
Laércio Lima Pilla
and Christiane P. Ribeiro, François Broquedis,

Pierre Coucheney, Bruno Gaujal, Jean-François Méhaut,

 Philippe O. A. Navaux, Laxmikant Kale

Topology-aware load balancing
for parallel applications on

multi-core systems and beyond

Overview

Asymptotically optimal load

balancing algorithm

for multi-core machines.

2

Motivation

• Example of environment: CHARM++

• Parallel task overdecomposition

• Chares

• Platform independent

• Processing elements

• Dynamic load balancing

• Chare migration

1 2 3

3

Motivation: example

• Initial chare mapping

• Apply a load balancing
algorithm

• Based on data provided
by CHARM++

2 4 1 3

Time
P

E
s

1 & 3

2 & 4

Chare Processing Element (PE)
4

Motivation: example

• CHARM++ load balancing
data

• Communication graph

• Current chare mapping

• Chares’ load

2 4 1 3

Time
P

E
s

1 3

2 4

Chare Processing Element (PE)

3 4 1 2

5

Motivation: example

• Missing information

• Communication costs

• Architectural
information

• Memory hierarchy

Chare Processing Element (PE) Cache

2 4 1 3

Time
P

E
s

1 3

2 4

3 4 1 2

6

Motivation: example

• Knowledge about the
memory hierarchy

• Memory access costs

• Reduce communication costs

• Highly hierarchical systems

• Even more on many-core

3 4 1 2

Time
P

E
s

3 4

1 2

Chare Processing Element (PE) Cache
7

Motivation

• Our approach: TOPOLB

• Load balancing algorithm implemented on
CHARM++

• Combines application information and the
machine topology

• Works on UMA and NUMA machines

• Is asymptotically optimal

8

Agenda

Motivation

TOPOLB

Experiments

And beyond

9

TOPOLB: idea

• Heuristic

• Load balancing is NP-Hard

• No initial assumption about the application

• Improve performance (reduce makespan)

• By reducing unbalance

• By reducing communication costs

• While avoiding migrations (data movement costs)

10

TOPOLB: data

• Application information – provided by
CHARM++

• Chares’ load

• Reduce the makespan

• Communication graph

• Reduce the communication overhead

• Bring together communicating chares

• Current chare mapping

• Avoid migration overheads
11

TOPOLB: data

• Machine topology – our library

• Memory hierarchy

• Cache and memory sharing among cores

• Memory access latencies

• Estimate the communication time of each message
through the memory hierarchy

1 2 3 4

Core

Cache

1.63 1.63 6.67 6.67

1.63 1.63 6.67 6.67

6.67 6.67 1.63 1.63

6.67 6.67 1.63 1.63

12

TOPOLB: algorithm

• Each chare has a load based on

• Computation time

• Communication time

• Number of messages exchanged

• Memory latencies

Chare Processing Element (PE)

1

2

Time

1

2

13

Communicating

chares have a

higher memory

affinity

TOPOLB: algorithm

• Initial mapping

• Sort PEs (processors) based on their load

Chare Processing Element (PE)

1 4 1 4 7 7

3 3 6 9 9 6

2 5 2 5 8 8

1 4 1 4 7 7

3 3 6 9 9 6

2 5 2 5 8 8

14

TOPOLB: algorithm

• Tries to migrate chares from the most
loaded processor with a probability α

• Or chooses another processor uniformly

1 4 1 4 7 7

3 3 6 9 9 6

2 5 2 5 8 8

15

TOPOLB: algorithm

• Starts from the heaviest chare with a
probability β

• Or chooses another chare uniformly

• From heaviest chare to lightest chare

1 4 1 4 7 7

3 3 6 9 9 6

2 5 2 5 8 8

16

TOPOLB: algorithm

• A migration might decrease the makespan

• A migration may affect other chares

• Communication time may change

1 4 1 4 7 7

3 3 6 9 9 6

2 5 2 5 8 8

1 4 7 7

3 3 6 9 9 6

2 5 2 5 8 8

4

1

1 1 4 7 7

3 3 6 9 9 6

2 5 2 5 8 8 4 17

TOPOLB: algorithm

• Evaluates all possible processors

• Migrates the chare to the processor that
minimizes the makespan with high probability

• Smallest time

1 4 1 4 7 7

3 3 6 9 9 6

2 5 2 5 8 8

1 4 7

3 6 9

2 5 8

4 7

3 9 6

2 5 8

1

1 4 7

3 6 9

2 5 8

4 7

3 9 6

2 5 8 1 18

TOPOLB: algorithm

• High probability

• Using a Gibbs distribution with a temperature T

1 4 1 4 7 7

3 3 6 9 9 6

2 5 2 5 8 8

1 4 7

3 6 9

2 5 8

4 7

3 9 6

2 5 8

1

1 4 7

3 6 9

2 5 8

4 7

3 9 6

2 5 8 1 19

TOPOLB: algorithm

• Continues until no chare migrates from the
heaviest processor

• Cannot reduce the makespan

• Bound to the heaviest processor

4 7 4 7

3 6 9 3 9 6

2 5 8 1 1 4 7 4 7

3 6 9 3 9 6

2 5 8 1

2 5
8 1

2 5
8 1

20

4 7

3 9 6

2

5

8 1

TOPOLB: algorithm

• Continues until no chare migrates from the
heaviest processor

• Cannot reduce the makespan

• Bound to the heaviest processor

1 2 8

3 6 9

4 5 7

Original time

New predicted time

21

TOPOLB: implementation details

• Exponential backoff

• Reduce the load balancing overhead by not
computing the algorithm on all LB calls

• Launched when no migrations happen

22

1 2 3 4 5 6 7 8

Agenda

Motivation

TOPOLB

Experiments

And beyond

23

Experiments

• 3 different machines: UMA24, NUMA16
and NUMA32

• 4 other load balancers: GREEDYCOMMLB,
SCOTCHLB, TREEMATCHLB and NUMALB

• 2 benchmarks: lb_test and mol3D

• α, β close to 1, T close to 0

24

lb_test

25

0

5

10

15

20

25

30

UMA24 NUMA16 NUMA32

E
x
e
c
u

ti
o

n
 t

im
e
 (

s
)

Machines

Baseline

GreedyCommLB

ScotchLB

TreeMatchLB

NumaLB

TopoLB

200 chares
random communication
0.5s < chare load < 2.0s

lb_test

26

0

5

10

15

20

25

30

UMA24 NUMA16 NUMA32

E
x
e
c
u

ti
o

n
 t

im
e
 (

s
)

Machines

Baseline

GreedyCommLB

ScotchLB

TreeMatchLB

NumaLB

TopoLB

Average speedup of 1.15
when compared to

GREEDYCOMMLB, SCOTCHLB
and TREEMATCHLB

lb_test

27

0

5

10

15

20

25

30

UMA24 NUMA16 NUMA32

E
x
e
c
u

ti
o

n
 t

im
e
 (

s
)

Machines

Baseline

GreedyCommLB

ScotchLB

TreeMatchLB

NumaLB

TopoLB

10x less migrations than
GREEDYCOMMLB, SCOTCHLB

and TREEMATCHLB

mol3D

• Apolipoprotein-A1

• No load balancer improved performance

• TOPOLB performed 30x less migrations
than other load balancers

• But took 2 to 3x more time on its load
balancing decisions

28

mol3D

• View using Projections

• 3x20 iterations, 3 calls to TOPOLB

• ~7000 chares

29

mol3D

30

Application starts balanced

mol3D

31

TOPOLB improves the iteration time

mol3D

32

Iteration time diverges strongly

Agenda

Motivation

TOPOLB

Experiments

And beyond

33

And beyond
(concluding remarks)

• TOPOLB presented a

• Small number of migrations

• Fast convergence

• High computational cost (overhead)

• Reduced by the exponential backoff

34

And beyond

• Working to extend TOPOLB to clusters of
multi-core machines

• Two levels: Another LB for the cluster, TOPOLB
for the compute nodes

• TOPOLB can be too costly for large machines and
applications

35

And beyond

• Working to better understand and evaluate
the behavior of CHARM++ load balancers

• Debugging library

• Use real applications

• Added part of our machine model to HWLOC

36

Thank you.

Topology-aware load balancing
for parallel applications on

multi-core systems and beyond

Laércio Lima Pilla

Contact: llpilla@inf.ufrgs.br

