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 We distinguish five classes of applications with 
regards to their communication patterns: 

 

1. Compile-time static (fixed at compile time) 

2. Run-time static (fixed after problem input) 

3. Run-time flexible (changes slowly during runtime) 

4. Dynamic (completely unstructured) 

5. “Embarrassingly” parallel (insignificant) 
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PARALLEL APPLICATION CLASSES 
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 Ratified in September! 
 MPICH 3.0 released Nov. 13 

 Many new features, e.g.: 
 MPIT (Tools) interface 

 New one sided operations 

 Shared memory windows (cf. EuroMPI’12) 

 Noncollective comm. Creation (cf. EuroMPI’11) 

 Nonblocking collectives (cf. SC07) 

 Neighborhood collectives (this work) 

 … and many more features! 
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MPI-3.0 IS HERE! 
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 Idea: “build your own collective” 

 MPI library optimizes it  
during runtime 

 Interesting challenges and 
opportunities 

 Utilizes process topology 
interface 
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MPI 3.0’S NEIGHBORHOOD COLLECTIVES 

== ? 

Slide 4 of 25 

Hoefler et al.: The Scalable Process Topology Interface of MPI 2.2, CCPE 2012 



 Constructors: 

 MPI_Cart_create() 

 MPI_Dist_graph_create() 

 Topology mapping 

 Accept info arguments 

 Provide optimization hints/assertions 
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PROCESS TOPOLOGIES Distributed Benzene (P=6) 

+ 13 point stencil 

= Process Topology 
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Hoefler et al.: The Scalable Process Topology Interface of MPI 2.2, CCPE 2012 



Torsten Hoefler 

NEIGHBORHOOD ALLGATHER 
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NEIGHBORHOOD ALLTOALL 
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 Three persistence hierarchy levels: 

 Communication topology 

 Message sizes 

 Communication buffers 

 Communicated via info arguments 

 Per collective and communicator 

 Side-effect: persistent collectives! 
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Stre

n
gth

 

Slide 8 of 25 



 Enables: 

 Fixed channel semantics (pre-connect) 

 RDMA synchronization trees 

 Communication scheduling 
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PERSISTENT COMMUNICATION TOPOLOGY 

Graph 
Coloring 
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 Enables: 

 Balance communications 

 Tree transformations 
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PERSISTENT MESSAGE SIZES 

Slide 10 of 25 



 Enables: 

 Static (persistent) RDMA regions 

 Collective RDMA RTR protocols  
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PERSISTENT MESSAGE BUFFERS 

Static 
Buffers 
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 Canary RTE protocol (system dependent) 
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PERSISTENT MESSAGE BUFFERS 

Canary 
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 LibNBC acts as reference implementation 

 Naïve post all recvs, then all sends, waitall 

 We compare to hard-coded MPI versions! 

 Two low-level interfaces: 

 Cray DMAPP 

 Canary protocol up to 64 bytes 

 XPMEM (shared memory) 

 Linux kernel module enables page sharing 
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IMPLEMENTATION 
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 Express arbitrary communication relations as 
directed acyclic graph (DAG) 

 Easy translation from 
MPI calls 

 Enables DAG  
transformations 

 Highly optimized 
scheduled execution 
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CDAG – COMMUNICATION DAG 
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 Persistent communication topology 
 During communicator creation 

 Persistent message sizes 
 At first call of collective 

 Remember schedules/sizes for later calls 

 Persistent communication buffers 
 At first call of collective 

 Remember schedules/buffers for later calls 

 Auto-tune? 
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WHEN TO APPLY OPTIMIZATIONS? 
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 cDAG transforms execution schedule 

 Scheduler executes on DMAPP and XPMEM 

 Represented by state machines 

 E.g., DMAPP small message recv: 
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PROTOCOL DRIVERS 
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 Test system: Blue Waters test machine (JYC) 

 50 nodes Cray XE6, ~1600 cores 

 Cray CCE 4.0.46 

 Microbenchmark patterns 

 Sparse alltoall + Cartesian stencil  

 Application patterns 

 WRF+ UFL sparse matvec 

Torsten Hoefler 

EVALUATION 
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Credits: UFL collection 



 

 

 

 

 

 

 

 
 1024 processes, 16 Bytes per process 
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SPARSE ALLTOALL 
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 512 processes, varying size 
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2D CARTESIAN 
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 512 processes, varying size 
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4D CARTESIAN 
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 Em_b_wave input, five simulation days, 200k points 

 Up to 40% improvement (14% app), average 7-10% (3-5% app) 
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WRF COMMUNICATION 
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 METIS partitioned, strong scaling 
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UFL SPARSE MATVEC 
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 Most applications have 3-7 neighbors 
 [Vetter, Mueller, JPDC 2003] 

 Some applications have up to 66 neighbors 
 [Kamil et al., TPDS 2010] 

 Collective optimization is well understood 
 Very limited interface 

 Neighborhood collectives extend to runtime 

 Specialized hardware allows for optimizations 

 Our scheme also enables standard-compliant 
persistent collectives 
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DISCUSSION 
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 Use neighborhood collectives in MPI 
applications 

 Looking for users  

 Optimize neighborhood collectives in MPICH? 

 MPICH 3.0 offers an unoptimized version 

 Other opportunities 

 Derive specification automatically (compiler) 

 Experiment with auto-tuning (feedback-driven 
online schedule transformations) 
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COLLABORATION OPPORTUNITIES 
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