
Numerical Optimization

for Automatic Tuning of Codes

Stefan Wild

Joint work with Prasanna Balaprakash, Paul Hovland, and Boyana Norris

Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, IL

November 19, 2012

Motivation: A Looming Storm for Software & Libraries

Architectures are getting increasingly complex

⋄ Multiple cores, deep memory hierarchies, software-controlled storage,
shared resources, SIMD compute engines, heterogeneity, . . .

Performance optimization is getting more important

⋄ Today’s sequential and parallel applications may not be faster on
tomorrow’s architectures

⋄ Growing complexity of scientific applications: tradeoffs between
performance and maintainability (e.g., good software engineering practices)

⋄ Managing data locality at least as important as optimizing parallelism

⋄ Managing power of growing importance

Performance portability

⋄ Tuning for a particular architecture potentially hinders performance on
other architectures

Wild — INRIA/ANL/UIUC Joint-lab workshop — Nov’12 1

Overtuning Can Destroy Performance Portability

Each × denotes a DGEMM variant

Wild — INRIA/ANL/UIUC Joint-lab workshop — Nov’12 2

The Rest of This Talk:

Tackling the Storm

Search in autotuning as a mathematical optimization
problem

⋄ Challenges

⋄ Modeling issues

⋄ Local algorithms

(Multiple objectives)

⋄ Assessing tradeoffs

⋄ Finding Pareto fronts

Chicago, post-Hurricane Sandy [Im: Joshua Mellin]

Automating Empirical Performance Tuning
Given a computation kernel and transformation space:

performance

evaluation Search

code

compilation

code

generation

code

transformation

high-performing

code

code & tuning

specs

Wild — INRIA/ANL/UIUC Joint-lab workshop — Nov’12 4

Search in Autotuning
Alternatives:

⋄ Complete enumeration

� Prohibitively expensive (1050 variants!)
� Unnecessary?

⋄ Pruning

� Careful balancing act (between aggressive and conservative
strategies)

Helpful (necessary?) precursors: The expert still plays a role!

⋄ Identify variable space (parameters to be tuned, ranges, constraints)

⋄ Quantify measurement limitations and noise

⋄ Incorporate known theoretical considerations (models)

⋄ Construct meaningful objectives

→ Reduce search space and/or number of variants that need to be examined

Wild — INRIA/ANL/UIUC Joint-lab workshop — Nov’12 5

Search in Autotuning
Alternatives:

⋄ Complete enumeration

� Prohibitively expensive (1050 variants!)
� Unnecessary?

⋄ Pruning

� Careful balancing act (between aggressive and conservative
strategies)

Helpful (necessary?) precursors: The expert still plays a role!

⋄ Identify variable space (parameters to be tuned, ranges, constraints)

⋄ Quantify measurement limitations and noise

⋄ Incorporate known theoretical considerations (models)

⋄ Construct meaningful objectives

→ Reduce search space and/or number of variants that need to be examined

Wild — INRIA/ANL/UIUC Joint-lab workshop — Nov’12 5

Search in Autotuning
Alternatives:

⋄ Complete enumeration

� Prohibitively expensive (1050 variants!)
� Unnecessary?

⋄ Pruning

� Careful balancing act (between aggressive and conservative
strategies)

Helpful (necessary?) precursors: The expert still plays a role!

⋄ Identify variable space (parameters to be tuned, ranges, constraints)

⋄ Quantify measurement limitations and noise

⋄ Incorporate known theoretical considerations (models)

⋄ Construct meaningful objectives

→ Reduce search space and/or number of variants that need to be examined

Our goal

Design, implement, and analyze efficient optimization (=search) algorithms
. . . for tuning kernels in small computation budgets

Wild — INRIA/ANL/UIUC Joint-lab workshop — Nov’12 5

Is a Sophisticated Search Algorithm Needed?

[Seymour, You, & Dongarra, Cluster Computing ’08]: Random search performs
better than alternatives as the number of tuning parameters grows !

Wild — INRIA/ANL/UIUC Joint-lab workshop — Nov’12 6

Is a Sophisticated Search Algorithm Needed?

[Seymour, You, & Dongarra, Cluster Computing ’08]: Random search performs
better than alternatives as the number of tuning parameters grows !

Depends on distribution of high-performing variants:

Mean run−time (s)

P
er

ce
nt

 o
f t

ot
al

0

10

20

30

40

0.00 0.01 0.02 0.03
Mean run−time (s)

P
er

ce
nt

 o
f t

ot
al

0

2

4

6

8

0.001 0.002 0.003 0.004

(5000 semantically equivalent variants each)

Wild — INRIA/ANL/UIUC Joint-lab workshop — Nov’12 6

Is a Sophisticated Search Algorithm Useful?

Depends on structure of the (modeled) search space:

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Both 2-dimensional problems have the same histogram

Must learn/model/exploit this structure to quickly find high-performing variants

Wild — INRIA/ANL/UIUC Joint-lab workshop — Nov’12 7

Formulation and Modeling: Optimization is Optimization

Finding the best configuration is a mathematical optimization problem

min
x

{f(x) : x = (xI , xB, xC) ∈ D ⊂ R
n}

x multidimensional parameterization (compiler type, compiler flags,
unroll/tiling factors, internal tolerances, . . .) for a code variant

f(x) empirical performance metric of x such as FLOPS, power, or run time
(requires a run)

D search domain (constraints for feasible transformation, no errors, . . .)

bound: unroll ∈ [1, . . . , 30]; RT = 2i, i=[0,1,2,3]
known: (RTI ∗RTJ ≤ 150) (cheap); power consumption ≤ 90 W

(expensive)
hidden: transformation errors (relatively cheap), compilation

(expensive), and run time (very expensive) failures

See [Balaprakash, Hovland, & W., iWAPT ’11]

Wild — INRIA/ANL/UIUC Joint-lab workshop — Nov’12 8

Optimization Challenges in Autotuning

minx {f(x) : x = (xI , xB, xC) ∈ D ⊂ R
n}

- f noisy, expensive, black box

- Discrete x unrelaxable

- ∇xf unavailable/nonexistent

- “Cliffs”, many distinct/local solutions?

Calls for Derivative-Free Optimization

Steps

ta
u

10 20 30 40 50 60 70 80 90
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

↓ Integer Space: MM (MatMult) ↑ Mixed-Integer: Lattice QCD code

Wild — INRIA/ANL/UIUC Joint-lab workshop — Nov’12 9

Search Problems in Automatic Performance Tuning

Problems: SPAPT [Balaprakash, Norris, & W., ICCS ’12]

⋄ 12 kernel codes
� elementary linear algebra, linear solver, stencil codes,

and elementary statistical computing configurations
⋄ SPAPT problem = code + set of transformations +

parameter specifications + constraints + input size

Code transformation: Orio performance tuning framework

Performance metric f(x): mean run time of 10 runs

Kernel Transformations ni nb |D|
ADI CT, RT, UJ 16 4 2.818e+21
ATAX CT, RT, UJ 13 6 6.115e+17
BiCG CT, RT, UJ 9 4 2.654e+12
COR CT, RT, UJ 16 4 2.818e+21
DGEMV CT, RT, UJ 38 11 1.241e+53
FDTD4d2d CT, RT, UJ 25 5 1.616e+33
GEMVER CT, RT, UJ 17 6 1.409e+23
GESUMMV CT, RT, UJ 8 3 5.308e+10
HMC CT, RT, UJ 7 8 5.308e+10
Jacobi-1d CT, RT, UJ 8 3 5.308e+10
LU CT, RT, UJ 9 5 2.654e+12
MM CT, RT, UJ 10 4 3.732e+11

Wild — INRIA/ANL/UIUC Joint-lab workshop — Nov’12 10

SPAPT: Orio-ready Implementation

[Norris, Hartono, & Gropp, ’07]

⋄ Extensible empirical tuning system

⋄ Allows inserting annotations as structured
comments

⋄ Supports architecture independent and specific
optimizations

/∗ AXPY Kernel ∗/
f o r (i=0; i<=n−1; i++)

y [i]=y [i]+a1∗x1 [i]+a2∗x2 [i]+a3∗x3 [i]+a4∗x4 [i] ;

↓
/* Tuning specifications */ UF = {1,. . . ,30}; PAR = {True, False}

/∗@ begin Loop (
transform Unroll (ufactor=UF , parallelize=PAR)

f o r (i=0; i<=n−1; i++)
y [i]=y [i]+a1∗x1 [i]+a2∗x2 [i]+a3∗x3 [i]+a4∗x4 [i] ;

)
@∗/

Wild — INRIA/ANL/UIUC Joint-lab workshop — Nov’12 11

Derivative-Free Optimization Algorithms

“Dibs:” An algorithm for Chicago winter parking reservations

Classical Algorithms for Performance Tuning

Global search

⋄ exploration and exploitation

⋄ find the globally best∗

⋄ long search time

⋄ parameter sensitive

Local search

⋄ limited exploration

⋄ find the locally best

⋄ short search time

⋄ risk of bad local solution

Hypothesis: customized local search algorithms are effective for short
computational budgets

Wild — INRIA/ANL/UIUC Joint-lab workshop — Nov’12 13

Previous Algorithms for Performance Tuning

[Seymour, You, & Dongarra, Cluster Computing ’08] and [Kisuki, Knijnenburg, &

O’Boyle, PACT ’00] compared several global and local algorithms

⋄ Random search outperforms a genetic algorithm, simulated annealing,
particle swarm, Nelder-Mead, and orthogonal search !

⋄ Large number of high-performing parameter configurations → easy to
find one of them

[Norris, Hartono, & Gropp, Computational Science ’07] used several global and
local algorithms but no comparison

⋄ Nelder-Mead simplex method, simulated annealing, a genetic algorithm

Other local search algorithms without comparison to global search:

⋄ Orthogonal search in ATLAS [Whaley & Dongarra, SC ’98]

⋄ Pattern search in loop optimization [Qasem, Kennedy, & Mellor-Crummey

SC ’06]

⋄ Modified Nelder-Mead simplex algorithm in Active Harmony [Tiwari, Chen,

Chame, Hall, & Hollingsworth, IPDPS ’09]

Wild — INRIA/ANL/UIUC Joint-lab workshop — Nov’12 14

Local Algorithms: Direct Search Methods

See [Kolda, Lewis, & Torczon, SIREV ’03]

Pattern Search

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

1.5

2

2.5

3

3.5

4

4.5

5

Easy to parallelize f evaluations

Nelder-Mead

θ
1

θ 2

Popularized by Numerical Recipes

⋄ Rely on indicator functions: [f(xk + s) <? f(xk)]

• Ignore valuable information on relative magnitudes of f(xk)

Wild — INRIA/ANL/UIUC Joint-lab workshop — Nov’12 15

Making the Most of Little Information on f

⋄ f is expensive ⇒ can afford to make better use of points

⋄ Overhead of the optimization routine is minimal (negligible?) relative to
cost of empirical evaluation

1
1.5

2
2.5

3
3.5

4 0

1

2

3
0

5

10

15

20

25

30

y
x

Bank of data, {xi, f(xi)}
k

i=1
:

= Everything∗ known about f

Idea:

⋄ Make use of growing bank as
optimization progresses

Wild — INRIA/ANL/UIUC Joint-lab workshop — Nov’12 16

Making the Most of Little Information on f

⋄ f is expensive ⇒ can afford to make better use of points

⋄ Overhead of the optimization routine is minimal (negligible?) relative to
cost of empirical evaluation

Bank of data, {xi, f(xi)}
k

i=1
:

= Everything∗ known about f

Idea:

⋄ Make use of growing bank as
optimization progresses

Wild — INRIA/ANL/UIUC Joint-lab workshop — Nov’12 16

Surrogate-Based Trust-Region Algorithms

Substitute min {m(x) : x ∈ Bk} for min f(x)

f expensive, no ∇f

m cheap, analytic
derivatives

Surrogate based on known f values

1
3

5
7

9
11

13
15

1
2

3
4

5
6

7
8

9
10

0

1

2

3

4

5

x 10
7

Unroll Factor jUnroll Factor i

T
im

e
[C

P
U

 m
s]

Trust m ≈ f in Bk

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

1.5

2

2.5

3

3.5

4

4.5

5

Surrogates: predict improvement

Wild — INRIA/ANL/UIUC Joint-lab workshop — Nov’12 17

Sample Comparison: Unoptimized Default Starting Point

gemver; |D| = 1.41× 10
17; n = 8

⋄ Double win: Better solutions, less time (=time/evaluation)

⋄ 10/12 SPAPT problems local search outperforms global search

(Down and to the left is better; Markers every 20 evaluations)

See [Balaprakash, Hovland, & W., VecPar ’12]
Wild — INRIA/ANL/UIUC Joint-lab workshop — Nov’12 18

Multiple Objectives

Time versus Enjoyment versus $

Hot Doug’s, Chicago [Im: Adam Goldberg]

Simultaneously Optimizing Multiple Objectives

min
x∈D

{f1(x), f2(x), . . . , fp(x)}

⋄ No a priori weights wi
(
∑

i wifi(x)
)

⋄ Dominated points x̃:
∃x∗ ∈ D with
fi(x̃) ≥ fi(x

∗) ∀i,
fj(x̃) > fj(x

∗) some j

⋄ Seek Pareto front of
non-dominated points

Wild — INRIA/ANL/UIUC Joint-lab workshop — Nov’12 20

Simultaneously Optimizing Multiple Objectives

min
x∈D

{f1(x), f2(x), . . . , fp(x)}

⋄ No a priori weights wi
(
∑

i
wifi(x)

)

⋄ Dominated points x̃:
∃x∗ ∈ D with
fi(x̃) ≥ fi(x

∗) ∀i,
fj(x̃) > fj(x

∗) some j

⋄ Seek Pareto front of
non-dominated points

Wild — INRIA/ANL/UIUC Joint-lab workshop — Nov’12 20

Multiple Objectives: Time, Power, Energy

4 5 6 7 8 9 10 11 12

220

240

260

280

300

320

2.6 GHz

1.2 GHz

2.6 GHz

1.2 GHz

2.6 GHz

1.2 GHz

adi

Time (s)

T
ot

al
 P

ow
er

 (
W

)

small
medium
large

Input Size

⋄ Tradeoffs in power do
not imply tradeoffs in
energy

Wild — INRIA/ANL/UIUC Joint-lab workshop — Nov’12 21

Multiple Objectives: Time, Power, Energy

4 5 6 7 8 9 10 11 12

1200

1400

1600

1800

2000

2200

2400

2600

2800

2.6 GHz

1.2 GHz

2.6 GHz

1.2 GHz

2.6 GHz

1.2 GHz

adi

Time (s)

T
ot

al
 E

ne
rg

y
(W

s)

small
medium
large

Input Size

⋄ Tradeoffs in power do
not imply tradeoffs in
energy

⋄ Objectives may not be
conflicting: “Race to
idle

Wild — INRIA/ANL/UIUC Joint-lab workshop — Nov’12 21

Multiple Objectives: Time, Power, Energy

4 5 6 7 8

1400

1600

1800

2000

2200

2400

2600

2800

2.6 GHz

1.2 GHz

2.6 GHz

1.2 GHz

2.6 GHz

1.2 GHz

dsyr2k

Time (s)

T
ot

al
 E

ne
rg

y
(W

s)

small
medium
large

Input Size

⋄ Tradeoffs in power do
not imply tradeoffs in
energy

⋄ Objectives may not be
conflicting: “Race to
idle

⋄ Tradeoffs occur for
different sizes

Wild — INRIA/ANL/UIUC Joint-lab workshop — Nov’12 21

Multiple Objectives: Time, Power, Energy

5 6 7 8 9 10
1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

2600

2.6 GHz

1.2 GHz

2.6 GHz

1.2 GHz

2.6 GHz

1.2 GHz

swim

Time (s)

T
ot

al
 E

ne
rg

y
(W

s)

small
medium
large

Input Size

⋄ Tradeoffs in power do
not imply tradeoffs in
energy

⋄ Objectives may not be
conflicting: “Race to
idle

⋄ Tradeoffs occur for
different sizes

⋄ Tradeoffs occur at
different frequencies

Wild — INRIA/ANL/UIUC Joint-lab workshop — Nov’12 21

Summary and Links

⋄ Performance tuning increasingly necessary, not yet “automatic”

⋄ Derivative-free optimization is a powerful, practical tool

When the available tuning time is limited:

⋄ Global exploration less useful

⋄ Problem formulation and starting point play important roles

Future work includes:

⋄ Incorporation of models, binary parameters, constraints (from models or
otherwise), online restart strategies,role in full application codes, . . .

→ always collecting new search/optimization problems
. . . especially those with structure

Some preprints http://mcs.anl.gov/∼wild

http://trac.mcs.anl.gov/projects/performance/wiki/Orio

SPAPT http://trac · · · /performance/browser/orio/testsuite/SPAPT.v.01

Wild — INRIA/ANL/UIUC Joint-lab workshop — Nov’12 22

http://trac.mcs.anl.gov/projects/performance/wiki/Orio
http://trac
/performance/browser/orio/testsuite/SPAPT.v.01

Summary and Links

⋄ Performance tuning increasingly necessary, not yet “automatic”

⋄ Derivative-free optimization is a powerful, practical tool

When the available tuning time is limited:

⋄ Global exploration less useful

⋄ Problem formulation and starting point play important roles

Future work includes:

⋄ Incorporation of models, binary parameters, constraints (from models or
otherwise), online restart strategies,role in full application codes, . . .

→ always collecting new search/optimization problems
. . . especially those with structure

Some preprints http://mcs.anl.gov/∼wild

http://trac.mcs.anl.gov/projects/performance/wiki/Orio

SPAPT http://trac · · · /performance/browser/orio/testsuite/SPAPT.v.01

→ Thank you!
Wild — INRIA/ANL/UIUC Joint-lab workshop — Nov’12 22

http://trac.mcs.anl.gov/projects/performance/wiki/Orio
http://trac
/performance/browser/orio/testsuite/SPAPT.v.01

	Introduction
	Optimization as an optimization
	Challenges
	Problems tested

	Derivative-Free Optimization Algorithms
	Multiple Objectives
	Conclusion

