
OPTIMIZATION PRINCIPLES FOR COLLECTIVE
NEIGHBORHOOD COMMUNICATIONS

TORSTEN HOEFLER, TIMO SCHNEIDER
ETH Zürich
2012 Joint Lab Workshop, Argonne, IL, USA

 We distinguish five classes of applications with
regards to their communication patterns:

1. Compile-time static (fixed at compile time)

2. Run-time static (fixed after problem input)

3. Run-time flexible (changes slowly during runtime)

4. Dynamic (completely unstructured)

5. “Embarrassingly” parallel (insignificant)

Torsten Hoefler

PARALLEL APPLICATION CLASSES

Slide 2 of 25

 Ratified in September!
 MPICH 3.0 released Nov. 13

 Many new features, e.g.:
 MPIT (Tools) interface

 New one sided operations

 Shared memory windows (cf. EuroMPI’12)

 Noncollective comm. Creation (cf. EuroMPI’11)

 Nonblocking collectives (cf. SC07)

 Neighborhood collectives (this work)

 … and many more features!

Torsten Hoefler

MPI-3.0 IS HERE!

Slide 3 of 25

 Idea: “build your own collective”

 MPI library optimizes it
during runtime

 Interesting challenges and
opportunities

 Utilizes process topology
interface

Torsten Hoefler

MPI 3.0’S NEIGHBORHOOD COLLECTIVES

== ?

Slide 4 of 25

Hoefler et al.: The Scalable Process Topology Interface of MPI 2.2, CCPE 2012

 Constructors:

 MPI_Cart_create()

 MPI_Dist_graph_create()

 Topology mapping

 Accept info arguments

 Provide optimization hints/assertions

Torsten Hoefler

PROCESS TOPOLOGIES Distributed Benzene (P=6)

+ 13 point stencil

= Process Topology

Slide 5 of 25

Hoefler et al.: The Scalable Process Topology Interface of MPI 2.2, CCPE 2012

Torsten Hoefler

NEIGHBORHOOD ALLGATHER

Slide 6 of 25

Torsten Hoefler

NEIGHBORHOOD ALLTOALL

Slide 7 of 25

 Three persistence hierarchy levels:

 Communication topology

 Message sizes

 Communication buffers

 Communicated via info arguments

 Per collective and communicator

 Side-effect: persistent collectives!

Torsten Hoefler

COMMUNICATION PERSISTENCE
Stre

n
gth

Slide 8 of 25

 Enables:

 Fixed channel semantics (pre-connect)

 RDMA synchronization trees

 Communication scheduling

Torsten Hoefler

PERSISTENT COMMUNICATION TOPOLOGY

Graph
Coloring

Slide 9 of 25

 Enables:

 Balance communications

 Tree transformations

Torsten Hoefler

PERSISTENT MESSAGE SIZES

Slide 10 of 25

 Enables:

 Static (persistent) RDMA regions

 Collective RDMA RTR protocols

Torsten Hoefler

PERSISTENT MESSAGE BUFFERS

Static
Buffers

Slide 11 of 25

 Canary RTE protocol (system dependent)

Torsten Hoefler

PERSISTENT MESSAGE BUFFERS

Canary

Slide 12 of 25

 LibNBC acts as reference implementation

 Naïve post all recvs, then all sends, waitall

 We compare to hard-coded MPI versions!

 Two low-level interfaces:

 Cray DMAPP

 Canary protocol up to 64 bytes

 XPMEM (shared memory)

 Linux kernel module enables page sharing

Torsten Hoefler

IMPLEMENTATION

Slide 13 of 25

 Express arbitrary communication relations as
directed acyclic graph (DAG)

 Easy translation from
MPI calls

 Enables DAG
transformations

 Highly optimized
scheduled execution

Torsten Hoefler

CDAG – COMMUNICATION DAG

Slide 14 of 25

 Persistent communication topology
 During communicator creation

 Persistent message sizes
 At first call of collective

 Remember schedules/sizes for later calls

 Persistent communication buffers
 At first call of collective

 Remember schedules/buffers for later calls

 Auto-tune?

 Torsten Hoefler

WHEN TO APPLY OPTIMIZATIONS?

Slide 15 of 25

 cDAG transforms execution schedule

 Scheduler executes on DMAPP and XPMEM

 Represented by state machines

 E.g., DMAPP small message recv:

Torsten Hoefler

PROTOCOL DRIVERS

Slide 16 of 25

 Test system: Blue Waters test machine (JYC)

 50 nodes Cray XE6, ~1600 cores

 Cray CCE 4.0.46

 Microbenchmark patterns

 Sparse alltoall + Cartesian stencil

 Application patterns

 WRF+ UFL sparse matvec

Torsten Hoefler

EVALUATION

Slide 17 of 25

Credits: UFL collection

 1024 processes, 16 Bytes per process

Torsten Hoefler

SPARSE ALLTOALL

Slide 18 of 25

 512 processes, varying size

Torsten Hoefler

2D CARTESIAN

Slide 19 of 25

 512 processes, varying size

Torsten Hoefler

4D CARTESIAN

Slide 20 of 25

 Em_b_wave input, five simulation days, 200k points

 Up to 40% improvement (14% app), average 7-10% (3-5% app)
Torsten Hoefler

WRF COMMUNICATION

Slide 21 of 25

 METIS partitioned, strong scaling

 Torsten Hoefler

UFL SPARSE MATVEC

Slide 22 of 25

 Most applications have 3-7 neighbors
 [Vetter, Mueller, JPDC 2003]

 Some applications have up to 66 neighbors
 [Kamil et al., TPDS 2010]

 Collective optimization is well understood
 Very limited interface

 Neighborhood collectives extend to runtime

 Specialized hardware allows for optimizations

 Our scheme also enables standard-compliant
persistent collectives

Torsten Hoefler

DISCUSSION

Slide 23 of 25

 Use neighborhood collectives in MPI
applications

 Looking for users 

 Optimize neighborhood collectives in MPICH?

 MPICH 3.0 offers an unoptimized version

 Other opportunities

 Derive specification automatically (compiler)

 Experiment with auto-tuning (feedback-driven
online schedule transformations)

Torsten Hoefler

COLLABORATION OPPORTUNITIES

Slide 24 of 25

ACKNOWLEDGMENTS & QUESTIONS
 The MPI Forum

 Especially the collective WG!

 Cray (Larry, Duncan, & Howard)

Torsten Hoefler Slide 25 of 25

