
OPTIMIZATION PRINCIPLES FOR COLLECTIVE
NEIGHBORHOOD COMMUNICATIONS

TORSTEN HOEFLER, TIMO SCHNEIDER
ETH Zürich
2012 Joint Lab Workshop, Argonne, IL, USA

 We distinguish five classes of applications with
regards to their communication patterns:

1. Compile-time static (fixed at compile time)

2. Run-time static (fixed after problem input)

3. Run-time flexible (changes slowly during runtime)

4. Dynamic (completely unstructured)

5. “Embarrassingly” parallel (insignificant)

Torsten Hoefler

PARALLEL APPLICATION CLASSES

Slide 2 of 25

 Ratified in September!
 MPICH 3.0 released Nov. 13

 Many new features, e.g.:
 MPIT (Tools) interface

 New one sided operations

 Shared memory windows (cf. EuroMPI’12)

 Noncollective comm. Creation (cf. EuroMPI’11)

 Nonblocking collectives (cf. SC07)

 Neighborhood collectives (this work)

 … and many more features!

Torsten Hoefler

MPI-3.0 IS HERE!

Slide 3 of 25

 Idea: “build your own collective”

 MPI library optimizes it
during runtime

 Interesting challenges and
opportunities

 Utilizes process topology
interface

Torsten Hoefler

MPI 3.0’S NEIGHBORHOOD COLLECTIVES

== ?

Slide 4 of 25

Hoefler et al.: The Scalable Process Topology Interface of MPI 2.2, CCPE 2012

 Constructors:

 MPI_Cart_create()

 MPI_Dist_graph_create()

 Topology mapping

 Accept info arguments

 Provide optimization hints/assertions

Torsten Hoefler

PROCESS TOPOLOGIES Distributed Benzene (P=6)

+ 13 point stencil

= Process Topology

Slide 5 of 25

Hoefler et al.: The Scalable Process Topology Interface of MPI 2.2, CCPE 2012

Torsten Hoefler

NEIGHBORHOOD ALLGATHER

Slide 6 of 25

Torsten Hoefler

NEIGHBORHOOD ALLTOALL

Slide 7 of 25

 Three persistence hierarchy levels:

 Communication topology

 Message sizes

 Communication buffers

 Communicated via info arguments

 Per collective and communicator

 Side-effect: persistent collectives!

Torsten Hoefler

COMMUNICATION PERSISTENCE
Stre

n
gth

Slide 8 of 25

 Enables:

 Fixed channel semantics (pre-connect)

 RDMA synchronization trees

 Communication scheduling

Torsten Hoefler

PERSISTENT COMMUNICATION TOPOLOGY

Graph
Coloring

Slide 9 of 25

 Enables:

 Balance communications

 Tree transformations

Torsten Hoefler

PERSISTENT MESSAGE SIZES

Slide 10 of 25

 Enables:

 Static (persistent) RDMA regions

 Collective RDMA RTR protocols

Torsten Hoefler

PERSISTENT MESSAGE BUFFERS

Static
Buffers

Slide 11 of 25

 Canary RTE protocol (system dependent)

Torsten Hoefler

PERSISTENT MESSAGE BUFFERS

Canary

Slide 12 of 25

 LibNBC acts as reference implementation

 Naïve post all recvs, then all sends, waitall

 We compare to hard-coded MPI versions!

 Two low-level interfaces:

 Cray DMAPP

 Canary protocol up to 64 bytes

 XPMEM (shared memory)

 Linux kernel module enables page sharing

Torsten Hoefler

IMPLEMENTATION

Slide 13 of 25

 Express arbitrary communication relations as
directed acyclic graph (DAG)

 Easy translation from
MPI calls

 Enables DAG
transformations

 Highly optimized
scheduled execution

Torsten Hoefler

CDAG – COMMUNICATION DAG

Slide 14 of 25

 Persistent communication topology
 During communicator creation

 Persistent message sizes
 At first call of collective

 Remember schedules/sizes for later calls

 Persistent communication buffers
 At first call of collective

 Remember schedules/buffers for later calls

 Auto-tune?

 Torsten Hoefler

WHEN TO APPLY OPTIMIZATIONS?

Slide 15 of 25

 cDAG transforms execution schedule

 Scheduler executes on DMAPP and XPMEM

 Represented by state machines

 E.g., DMAPP small message recv:

Torsten Hoefler

PROTOCOL DRIVERS

Slide 16 of 25

 Test system: Blue Waters test machine (JYC)

 50 nodes Cray XE6, ~1600 cores

 Cray CCE 4.0.46

 Microbenchmark patterns

 Sparse alltoall + Cartesian stencil

 Application patterns

 WRF+ UFL sparse matvec

Torsten Hoefler

EVALUATION

Slide 17 of 25

Credits: UFL collection

 1024 processes, 16 Bytes per process

Torsten Hoefler

SPARSE ALLTOALL

Slide 18 of 25

 512 processes, varying size

Torsten Hoefler

2D CARTESIAN

Slide 19 of 25

 512 processes, varying size

Torsten Hoefler

4D CARTESIAN

Slide 20 of 25

 Em_b_wave input, five simulation days, 200k points

 Up to 40% improvement (14% app), average 7-10% (3-5% app)
Torsten Hoefler

WRF COMMUNICATION

Slide 21 of 25

 METIS partitioned, strong scaling

 Torsten Hoefler

UFL SPARSE MATVEC

Slide 22 of 25

 Most applications have 3-7 neighbors
 [Vetter, Mueller, JPDC 2003]

 Some applications have up to 66 neighbors
 [Kamil et al., TPDS 2010]

 Collective optimization is well understood
 Very limited interface

 Neighborhood collectives extend to runtime

 Specialized hardware allows for optimizations

 Our scheme also enables standard-compliant
persistent collectives

Torsten Hoefler

DISCUSSION

Slide 23 of 25

 Use neighborhood collectives in MPI
applications

 Looking for users

 Optimize neighborhood collectives in MPICH?

 MPICH 3.0 offers an unoptimized version

 Other opportunities

 Derive specification automatically (compiler)

 Experiment with auto-tuning (feedback-driven
online schedule transformations)

Torsten Hoefler

COLLABORATION OPPORTUNITIES

Slide 24 of 25

ACKNOWLEDGMENTS & QUESTIONS
 The MPI Forum

 Especially the collective WG!

 Cray (Larry, Duncan, & Howard)

Torsten Hoefler Slide 25 of 25

