
1

On Distributed Recovery for
Send-Deterministic-Aware MPI Applications

Thomas Ropars, Amina Guermouche, Marc Snir and Franck Cappello

2

Fault Tolerance in Large Scale HPC Systems

 At very large scale, failures are not rare anymore:

➔ Exascale : MTBF between one day and a few hours.

 How to provide suitable fault tolerance solutions for MPI
applications ?

➔ Replication is too costly:

➔ Duplication of the workload.

➔ Should be based on process checkpointing:

➔ Rollback-recovery protocol.

3

System Model

 A parallel application

➔ A set of n processes.

➔ A set of channels connecting any ordered pair of processes:

➔ FIFO and reliable.

 An asynchronous distributed system

➔ Processes communicate by exchanging messages.

➔ Causal dependencies between processes states (Lamport's
happened-before relation).

 Crash Failure Model

➔ Multiple concurrent failures are possible

4

Goal: Failure Containment

 International Exascale Software Project road-map mentions
extending the applicability of fault tolerance
techniques towards more local recovery as one of the
main research directions.

 We focus on failure containment:

➔ Limiting the consequences of a failure to a subset of the processes.

5

Goal: Failure Containment

 International Exascale Software Project road-map mentions
extending the applicability of fault tolerance
techniques towards more local recovery as one of the
main research directions.

 We focus on failure containment:

➔ Limiting the consequences of a failure to a subset of the processes.

6

Goal: Failure Containment

 International Exascale Software Project road-map mentions
extending the applicability of fault tolerance
techniques towards more local recovery as one of the
main research directions.

 We focus on failure containment:

➔ Limiting the consequences of a failure to a subset of the processes.

7

Goal: Failure Containment

 International Exascale Software Project road-map mentions
extending the applicability of fault tolerance
techniques towards more local recovery as one of the
main research directions.

 We focus on failure containment:

➔ Limiting the consequences of a failure to a subset of the processes.

8

Failure Containment: Expected Benefits

 Limiting the amount of rolled-back computation.

➔ Reduces the amount of energy that is wasted.

 Speeding up recovery.

➔ [Rao, Alvisi and Vin 1998]: The Cost of Recovery in Message Logging
Protocols

 Improving the overall system utilization.

➔ Resources not involved in the recovery could be used by other
applications.

9

Our Work: Current Status

 Limiting the amount of rolled-back computation.
➔ HydEE: Hybrid Rollback-Recovery Protocol

➔ Coordinated checkpointing + sender-based message logging.

➔ Send-deterministic applications (no data saved on stable storage).

 Speeding up recovery.
➔ Can we achieve this with HydEE ?

➔ Current solution: centralized (scalability issue).

➔ New research direction:

➔ Send-deterministic-aware applications (fully distributed recovery).

 Improving the overall system utilization.

➔ Out of scope

10

Coordinated Checkpointing

 Simple to implement

 Good performance in failure free execution

 Efficient garbage collection:

➔ Limited storage utilization

 No assumption on the determinism of the application

11

Coordinated Checkpointing

 Simple to implement

 Good performance in failure free execution

 Efficient garbage collection:

➔ Limited storage utilization

 No assumption on the determinism of the application

No failure Containment

12

To Provide Failure Containment,
Message Logging is Needed

 Message logging (Pessimistic or Causal) provides perfect
failure containment.

➔ To be able to replay a message:

➔ Message content saved in the sender memory.
➔ Reception order saved in a reliable storage.

 Large amount of data to log

 Communication performance
degradation

➔ Due to event logging (stable
storage)

 Assumption: piecewise
deterministic applications

13

Hybrid Rollback-Recovery Protocols

 Clustering of the application processes

➔ Coordinated checkpointing inside each cluster

➔ Logging of inter-cluster messages

14

Related Work

 Assumption: piecewise deterministic applications

➔ All non deterministic events have to be logged reliably [Bouteiller et al,
2011]

➔ Pessimistic approach: synchronization with a reliable storage
➔ Meneses et al, 2010
➔ Bouteiller et al, 2011

➔ Causal approach: Piggybacking on messages
➔ Yang et al, 2009
➔ Meneses et al, 2011

15

HydEE: An Hybrid Protocol for
Send-Deterministic Applications

 Coordinated checkpointing inside each cluster

 Message logging for inter-clusters communications

➔ Sender-based message logging

 Relies on the send-deterministic execution model:

➔ No event logging

➔ No need for a stable storage

 Proof that it can tolerate multiple concurrent failures

16

Most MPI HPC Applications are Send-Deterministic

 Definition:

➔ Given a set of input parameters, sequences of message sendings are
always the same in any correct execution.

➔ Messages reception order does not change processes behavior.

 Static analysis of 27 HPC applications [Cappello et al, 2010]

➔ NAS Benchmarks

➔ 6 NERSC Benchmarks

➔ 2 USQCD Benchmarks

➔ 6 Sequoia Benchmarks

➔ SpecFEM3D, Nbody, Ray2mesh

➔ ScaLAPACK SUMMA

25 over 27 are
send-deterministic

25 over 27 are
send-deterministic

17

Send-Determinism Can Help
Improving Rollback-Recovery Protocols

18

Send-Determinism Can Help
Improving Rollback-Recovery Protocols

19

Send-Determinism Can Help
Improving Rollback-Recovery Protocols

 If the application is not send-deterministic:

➔ All processes have to rollback

20

Send-Determinism Can Help
Improving Rollback-Recovery Protocols

 If the application is send-deterministic:

➔ Process P1 does not need to rollback

➔ Message m4 will be sent in any correct execution

21

Prototype in MPICH2

 Protocol implemented in the Nemesis communication system

➔ Works for TCP, Myrinet/MX, and shared memory.

➔ Sender-based message logging implemented in memory.

➔ Coordinated checkpointing not implemented yet.

 Support for cluster management added to the Hydra process
manager

 Testbed: Lille Grid'5000 cluster
➔ 25 nodes equipped with 2 AMD Opteron 285 (2 cores) processors, 4 GB of

memory

➔ 20 nodes equipped with 2 Intel Xeon E5440 QC (4 cores) processors, 8 GB of
memory

➔ 10G-PCIE-8A-C Myri-10G NIC

22

Communication Performance with NetPipe over MX

23

Communication Performance with NetPipe over MX

 Very little overhead (only for small messages)

➔ Peaks due to data piggybacked on messages

24

Clustering Based on
the Applications Communication Pattern

 Tool to compute the clustering based on the application
communication pattern [Ropars et al, 2011].

➔ Study of 10 representative benchmarks on 1024 processes (covering 6 out of
the 7 main Berkeley's dwarfs)

➔ < 15% of processes to rollback after a failure

➔ < 15% of the communication data to log

➔ Example of NAS CG

➔ 3.2% of the processes to rollback
➔ 16% of logged data

25

NAS Performances (Class D, 256 processes)

 Test run over Myrinet/MX

 No overhead with HydEE

26

Recovery with HydEE

 Transparent solution

➔ Based on phases

➔ Requires the help of an additional recovery process

 Solution for Send-Deterministic-Aware applications

➔ Fully distributed recovery

27

Recovery is not that Simple

28

Recovery is not that Simple

 Inter-cluster messages are logged

29

Recovery is not that Simple

30

Recovery is not that Simple

 Messages m2 and m6 can be replayed

31

Recovery is not that Simple

 Messages m3 and m8 can be replayed

➔ Causal dependency between them

➔ What if p3 is using ANY_SOURCE (anonymous reception) ?

32

Recovery is not that Simple

 The problem comes from m5.

➔ When m6 is replayed it depends on an orphan message.

33

Recovery based on Phase Numbers

 Phase numbers are used to order messages replay

➔ Similar to Lamport clocks

➔ Incremented on inter-cluster messages

34

Details on the Recovery Management

 Based on a recovery process

➔ External MPI Process

➔ Started when a failure occurs.

➔ Orchestrates logged messages replay during recovery

➔ Waits for notifications for all orphan messages in one phase
➔ Allows the replay of all logged messages in the next phase

➔ Needs a “global knowledge” of the application state

➔ List of logged messages to replay
➔ List of orphan processes
➔ Hard to parallelize

35

Experimental Setup

 Testbed: Nancy Grid5000 cluster

➔ 33 nodes equipped with 2 Intel Xeon L5420 processors (4 cores), 16 GB
of Memory

➔ Infiniband-20G Network interface

➔ Ethernet Network interface

 Test description:

➔ The application is run once failure free to generate the logs.

➔ Application is restarted from the beginning

➔ The cluster including process 0 is executed.
➔ Inter-cluster messages are replayed from the logs.

36

 Evaluation of Recovery (TCP)
NAS - Class D - 256 processes

 Reasons for performance improvement: inter-cluster
communications

➔ Recovering processes send notifications instead of real messages

➔ Messages are ready to be received

37

 Evaluation of Recovery (IP over IB)
NAS - Class D - 256 processes

 Lower speed up

➔ Overhead for some applications

 The recovery process becomes the bottleneck

38

Send-Deterministic Aware Applications

 Goal: fully distributed recovery

 Comments:

➔ Problems come from anonymous receptions (ANY_SOURCE).

➔ No problems during a failure free execution.

➔ The programmer knows:

➔ Its program is composed of implicit rounds (explicit or implicit
barriers)

➔ Which messages can be received in each round.

 Proposition:

➔ Provide a way for the programmer to make the rounds explicit:

➔ New_Round()

39

Send-Deterministic Aware Applications

 Messages m3 and m8 can be ordered based on their round.

➔ No need for a recovery process.

40

Conclusion

 HydEE: rollback-recovery protocol for large scale MPI
applications

➔ Failure containment

➔ Combines coordinated checkpointing and message logging
➔ No information saved on stable storage (except checkpoints)

➔ Implemented in MPICH2

➔ Good performance in failure free execution
➔

➔ Good performance in recovery execution

➔ Scalability issue: centralized recovery process
➔ Send-deterministic aware applications

➔ Executions rounds

41

Future work

 Prototype implementation

➔ Coordinated checkpointing

➔ Distributed recovery

➔ Partial restart

 Improving data management

➔ Topology-aware checkpointing

➔ Asynchronous sender-based message logging

 Integration with application-level checkpointing

42

On Distributed Recovery for
Send-Deterministic-Aware MPI Applications

Thomas Ropars, Amina Guermouche, Marc Snir and Franck Cappello

43

Example of Send-Deterministic Pattern

for(i=0; i<nb_recv; i++){
MPI_Irecv(T[i], ..., i, ...);

}
for(i=0; i<nb_send; i++){

MPI_Send(..., i, ...);
}
for(i=0; i<nb_recv; i++){

MPI_Waitany(...);
}

44

Clustering Configuration

Nb Clusters Size of cluster to
restart

Avg % of ps to
restart

Logging (GB)

BT 5 63 21.78% 143/791 (18.09%)

CG 16 16 6.25% 440/2318 (18.98%)

FT 2 129 50% 431/860 (50.19%)

LU 8 32 12.5% 44/337 (13.26%)

MG 4 64 25% 13/66 (19.63%)

SP 6 32 18.56% 289/1446 (20.04%)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

