

Signal Analysis for Modeling the Normal and Faulty Behavior of Large-scale HPC Systems

Ana Gainaru, Franck Cappello, Bill Kramer

Motivation

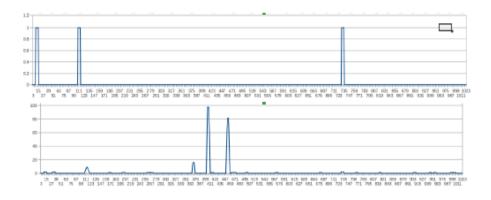
- Log files give useful information about hardware, application, user actions
 - Systems generate events
- Data mining on raw logs
 - Detection of abnormal behaviors
 - Root cause analysis
 - Event prediction
- Observation
 - Different error types present different distributions
 - Analyze behavior differences in all events

Signal analysis

- Signal analysis
 - Occurrences of each event types are considered as time series
 - Different event types become different signals
 - Variation in signal's normal behavior identifies suspicious events that could represent failures
- Advantages
 - Easy to shape and characterize different behaviors
 - Related work do not make a difference between different events and analyze all of them in the same way
 - Does not require filtering
 - Does not have cross correlation limitation

Signal analysis

Silent signal characteristic of error events. PBS errors

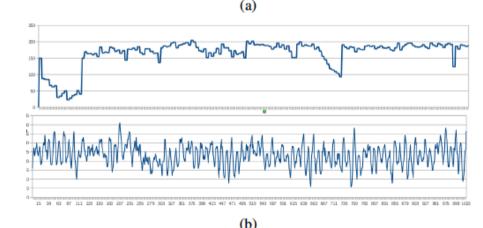


Noise signal

typically Warning messages: Memory errors corrected by ECC

> Periodic signals daemons, monitoring

> > The sixth workshop of the Joint Laborator



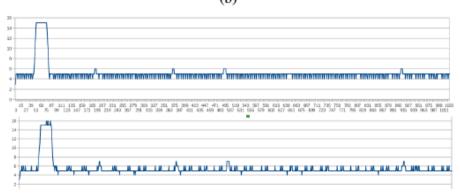


Table of contents

- Extracting signals
 - Pre-process
 - Identifying periodic, silent and noise events
 - Anomaly detection
 - Correlations
- Results
 - Anomaly detection
 - Filtering
 - Prediction

The sixth workshop of the Joint Laboratory for Petascale Computing

Pre-processing

- Looking for frequently occurring messages with similar syntactic patterns
 - HELO: Hierarchical Event Log Organizer
- Signal extraction
 - Use a sampling rate (different depending on the signal)
 - Map number of events for each sample

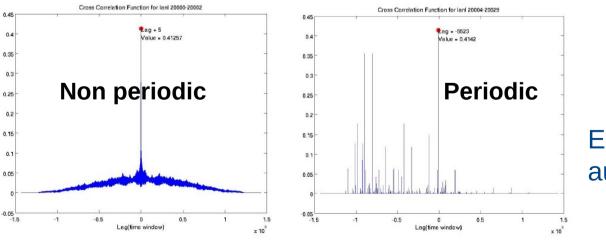
Template	Event type		
failed to configure resourcement subsystem $err = 10$	Processor cache error		
psu failure	PSU failure		
component state change: component * is in the * state * State change in a compo			
Table II			
EXAMPLES OF TEMPLATES AND THEIR EVENT TYPES			

Signals analysis workflow

- First step: identify periodic signal
 - Consider all signals are periodic
 - Establish the best sampling rate
 - Nyquist Theorem: A signal with frequencies of max B hertz, is determined by giving its ordinates at a series of points spaced 1/(2B) units apart.
 - start with a low sampling rate (mean time between 2 occurrences of the event type)
 - increase the rate until it exceeds the minimum time lag OR a periodic signal if found

Signals analysis workflow

- Determine if the extracted signal is periodic
 - Auto-correlation function
 - Compute the similarity between a signal and itself for different time lags
 - If similarity over a threshold, signal is periodic
 - Threshold fixed automatically by Pearson's significance test



Examples of auto-correlation graphs

The sixth workshop of the Joint Laboratory for Petascale Computing

Signals analysis workflow

- For periodic signals (after auto-correlation):
 - Compute the frequencies
 - Compute the power spectrum of the signal
 - Filter the power spectrum to remove noise
- Second step: identify silent and noise signals
 - Fix sampling rate, all signals same number of samples
 - Transform the signal to the wavelet domain
 - Use wavelet shrinkage and thresholding to eliminate the noise from our signal.
 - Extract the main features of the signal

Signal statistics

System	Mercury	LANL	
Periodic signals			
Number	11	2	
Percentage	2.7%	3.8%	
Correct frequencies	90.9%	100%	
Silent signals			
Number	338	39	
Percentage	82.6%	73.6%	
Noise signals			
Number	60	12	
Percentage	14.7%	22.6%	

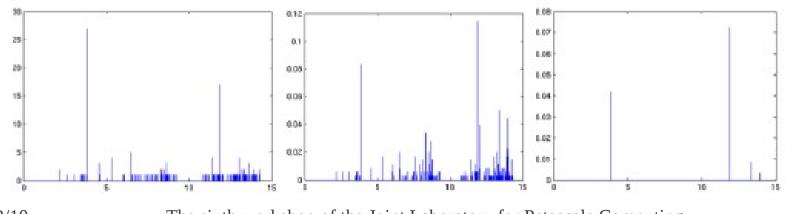
Table III STATISTICS FOR DIFFERENT SIGNAL TYPES

11/22/10

Anomaly Detection

• Detect changes in the structure of the normal behavior of the signal signal

- Changes in frequency:
 - Use the moving average technique
 - Replace each value with an average of neighboring values
 - Highlight high rates
 - Filter the resulting signal to remove the normal behavior

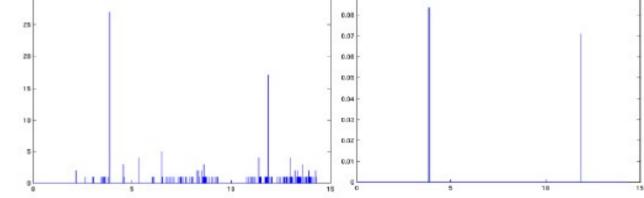


The sixth workshop of the Joint Laboratory for Petascale Computing

Anomaly Detection

• Detect changes in the structure of the normal behavior of the signal signal

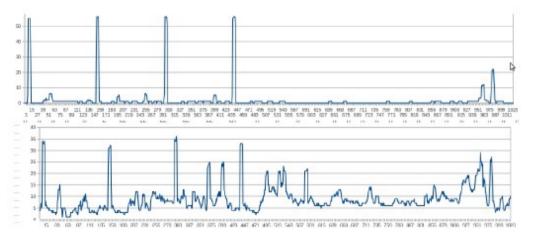
- Changes in intensity:
 - 2 filters:
 - One putting emphasis on large values
 - Enhance the difference between peaks and the normal behavior
 - One on abnormal small values
 - Enhancing the deviation of time units with decreasing intensities from normal.



Event correlation

Detect correlations between signals

Cross-correlation function



- Normal behavior of the signals may be different
 - similarities are masked

Focus only on anomaly correlations

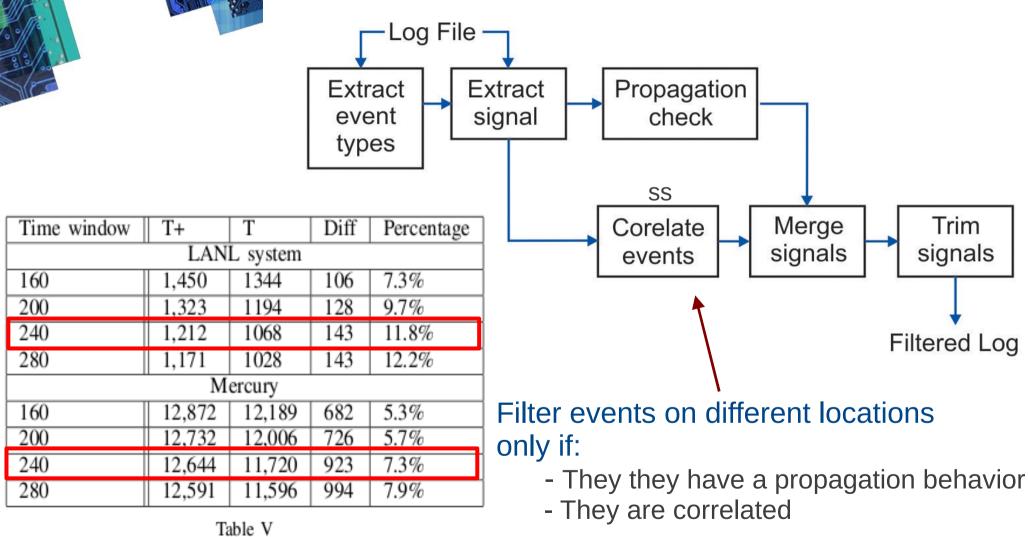
System	Mercury	LANL
Average lag (seconds)	45	23
Correlated events (percentage)	68%	71%

Experiments

Filtering analysis

- Necessary step in almost all data mining methods
- Use signal analysis to improve the process
- Anomaly detection
 - LANL trace (both system and failure log)
- Event prediction
 - We are interested in precision and recall
 - And also in the time interval between prediction and event

Filtering events



FILTERING RESULTS

11/22/10

Anomaly detection

- Detect anomalies in the signal
 - Necessary step since the correlation is based on it
 - The step is offline
 - We have all the data to extract the normal behavior
 - We only use the LANL trace
 - Failures are identified by sys admins in the failure log

	Precision		87%	
Г	Recall		51%	
	Average lag (before)		107 time units; aprox 18min	
Γ		Facilities	Hardware	Human Error
	Precision	86.4%	88.1%	80.8%
	Recall	38%	61.2%	9.6%
	Average lag	329s	456s	65s
		Network Error	Software	Unknown
	Precision	83.2%	92.1%	90.6%
	Recall	52.8%	55.1%	26%
	Average lag	608s	389s	198s

Anomaly detection results

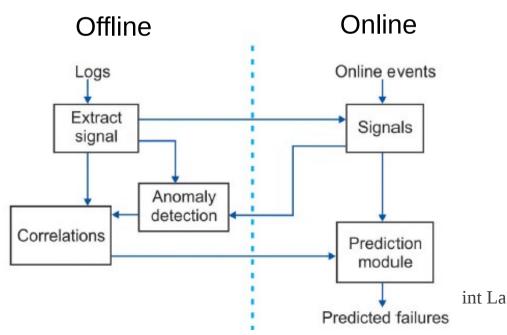
Failure prediction

For event prediction we use 1/10 of the LANL log for training and prediction is done on the rest

Distribution of failure types in LANL logs

Facilities	Hardware	Human Error
1.55%	61.57%	0.64%
Network Error	Software	Unknown
1.8%	23.02%	11.38%

Prediction methodology



		_	
Precision		93%	
Recall		43%	
Average lag (before)		32 seconds	
	Facilities	Hardware	Human Error
Precision	89.2%	93.8%	80.8%
Recall	38%	45.1%	9.2%
Average lag	68s	45s	15s
	Network Error	Software	Unknown
Precision	91.2%	93.7%	91.6%
Recall	42.8%	41.1%	23.4%
Average lag	48s	5s	19s

Prediction results

Conclusions

- Apply signal analysis concepts for log analysis
 - Different event types may have different normal behaviors
 - Faults affect event types in a different way
 - Fault correlation is affected by this model
 - Gives a higher number of correlations
- Apply the model for fault prediction
 - Precision of 91% and recall of 43%
 - Prediction 30 seconds before event

Future work

- We do not consider the analysis time
 - Using more efficient methods of storing the correlations
 - Optimizations in the signal analysis modules
- Extract tuples of n correlating events
 - Collaboration with INRIA Grenoble
 - Analyze correlation's lifespan
- Combine the prediction module with a checkpointing strategy

Thank you

