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Motivation: A Looming Storm for Software & Libraries

Architectures are getting increasingly complex

⋄ Multiple cores, deep memory hierarchies, software-controlled storage,
shared resources, SIMD compute engines, heterogeneity, . . .

Performance optimization is getting more important

⋄ Today’s sequential and parallel applications may not be faster on
tomorrow’s architectures

⋄ Growing complexity of scientific applications: tradeoffs between
performance and maintainability (e.g., good software engineering practices)

⋄ Managing data locality at least as important as optimizing parallelism

⋄ Managing power of growing importance

Performance portability

⋄ Tuning for a particular architecture potentially hinders performance on
other architectures
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Overtuning Can Destroy Performance Portability

Each × denotes a DGEMM variant
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The Rest of This Talk:

Tackling the Storm

Search in autotuning as a mathematical optimization
problem

⋄ Challenges

⋄ Modeling issues

⋄ Local algorithms

(Multiple objectives)

⋄ Assessing tradeoffs

⋄ Finding Pareto fronts

Chicago, post-Hurricane Sandy [Im: Joshua Mellin]



Automating Empirical Performance Tuning
Given a computation kernel and transformation space:
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Search in Autotuning
Alternatives:

⋄ Complete enumeration

� Prohibitively expensive (1050 variants!)
� Unnecessary?

⋄ Pruning

� Careful balancing act (between aggressive and conservative
strategies)

Helpful (necessary?) precursors: The expert still plays a role!

⋄ Identify variable space (parameters to be tuned, ranges, constraints)

⋄ Quantify measurement limitations and noise

⋄ Incorporate known theoretical considerations (models)

⋄ Construct meaningful objectives

→ Reduce search space and/or number of variants that need to be examined
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Search in Autotuning
Alternatives:

⋄ Complete enumeration

� Prohibitively expensive (1050 variants!)
� Unnecessary?

⋄ Pruning

� Careful balancing act (between aggressive and conservative
strategies)

Helpful (necessary?) precursors: The expert still plays a role!

⋄ Identify variable space (parameters to be tuned, ranges, constraints)

⋄ Quantify measurement limitations and noise

⋄ Incorporate known theoretical considerations (models)

⋄ Construct meaningful objectives

→ Reduce search space and/or number of variants that need to be examined

Our goal

Design, implement, and analyze efficient optimization (=search) algorithms
. . . for tuning kernels in small computation budgets
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Is a Sophisticated Search Algorithm Needed?

[Seymour, You, & Dongarra, Cluster Computing ’08]: Random search performs
better than alternatives as the number of tuning parameters grows !
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Is a Sophisticated Search Algorithm Needed?

[Seymour, You, & Dongarra, Cluster Computing ’08]: Random search performs
better than alternatives as the number of tuning parameters grows !

Depends on distribution of high-performing variants:
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(5000 semantically equivalent variants each)
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Is a Sophisticated Search Algorithm Useful?

Depends on structure of the (modeled) search space:
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Both 2-dimensional problems have the same histogram

Must learn/model/exploit this structure to quickly find high-performing variants
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Formulation and Modeling: Optimization is Optimization

Finding the best configuration is a mathematical optimization problem

min
x

{f(x) : x = (xI , xB, xC) ∈ D ⊂ R
n}

x multidimensional parameterization (compiler type, compiler flags,
unroll/tiling factors, internal tolerances, . . . ) for a code variant

f(x) empirical performance metric of x such as FLOPS, power, or run time
(requires a run)

D search domain (constraints for feasible transformation, no errors, . . . )

bound: unroll ∈ [1, . . . , 30]; RT = 2i, i=[0,1,2,3]
known: (RTI ∗RTJ ≤ 150) (cheap); power consumption ≤ 90 W

(expensive)
hidden: transformation errors (relatively cheap), compilation

(expensive), and run time (very expensive) failures

See [Balaprakash, Hovland, & W., iWAPT ’11]
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Optimization Challenges in Autotuning

minx {f(x) : x = (xI , xB, xC) ∈ D ⊂ R
n}

- f noisy, expensive, black box

- Discrete x unrelaxable

- ∇xf unavailable/nonexistent

- “Cliffs”, many distinct/local solutions?

Calls for Derivative-Free Optimization
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↓ Integer Space: MM (MatMult) ↑ Mixed-Integer: Lattice QCD code
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Search Problems in Automatic Performance Tuning

Problems: SPAPT [Balaprakash, Norris, & W., ICCS ’12]

⋄ 12 kernel codes
� elementary linear algebra, linear solver, stencil codes,

and elementary statistical computing configurations
⋄ SPAPT problem = code + set of transformations +

parameter specifications + constraints + input size

Code transformation: Orio performance tuning framework

Performance metric f(x): mean run time of 10 runs

Kernel Transformations ni nb |D|
ADI CT, RT, UJ 16 4 2.818e+21
ATAX CT, RT, UJ 13 6 6.115e+17
BiCG CT, RT, UJ 9 4 2.654e+12
COR CT, RT, UJ 16 4 2.818e+21
DGEMV CT, RT, UJ 38 11 1.241e+53
FDTD4d2d CT, RT, UJ 25 5 1.616e+33
GEMVER CT, RT, UJ 17 6 1.409e+23
GESUMMV CT, RT, UJ 8 3 5.308e+10
HMC CT, RT, UJ 7 8 5.308e+10
Jacobi-1d CT, RT, UJ 8 3 5.308e+10
LU CT, RT, UJ 9 5 2.654e+12
MM CT, RT, UJ 10 4 3.732e+11
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SPAPT: Orio-ready Implementation

[Norris, Hartono, & Gropp, ’07]

⋄ Extensible empirical tuning system

⋄ Allows inserting annotations as structured
comments

⋄ Supports architecture independent and specific
optimizations

/∗ AXPY Kernel ∗/
f o r (i=0; i<=n−1; i++)

y [ i ]=y [ i ]+a1∗x1 [ i ]+a2∗x2 [ i ]+a3∗x3 [ i ]+a4∗x4 [ i ] ;

↓
/* Tuning specifications */ UF = {1,. . . ,30}; PAR = {True, False}

/∗@ begin Loop (
transform Unroll ( ufactor=UF , parallelize=PAR )

f o r ( i=0; i<=n−1; i++)
y [ i ]=y [ i]+a1∗x1 [ i ]+a2∗x2 [ i ]+a3∗x3 [ i ]+a4∗x4 [ i ] ;

)
@∗/
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Derivative-Free Optimization Algorithms

“Dibs:” An algorithm for Chicago winter parking reservations



Classical Algorithms for Performance Tuning

Global search

⋄ exploration and exploitation

⋄ find the globally best∗

⋄ long search time

⋄ parameter sensitive

Local search

⋄ limited exploration

⋄ find the locally best

⋄ short search time

⋄ risk of bad local solution

Hypothesis: customized local search algorithms are effective for short
computational budgets
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Previous Algorithms for Performance Tuning

[Seymour, You, & Dongarra, Cluster Computing ’08] and [Kisuki, Knijnenburg, &

O’Boyle, PACT ’00] compared several global and local algorithms

⋄ Random search outperforms a genetic algorithm, simulated annealing,
particle swarm, Nelder-Mead, and orthogonal search !

⋄ Large number of high-performing parameter configurations → easy to
find one of them

[Norris, Hartono, & Gropp, Computational Science ’07] used several global and
local algorithms but no comparison

⋄ Nelder-Mead simplex method, simulated annealing, a genetic algorithm

Other local search algorithms without comparison to global search:

⋄ Orthogonal search in ATLAS [Whaley & Dongarra, SC ’98]

⋄ Pattern search in loop optimization [Qasem, Kennedy, & Mellor-Crummey

SC ’06]

⋄ Modified Nelder-Mead simplex algorithm in Active Harmony [Tiwari, Chen,

Chame, Hall, & Hollingsworth, IPDPS ’09]
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Local Algorithms: Direct Search Methods

See [Kolda, Lewis, & Torczon, SIREV ’03]

Pattern Search
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Popularized by Numerical Recipes

⋄ Rely on indicator functions: [f(xk + s) <? f(xk)]

• Ignore valuable information on relative magnitudes of f(xk)

Wild — INRIA/ANL/UIUC Joint-lab workshop — Nov’12 15



Making the Most of Little Information on f

⋄ f is expensive ⇒ can afford to make better use of points

⋄ Overhead of the optimization routine is minimal (negligible?) relative to
cost of empirical evaluation
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⋄ f is expensive ⇒ can afford to make better use of points

⋄ Overhead of the optimization routine is minimal (negligible?) relative to
cost of empirical evaluation
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Surrogate-Based Trust-Region Algorithms

Substitute min {m(x) : x ∈ Bk} for min f(x)

f expensive, no ∇f

m cheap, analytic
derivatives

Surrogate based on known f values
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Sample Comparison: Unoptimized Default Starting Point

gemver; |D| = 1.41× 10
17; n = 8

⋄ Double win: Better solutions, less time (=time/evaluation)

⋄ 10/12 SPAPT problems local search outperforms global search

(Down and to the left is better; Markers every 20 evaluations)

See [Balaprakash, Hovland, & W., VecPar ’12]
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Multiple Objectives

Time versus Enjoyment versus $

Hot Doug’s, Chicago [Im: Adam Goldberg]



Simultaneously Optimizing Multiple Objectives

min
x∈D

{f1(x), f2(x), . . . , fp(x)}

⋄ No a priori weights wi
(
∑

i wifi(x)
)

⋄ Dominated points x̃:
∃x∗ ∈ D with
fi(x̃) ≥ fi(x

∗) ∀i,
fj(x̃) > fj(x

∗) some j

⋄ Seek Pareto front of
non-dominated points
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Multiple Objectives: Time, Power, Energy
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Multiple Objectives: Time, Power, Energy
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Multiple Objectives: Time, Power, Energy
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Summary and Links

⋄ Performance tuning increasingly necessary, not yet “automatic”

⋄ Derivative-free optimization is a powerful, practical tool

When the available tuning time is limited:

⋄ Global exploration less useful

⋄ Problem formulation and starting point play important roles

Future work includes:

⋄ Incorporation of models, binary parameters, constraints (from models or
otherwise), online restart strategies,role in full application codes, . . .

→ always collecting new search/optimization problems
. . . especially those with structure

Some preprints http://mcs.anl.gov/∼wild

http://trac.mcs.anl.gov/projects/performance/wiki/Orio

SPAPT http://trac · · · /performance/browser/orio/testsuite/SPAPT.v.01
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⋄ Performance tuning increasingly necessary, not yet “automatic”

⋄ Derivative-free optimization is a powerful, practical tool

When the available tuning time is limited:

⋄ Global exploration less useful

⋄ Problem formulation and starting point play important roles

Future work includes:

⋄ Incorporation of models, binary parameters, constraints (from models or
otherwise), online restart strategies,role in full application codes, . . .

→ always collecting new search/optimization problems
. . . especially those with structure

Some preprints http://mcs.anl.gov/∼wild

http://trac.mcs.anl.gov/projects/performance/wiki/Orio

SPAPT http://trac · · · /performance/browser/orio/testsuite/SPAPT.v.01

→ Thank you!
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