT: Ignore time-window (\Leftrightarrow exact date)
 - NOCKPTI: No checkpoint during time window
 - $\bullet~{\rm WITHCKPTI}:$ Several checkpoints during time window

Algorithm

Algorithm 1: WITHCKPTI.

if	fault happens th	nen
	After downtime	

After downtime, execute recovery;

Enter regular mode;

if in proactive mode for a time greater than or equal to ${\sf I}$ then

Switch to *regular* mode

if Prediction made with interval [t, t + I] and prediction taken into account then

account then

Let t_C be the date of the last checkpoint under *regular* mode to start no later than t - C; **if** $t_C + C < t - C$ **then** (enough time for an extra checkpoint) $\ \$ Take a checkpoint starting at time t - C**else** (no time for the extra checkpoint) $\ \$ Work in the time interval $[t_C + C, t]$ $W_{reg} \leftarrow \max(0, t - C - (t_C + C))$; Switch to *proactive* mode at time *t*; **while** *in regular mode and no predictions are made and no faults*

happen do

Work for a time $T_{\rm R}$ - $W_{\rm reg}$ -C and then checkpoint; $W_{\rm reg} \leftarrow$ 0;

while in proactive mode and no faults happen do

Work for a time T_{P} -C and then checkpoint;

Outline of Algorithm

Outline of strategy $W\mathrm{ITH}\mathrm{C}\mathrm{K}\mathrm{P}\mathrm{T}\mathrm{I}$

A B F A B F

- Framework
- Exact date predictions
- Prediction windows

Experiments 3

글 > - + 글 >

э

Introduction	Young/Daly's approximation	Failure Prediction	Experiments	Conclusion
Prediction	and failure distri	butions		

- Failure traces (predicted and non predicted failures):
 - Exponential failure distribution
 - Weibull distribution law with shape parameter 0.5 and 0.7
- False predictions:
 - Same distribution as failure trace
 - Uniform distribution

Number of processors	D	C,R	μ_{ind}	W
16,384 to 524,288	60 s	600 s	125 y	400 y

Simulation parameters

Experiments

Conclusion

Job execution times for a Weibull distribution (k = 0.7)

<i>I</i> = 300	Execution time (hours) (p = 0.82, r = 0.85)		Execution time (hours) (p = 0.4, r = 0.7)	
	2 ¹⁶ procs	2 ¹⁹ procs	2 ¹⁶ procs	2 ¹⁹ procs
Young	81.3	30.1	81.2	30.1
EXACTPREDICTION	65.9 (19%)	15.9 (47%)	69.7 (14%)	19.3 (36%)
NoCkptI	66.5 (18%)	16.9 (44%)	70.3 (13%)	20.5 (32%)
INSTANT	66.5 (18%)	17.0 (44%)	70.3 (13%)	20.7 (31%)
<i>I</i> = 3,000	Execution time (hours) (p = 0.82, r = 0.85) 2^{16} procs 2^{19} procs		Execution t (p = 0.4) 2^{16} procs	ime (hours) r = 0.7) 2^{19} procs
Young	81.2	30.1	81.2	30.1
EXACTPREDICTION	66.0 (19%)	15.9 (47%)	69.8 (14%)	19.3 (36%)
NoCkptI	71.1 (12%)	24.6 (18%)	75.2 (7.3%)	28.9 (4.0%)
WITHCKPTI	70.0 (14%)	22.6 (25%)	75.4 (7.1%)	27.2 (9.7%)
INSTANT	71 2 (12%)	24.2 (20%)	750(76%)	283 (6.0%)

Comparing job execution times for a Weibull distribution (k = 0.7), and reporting gain when comparing to YOUNG.

Experiments

Conclusion

Job execution times for a Weibull distribution (k = 0.7)

	Execution time (hours)		Execution time (hours)	
I = 300	(p = 0.82, r = 0.85)		(p = 0.4)	r = 0.7
	2 ¹⁶ procs	2 ¹⁹ procs	2 ¹⁶ procs	2 ¹⁹ procs
Young	81.3	30.1	81.2	30.1
ExactPrediction	65.9 (19%)	15.9 (47%)	69.7 (14%)	19.3 (36%)
NoCkptI	66.5 (18%)	16.9 (44%)	70.3 (13%)	20.5 (32%)
INSTANT	66.5 (18%)	17.0 (44%)	70.3 (13%)	20.7 (31%)
	Execution ti	ime (hours) 🛛 🛛	Execution t	ime (hours)
<i>I</i> = 3,000	Execution ti (p = 0.82)	ime (hours) $r = 0.85$	Execution t (p = 0.4)	ime (hours) $r = 0.7$
<i>I</i> = 3,000	Execution ti (p = 0.82, 2^{16} procs	r = 0.85 2^{19} procs	Execution t (p = 0.4) 2^{16} procs	ime (hours) ,r = 0.7) 2 ¹⁹ procs
<i>I</i> = 3,000 Young	Execution ti (p = 0.82, 2^{16} procs 81.2	ime (hours) r = 0.85) 2^{19} procs 30.1	Execution t (p = 0.4) 2^{16} procs 81.2	ime (hours) r = 0.7 2^{19} procs 30.1
I = 3,000 Young ExactPrediction	Execution ti $(p = 0.82, 2^{16} \text{ procs})$ 81.2 66.0 (19%)		Execution t (p = 0.4) 2^{16} procs 81.2 69.8 (14%)	ime (hours) r = 0.7) 2^{19} procs 30.1 19.3 (36%)
I = 3,000 Young ExactPrediction NoCkptI	Execution ti $(p = 0.82, 2^{16} \text{ procs})$ 81.2 66.0 (19%) 71.1 (12%)	ime (hours) r = 0.85) 2^{19} procs 30.1 15.9 (47%) 24.6 (18%)	Execution t (p = 0.4) 2^{16} procs 81.2 69.8 (14%) 75.2 (7.3%)	ime (hours) r = 0.7 2^{19} procs 30.1 19.3 (36%) 28.9 (4.0%)
I = 3,000 Young ExactPrediction NoCkptI WITHCKptI	Execution ti $(p = 0.82, 2^{16} \text{ procs})$ 81.2 66.0 (19%) 71.1 (12%) 70.0 (14%)	ime (hours) r = 0.85) 2^{19} procs 30.1 15.9 (47%) 24.6 (18%) 22.6 (25%)	Execution t (p = 0.4) 2^{16} procs 81.2 69.8 (14%) 75.2 (7.3%) 75.4 (7.1%)	ime (hours) r = 0.7) 2^{19} procs 30.1 19.3 (36%) 28.9 (4.0%) 27.2 (9.7%)

Comparing job execution times for a Weibull distribution (k = 0.7), and reporting gain when comparing to YOUNG.

Job execution times for a Weibull distribution (k = 0.5)

<i>l</i> = 300	Execution time (hours) (p = 0.82, r = 0.85) 2^{16} procs 2^{19} procs		Execution t (p = 0.4) 2^{16} procs	time (hours) r = 0.7 2^{19} procs
Young	125.4	171.8	125.5	171.7
ExactPrediction	75.8 (40%)	39.4 (77%)	82.9 (34%)	51.8(70%)
NoCkptI	77.3 (38%)	44.8 (74%)	84.6 (33%)	58.2 (66%)
INSTANT	77.4 (38%)	45.1 (74%)	84.7 (33%)	59.1 (66%)
	Execution time (hours) (p = 0.82, r = 0.85) 2^{16} procs 2^{19} procs			
<i>I</i> = 3,000	Execution t (p = 0.82) 2^{16} procs	ime (hours) r = 0.85) 2^{19} procs	Execution t (p = 0.4) 2^{16} procs	ime (hours) r = 0.7 2^{19} procs
<i>I</i> = 3,000 Young	Execution t (p = 0.82) 2^{16} procs 125.4	ime (hours) r = 0.85) 2^{19} procs 171.9	Execution t (p = 0.4) 2^{16} procs 125.4	ime (hours) r = 0.7) 2^{19} procs 172.0
I = 3,000 Young ExactPrediction	Execution t (p = 0.82) 2^{16} procs 125.4 76.1 (39%)	ime (hours) r = 0.85) 2^{19} procs 171.9 39.4 (77%)	Execution t $(\rho = 0.4)$ 2^{16} procs 125.4 83.0 (34%)	ime (hours) r = 0.7) 2^{19} procs 172.0 51.7 (70%)
I = 3,000 Young ExactPrediction NoCkptI	Execution t (p = 0.82) 2^{16} procs 125.4 76.1 (39%) 90.0 (28%)	ime (hours) r = 0.85) 2^{19} procs 171.9 39.4 (77%) 71.8 (58%)	Execution t (p = 0.4) 2^{16} procs 125.4 83.0 (34%) 98.3 (22%)	ime (hours) r = 0.7) 2^{19} procs 172.0 51.7 (70%) 84.5 (51%)
I = 3,000 Young ExactPrediction NoCkptI WithCkptI	Execution t (p = 0.82) 2^{16} procs 125.4 76.1 (39%) 90.0 (28%) 87.8 (30%)	ime (hours) r = 0.85) 2^{19} procs 171.9 39.4 (77%) 71.8 (58%) 66.6 (61%)	Execution t (p = 0.4) 2^{16} procs 125.4 83.0 (34%) 98.3 (22%) 98.0 (22%)	$\begin{array}{c} \text{ime (hours)} \\ r = 0.7) \\ \hline 2^{19} \text{ procs} \\ \hline 172.0 \\ \hline 51.7 \ (70\%) \\ 84.5 \ (51\%) \\ 82.2 \ (52\%) \end{array}$

Comparing job execution times for a Weibull distribution (k = 0.5), and reporting gain when comparing to YOUNG.

Experiments

Conclusion

Job execution times for a Weibull distribution (k = 0.5)

<i>I</i> = 300	Execution time (hours) (p = 0.82, r = 0.85) 2^{16} procs 2^{19} procs		Execution time (hours) (p = 0.4, r = 0.7) 2^{16} procs 2^{19} pro	
Young	125.4	171.8	125.5	171.7
EXACTPREDICTION	75.8 (40%)	39.4 (77%)	82.9 (34%)	51.8(70%)
NoCkptI	77.3 (38%)	44.8 (74%)	84.6 (33%)	58.2 (66%)
INSTANT	77.4 (38%)	45.1 (74%)	84.7 (33%)	59.1 (66%)
<i>I</i> = 3,000	Execution time (hours) (p = 0.82, r = 0.85) 2^{16} procs 2^{19} procs		Execution t (p = 0.4) 2^{16} procs	ime (hours) r = 0.7) 2^{19} procs
Young	125.4	171.9	125.4	172.0
EXACTPREDICTION	76.1 (39%)	39.4 (77%)	83.0 (34%)	51.7 (<mark>70%</mark>)
NoCkptI	90.0 (28%)	71.8 (58%)	98.3 (22%)	84.5 (51%)
WithCkptI	87.8 (30%)	66.6 (<mark>61%</mark>)	98.0 (22%)	82.2 (52%)
INSTANT	89.8 (28%)	70.9 (59%)	98.2 (22%)	83.2 (52%)

Comparing job execution times for a Weibull distribution (k = 0.5), and reporting gain when comparing to YOUNG.

vves.robert@ens-lyon.fr

52/54

- Framework
- Exact date predictions
- Prediction windows

→ Ξ →

э

Conclusion and perspectives

- Model is quite accurate
- Unified formula for optimal checkpointing period: $\sqrt{\frac{2\mu C}{1-rc}}$
- Simulations fully validate the model:
 - Significant gain even for mid-range recall and precision
 - Best period always very close to one given by unified formula
- Recall has more impact on waste than precision

• Future work

Use trace-based failure and prediction logs from current large-scale supercomputers