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Fault Tolerance in Large Scale HPC Systems

 At very large scale, failures are not rare anymore:

➔ Exascale : MTBF between one day and a few hours.

 How to provide suitable fault tolerance solutions for MPI 
applications ?

➔ Replication is too costly:

➔ Duplication of the workload.

➔ Should be based on process checkpointing:

➔ Rollback-recovery protocol.
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System Model

 A parallel application

➔ A set of n processes.

➔ A set of channels connecting any ordered pair of processes:

➔ FIFO and reliable.

 An asynchronous distributed system

➔ Processes communicate by exchanging messages.

➔ Causal dependencies between processes states (Lamport's 
happened-before relation).

 Crash Failure Model

➔ Multiple concurrent failures are possible
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Goal: Failure Containment

 International Exascale Software Project road-map mentions 
extending the applicability of fault tolerance 
techniques towards more local recovery as one of the 
main research directions.

 We focus on failure containment:

➔ Limiting the consequences of a failure to a subset of the processes.
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Failure Containment: Expected Benefits

 Limiting the amount of rolled-back computation.

➔ Reduces the amount of energy that is wasted.

 Speeding up recovery.

➔ [Rao, Alvisi and Vin 1998]: The Cost of Recovery in Message Logging 
Protocols

 Improving the overall system utilization.

➔ Resources not involved in the recovery could be used by other 
applications.
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Our Work: Current Status

 Limiting the amount of rolled-back computation.
➔ HydEE: Hybrid Rollback-Recovery Protocol

➔ Coordinated checkpointing + sender-based message logging.

➔ Send-deterministic applications (no data saved on stable storage).

 Speeding up recovery.
➔ Can we achieve this with HydEE ?

➔ Current solution: centralized (scalability issue).

➔ New research direction:

➔ Send-deterministic-aware applications (fully distributed recovery).

 Improving the overall system utilization.

➔ Out of scope
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Coordinated Checkpointing

 Simple to implement

 Good performance in failure free execution

 Efficient garbage collection:

➔ Limited storage utilization

 No assumption on the determinism of the application
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Coordinated Checkpointing

 Simple to implement

 Good performance in failure free execution

 Efficient garbage collection:

➔ Limited storage utilization

 No assumption on the determinism of the application

No failure Containment
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To Provide Failure Containment,
Message Logging is Needed

 Message logging (Pessimistic or Causal) provides perfect 
failure containment.

➔ To be able to replay a message:

➔ Message content saved in the sender memory.
➔ Reception order saved in a reliable storage.

 Large amount of data to log

 Communication performance 
degradation

➔ Due to event logging (stable 
storage) 

 Assumption: piecewise 
deterministic applications
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Hybrid Rollback-Recovery Protocols

 Clustering of the application processes

➔ Coordinated checkpointing inside each cluster

➔ Logging of inter-cluster messages
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Related Work 

 Assumption: piecewise deterministic applications

➔ All non deterministic events have to be logged reliably [Bouteiller et al, 
2011]

➔ Pessimistic approach: synchronization with a reliable storage
➔ Meneses et al, 2010
➔ Bouteiller et al, 2011

➔ Causal approach: Piggybacking on messages
➔ Yang et al, 2009
➔ Meneses et al, 2011
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HydEE: An Hybrid Protocol for
Send-Deterministic Applications

 Coordinated checkpointing inside each cluster

 Message logging for inter-clusters communications

➔ Sender-based message logging

 Relies on the send-deterministic execution model:

➔ No event logging

➔ No need for a stable storage

 Proof that it can tolerate multiple concurrent failures
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Most MPI HPC Applications are Send-Deterministic

 Definition:

➔ Given a set of input parameters, sequences of message sendings are 
always the same in any correct execution.

➔ Messages reception order does not change processes behavior.

 Static analysis of 27 HPC applications [Cappello et al, 2010]

➔ NAS Benchmarks

➔ 6 NERSC Benchmarks

➔ 2 USQCD Benchmarks

➔ 6 Sequoia Benchmarks

➔ SpecFEM3D, Nbody, Ray2mesh

➔ ScaLAPACK SUMMA

25 over 27 are 
send-deterministic

25 over 27 are 
send-deterministic
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Send-Determinism Can Help
Improving Rollback-Recovery Protocols
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Send-Determinism Can Help
Improving Rollback-Recovery Protocols

 If the application is not send-deterministic:

➔ All processes have to rollback
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Send-Determinism Can Help
Improving Rollback-Recovery Protocols

 If the application is send-deterministic:

➔ Process P1 does not need to rollback

➔ Message m4 will be sent in any correct execution
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Prototype in MPICH2

 Protocol implemented in the Nemesis communication system

➔ Works for TCP, Myrinet/MX, and shared memory.

➔ Sender-based message logging implemented in memory.

➔ Coordinated checkpointing not implemented yet.

 Support for cluster management added to the Hydra process 
manager

 Testbed: Lille Grid'5000 cluster
➔ 25 nodes equipped with 2 AMD Opteron 285 (2 cores) processors, 4 GB of 

memory

➔ 20 nodes equipped with 2 Intel Xeon E5440 QC (4 cores) processors, 8 GB of 
memory

➔ 10G-PCIE-8A-C Myri-10G NIC
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Communication Performance with NetPipe over MX
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Communication Performance with NetPipe over MX

 Very little overhead (only for small messages)

➔ Peaks due to data piggybacked on messages
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Clustering Based on
the Applications Communication Pattern

 Tool to compute the clustering based on the application 
communication pattern [Ropars et al, 2011].

➔ Study of 10 representative benchmarks on 1024 processes (covering 6 out of 
the 7 main Berkeley's dwarfs )

➔ < 15% of processes to rollback after a failure

➔ < 15% of the communication data to log

➔ Example of NAS CG

➔ 3.2% of the processes to rollback
➔ 16% of logged data
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NAS Performances (Class D, 256 processes)

 Test run over Myrinet/MX

 No overhead with HydEE
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Recovery with HydEE

 Transparent solution

➔ Based on phases

➔ Requires the help of an additional recovery process

 Solution for Send-Deterministic-Aware applications

➔ Fully distributed recovery
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Recovery is not that Simple
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Recovery is not that Simple

 Inter-cluster messages are logged
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Recovery is not that Simple
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Recovery is not that Simple

 Messages m2 and m6 can be replayed
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Recovery is not that Simple

 Messages m3 and m8 can be replayed

➔ Causal dependency between them

➔ What if p3 is using ANY_SOURCE (anonymous reception) ?
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Recovery is not that Simple

 The problem comes from m5.

➔ When m6 is replayed it depends on an orphan message.
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Recovery based on Phase Numbers

 Phase numbers are used to order messages replay

➔ Similar to Lamport clocks

➔ Incremented on inter-cluster messages
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Details on the Recovery Management

 Based on a recovery process

➔ External MPI Process

➔ Started when a failure occurs.

➔ Orchestrates logged messages replay during recovery

➔ Waits for notifications for all orphan messages in one phase
➔ Allows the replay of all logged messages in the next phase

➔ Needs a “global knowledge” of the application state

➔ List of logged messages to replay
➔ List of orphan processes
➔ Hard to parallelize
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Experimental Setup

 Testbed: Nancy Grid5000 cluster

➔ 33 nodes equipped with 2 Intel Xeon L5420 processors (4 cores), 16 GB 
of Memory

➔ Infiniband-20G Network interface

➔ Ethernet Network interface

 Test description:

➔ The application is run once failure free to generate the logs.

➔ Application is restarted from the beginning

➔ The cluster including process 0 is executed.
➔ Inter-cluster messages are replayed from the logs.
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 Evaluation of Recovery (TCP)
NAS - Class D - 256 processes

 Reasons for performance improvement: inter-cluster 
communications

➔ Recovering processes send notifications instead of real messages

➔ Messages are ready to be received
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 Evaluation of Recovery (IP over IB)
NAS - Class D - 256 processes

 Lower speed up

➔ Overhead for some applications

 The recovery process becomes the bottleneck



38

Send-Deterministic Aware Applications

 Goal: fully distributed recovery

 Comments:

➔ Problems come from anonymous receptions (ANY_SOURCE).

➔ No problems during a failure free execution.

➔ The programmer knows: 

➔ Its program is composed of implicit rounds (explicit or implicit 
barriers)

➔ Which messages can be received in each round.

 Proposition:

➔ Provide a way for the programmer to make the rounds explicit:

➔ New_Round()
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Send-Deterministic Aware Applications

 Messages m3 and m8 can be ordered based on their round.

➔ No need for a recovery process.
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Conclusion

 HydEE: rollback-recovery protocol for large scale MPI 
applications

➔ Failure containment

➔ Combines coordinated checkpointing and  message logging
➔ No information saved on stable storage (except checkpoints)

➔ Implemented in MPICH2

➔ Good performance in failure free execution
➔

➔ Good performance in recovery execution

➔ Scalability issue: centralized recovery process
➔ Send-deterministic aware applications

➔ Executions rounds
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Future work

 Prototype implementation

➔ Coordinated checkpointing

➔ Distributed recovery

➔ Partial restart

 Improving data management

➔ Topology-aware checkpointing

➔ Asynchronous sender-based message logging

 Integration with application-level checkpointing
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Example of Send-Deterministic Pattern 

for(i=0; i<nb_recv; i++){
MPI_Irecv(T[i], ..., i, ...);

}
for(i=0; i<nb_send; i++){

MPI_Send(..., i, ...);
}
for(i=0; i<nb_recv; i++){

MPI_Waitany(...);
}
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Clustering Configuration

Nb Clusters Size of cluster to 
restart

Avg % of ps to 
restart

Logging (GB)

BT 5 63 21.78% 143/791 (18.09%)

CG 16 16 6.25% 440/2318 (18.98%)

FT 2 129 50% 431/860 (50.19%)

LU 8 32 12.5% 44/337 (13.26%)

MG 4 64 25% 13/66 (19.63%)

SP 6 32 18.56% 289/1446 (20.04%)
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