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Data-Dependence graph of this talk

Relate the parallel properties of a code to those of its adjoint

Data-Dependence Graphs (DDG’s)
– Definition, Example
– Construction, Usage

Adjoint codes
– Definition, Usage
– Example

Refined DDG’s for increments

Adjoint DDG
– nodes
– dependencies

Applications
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Data-Dependence Graphs (DDG’s)

Given the source of a program,

The DDG nodes are the operations of the program.
Granularity can be chosen: ops, instructions, blocks . . .

Iterated DDG nodes are collapsed
⇒ notion of distance in iteration spaces

The DDG arrows are the necessary execution partial order.
Collapsed nodes ⇒ possible cycles!

X(:) = 0.0

DO  i=10,900

z = (Y(i)+Y(i-10))/2.0

Y(i) = z+1.0

ENDDO

X(:) = 0.0

z = (Y(i)+Y(i-10))/2.0

Y(i) = z+1.0

0
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How DDG’s are built

Data-Dependencies originate from variables (“data”).

A variable v causes a Data-Dependency from node N1 to node N2 iff

N1 writes v and N2 reads v (“true dependency”), or

N1 reads v and N2 overwrites v (“anti dependency”), or

N1 writes v and N2 overwrites v (“output dependency”).

and in addition (but not always necessary...) v is not totally
overwritten between N1 and N2.
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What DDG’s are for

A Data-Dependency from N1 to N2 means that any rescheduling of
operations must keep the order N1 before N2.
⇒ DDG’s are central for parallelization.

DDG’s capture notions of dead code, inlining . . .

In loop parallelization, DDG cycles (SCC) cannot be parallelized
nor vectorized.

Loop nests can be transformed according to Data-Dependency
distances.

In Message-Passing, DDG cycles capture deadlocks.

Scalar expansion is a classical way to lift anti and output
dependencies, thus breaking cycles.
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Automatic Differentiation’s Adjoint codes

Adjoints are the most efficient way to obtain analytical gradients.
Uses abound: optimization, least-squares, parameter estimation,
sensitivities, uncertainty quantification.
Adjoints can be built mechanically through AD.

Adjoints propagate backwards the gradient of the result. Consider P

P : {I1; I2; . . . Ip−1; Ip}
that computes a function F : X 7→ Y

F (X ) = Y = Vp = fp(fp−1(. . . f2(f1(V0 = X )) . . . ))

its gradient is

∂Y

∂X
= f ′p(Vp−1)× f ′p−1(Vp−2)× · · · × f ′2(V1)× f ′1(V0)

that the adjoint code evaluates from left (row vector) to right.
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Example

r = x*x + y*y

r = sqrt(r)

x = x/r

y = y/r

r = r - y*y/(r*r)
y = y/r

r = r - x*x/(r*r)
x = x/r

r = r/(2*sqrt(r))

x = x + 2*x*r
y = y + 2*y*r
r = 0.0

Two successive parts
(sweeps)

2nd sweep computes the
gradient, reverse order.

1st sweep computes
needed original values
⇒ copy of original code.

Mechanism (not shown
here) recovers needed
r, x, y

Gradient obtained in
final x and y.
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What about the DDG ?

r = x*x + y*y

r = sqrt(r)

x = x/r

y = y/r

r = r - y*y/(r*r)
y = y/r

r = r - x*x/(r*r)
x = x/r

r = r/(2*sqrt(r))

x = x + 2*x*r
y = y + 2*y*r
r = 0.0

Chosen granularity: Ik
and Ik

Black deps are the
original deps on the
original copy.

Blue deps show uses of
direct values for the
derivatives.

Red deps caused only
by derivative variables.

Red deps seem
symmetric of Black
deps !?
→ true ? why ?
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Two remarks

1: For DDG, increments behave just like reads

2: The adjoint of a read is an increment, and conversely.
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1: Increments behave like reads

Define the effect of DDG node on variable v to be ji
iff v is only used like v = v +....

Warning: make sure increments are atomic !

Successive increments are data-independent
⇒ refined cases for Data-Dependency:

jn jr ji jwjnjr • •ji • •jw • • •
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2: Adjoint of read is increment, and vice-versa

Suppose Ik (only) reads v ( jr )

then f ′k =


. . . • 0
0 1 0

0 0
. . .


so that Ik actually executes:

(
. . . v . . .

)
=
(

. . . v . . .
)
×


. . . • 0
0 1 0

0 0
. . .


which implies Ik only increments v ( ji )
... or just doesn’t mention it ( jn )
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Table of adjoint DDG nodes

Looking at all cases:

N jn on v ⇒ N { jn } on v
N jr on v ⇒ N { ji , jn } on v
N ji on v ⇒ N { jr , jn } on v
N jw on v ⇒ N { jw , jr , ji , jn } on v

which implies conversely:

N jn on v ⇒ N { jw , jr , ji , jn } on v
N jr on v ⇒ N { jw , ji } on v
N ji on v ⇒ N { jw , jr } on v
N jw on v ⇒ N { jw } on v
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... and finally

If Ik Ij

then Ij Ik

In other words, the adjoint DDG is equal to (or smaller than) the
reversed original DDG

Distances are preserved

Nature of dependences (true, anti, output) is not preserved
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Conclusion, Applications

The adjoint DDG has the same structure as the original DDG

Most parallel properties can propagate to the adjoint code:

The adjoint of a vector code is a vector code (in most cases).
The adjoint of a loop with independent iterations has
independent iterations.

There can even be more parallelism in the adjoint !

... but keep in mind the hypotheses (atomic increments).

Each HPC paradigm (e.g. Message-Passing SPMD) can use this
DDG property in a specific way
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