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Overview 

Asymptotically optimal load 

balancing algorithm  

for multi-core machines. 
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Motivation 

• Example of environment: CHARM++ 

• Parallel task overdecomposition  

• Chares 

• Platform independent 

• Processing elements 

• Dynamic load balancing 

• Chare migration 
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Motivation: example 

• Initial chare mapping 

• Apply a load balancing 
algorithm 

• Based on data provided 
by CHARM++ 
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Motivation: example 

• CHARM++ load balancing 
data 

• Communication graph 

• Current chare mapping 

• Chares’ load 
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Motivation: example 

• Missing information 

• Communication costs 

• Architectural 
information 

• Memory hierarchy 

Chare Processing Element (PE) Cache 
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Motivation: example 

• Knowledge about the 
memory hierarchy 

• Memory access costs 

• Reduce communication costs 

• Highly hierarchical systems 

• Even more on many-core 
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Motivation 

• Our approach: TOPOLB 

• Load balancing algorithm implemented on 
CHARM++ 

• Combines application information and the 
machine topology 

• Works on UMA and NUMA machines 

• Is asymptotically optimal 
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Agenda 

Motivation 

TOPOLB 

Experiments 

And beyond 
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TOPOLB: idea 

• Heuristic 

• Load balancing is NP-Hard 

• No initial assumption about the application 

• Improve performance (reduce makespan) 

• By reducing unbalance 

• By reducing communication costs 

• While avoiding migrations (data movement costs) 
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TOPOLB: data 

• Application information – provided by 
CHARM++ 

• Chares’ load 

• Reduce the makespan 

• Communication graph 

• Reduce the communication overhead 

• Bring together communicating chares 

• Current chare mapping 

• Avoid migration overheads 
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TOPOLB: data 

• Machine topology – our library 

• Memory hierarchy 

• Cache and memory sharing among cores 

• Memory access latencies 

• Estimate the communication time of each message 
through the memory hierarchy 
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TOPOLB: algorithm 

• Each chare has a load based on 

• Computation time 

• Communication time 

• Number of messages exchanged 

• Memory latencies 
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TOPOLB: algorithm 

• Initial mapping 

• Sort PEs (processors) based on their load 

Chare Processing Element (PE) 
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TOPOLB: algorithm 

• Tries to migrate chares from the most 
loaded processor with a probability α 

• Or chooses another processor uniformly 
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TOPOLB: algorithm 

• Starts from the heaviest chare with a 
probability β 

• Or chooses another chare uniformly 

• From heaviest chare to lightest chare 
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TOPOLB: algorithm 

• A migration might decrease the makespan 

• A migration may affect other chares 

• Communication time may change 
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TOPOLB: algorithm 

• Evaluates all possible processors 

• Migrates the chare to the processor that 
minimizes the makespan with high probability 

• Smallest time 
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TOPOLB: algorithm 

• High probability 

• Using a Gibbs distribution with a temperature T 
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TOPOLB: algorithm 

• Continues until no chare migrates from the 
heaviest processor 

• Cannot reduce the makespan 

• Bound to the heaviest processor 
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TOPOLB: algorithm 

• Continues until no chare migrates from the 
heaviest processor 

• Cannot reduce the makespan 

• Bound to the heaviest processor 
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TOPOLB: implementation details 

• Exponential backoff 

• Reduce the load balancing overhead by not 
computing the algorithm on all LB calls 

• Launched when no migrations happen 
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Experiments 

• 3 different machines: UMA24, NUMA16 
and NUMA32 

• 4 other load balancers: GREEDYCOMMLB, 
SCOTCHLB, TREEMATCHLB and NUMALB 

• 2 benchmarks: lb_test and mol3D 

• α, β close to 1, T close to 0 
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lb_test 
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lb_test 
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lb_test 
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mol3D 

• Apolipoprotein-A1 

• No load balancer improved performance 

• TOPOLB performed 30x less migrations 
than other load balancers 

• But took 2 to 3x more time on its load 
balancing decisions 
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mol3D 

• View using Projections 

• 3x20 iterations, 3 calls to TOPOLB 

• ~7000 chares 
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mol3D 
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Application starts balanced 



mol3D 
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TOPOLB improves the iteration time 



mol3D 
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Iteration time diverges strongly 
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And beyond  
(concluding remarks) 

• TOPOLB presented a 

• Small number of migrations 

• Fast convergence 

• High computational cost (overhead) 

• Reduced by the exponential backoff 
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And beyond 

• Working to extend TOPOLB to clusters of 
multi-core machines 

• Two levels: Another LB for the cluster, TOPOLB 
for the compute nodes 

• TOPOLB can be too costly for large machines and 
applications 
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And beyond 

• Working to better understand and evaluate 
the behavior of CHARM++ load balancers 

• Debugging library 

• Use real applications 

 

• Added part of our machine model to HWLOC 
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Thank you. 

Topology-aware load balancing 
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