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Overview

We’ll discuss:

1 introduction to multilevel methods
2 multilevel methods on the extreme scale
3 multilevel checkpointing framework
4 multilevel error detection

With the goal of showing:

1 algorithmic resiliency advantages of multigrid
2 a basic scheme for multigrid-based checkpointing and error detection
3 a way forward for extreme-scale algorithmic resiliency
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Multigrid Preliminaries

Multigrid is an O(n) method for solving linear algebra problems by defining a
hierarchy of scale. A Multigrid method is constructed from:

1 a series of discretizations
coarser approximations of the original problem
constructed algebraically or geometrically

2 intergrid transfer operators
restriction R and injection R̂ (fine to coarse)
prolongation P (coarse to fine)

3 Smoothers (S)
correct the high frequency error components
Richardson, Jacobi, Gauss-Seidel, etc.
Gauss-Seidel-Newton or optimization methods
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Multigrid

Multigrid methods uses coarse correction for large-scale error

`fine

`coarse

`fine
Rb

Rb Px̂

Px̂

Algorithm MG(A,b) for the solution of Ax = b:

x = Sm(x,b) pre-smooth

bH = R(r−Ax) restrict residual

x̂H = MG(RAP,bH) recurse

x = x+Px̂H prolong correction

x = x+Sn(x,b) post-smooth
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Full Multigrid(FMG)

`coarse `coarse

`fine

start by going directly to coarse

do number of V-cycles with each going one finer

x is injected to finer levels as visited

truncation error within one cycle

highly efficient solution method
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FAS

`fine

`coarse

`fineRr, R̂x

Rr, R̂x
Px̂

Px̂

Algorithm FAS(F,x,b) for the solution of F(x) = b:

x = Sm(x,b) pre-smooth

bH = R[b]+

τ correction︷ ︸︸ ︷
[FH(R̂x)−RF(x)] restrict residual

xH = R̂x inject solution

x̂H = FAS(FH,xH,bH) recurse

x = x+P[x̂H− R̂x] prolong correction

x = x+Sn(x,b) post-smooth

Peter Brune (ANL) Resilient FAS November 21, 2012 6 / 17



τ Correction

FH(xH) = Rb+[FH(R̂x)−RF(x)] contains the term we call τ

τ = FH(R̂x)−RF(x)

encodes the “difference” between problems F(x) and FH(xH)

exact fine solution is solution to τ-corrected coarse problem

τ tells us how the fine problem can improve the coarse problem

τ has same size as coarse solution

τ is the magic that makes this whole talk possible

Peter Brune (ANL) Resilient FAS November 21, 2012 7 / 17



Extreme-Scale Multigrid: Redundant Coarse Problems

simplest idea: local redundancy

calculate coarser levels redundantly on subsets of processors

requires more communication in fewer stages

coarse problems must be duplicated; requires off-process restriction

reduced synchronization
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Extreme-Scale Multigrid: Segmental Refinement

more complicated idea: ficticious fine grid, τ-corrected coarse
originally for 70’s very low memory; recently revived for extreme scale
loop and “zoom” on subdomains

construct fine grid problem in cache
smooth locally
inject

data dependencies vertical rather than horizontal between levels

Px

Rx̂,τ
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Basic resilience strategy

We assume the following simple model of checkpointing and recovery:

control

essential coarse

ephemeral

program n = 0

control

essential

coarse

storage

control

essential

restored n = 0

control

essential

ephemeral

recovered n = N

MPI/BLCR

n = 1,2, . . . ,N

restart
failed
ranks FMG

recovery

n = 1,2, . . . ,N

malloc

at n = 0

control program stack
configuration

essential time-dependent solution
current optimization iterate

ephemeral assembled matrices
preconditioners
residuals
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Essential State Recovery

coarse level checkpoints are orders of magnitude smaller

can be stored at greater frequency

quick recovery of local essential state from coarse history

FMG recovery needs only nearest neighbor processors

We introduce FAS Checkpointing for rapid recovery of essential state

minimal and lossy essential state storage

whole state may be quickly recovered in total failure

rapid local catch-up for failed processes
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FAS Checkpointing

`fine

`cp +1

`cp

. . . . . .

`cp
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`fine

CP

R
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tSolve F(xn) = bn

next solve

bn+1(xn,bn)bn

essential state: converged solutions at end of timesteps
checkpoint converged state at level `CP
`CP several levels down
CP several orders of magnitude smaller than converged state
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FAS Recovery

CP

`CP `CP

`fine

`CP

`fine

τ

τ

τ

τ

recover using FMG anchored at `cp +1

needs only `cp neighbor points

τ correction is local

FMG recovery only accesses levels finer than `CP

Only failed processes and neighbors participate in recovery
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Other uses for coarse checkpoints

potential advantages to having coarse solutions around:

lightweight high-time-resolution snapshots

transient adjoint computation

postprocessing

coarse in-situ visualization
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Redundant Coarse-Grid Error Detection

The redundant coarse problem may be used to trivially check for errors:
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However, this is uninteresting and doesn’t exploit the algorithm; can we do
anything better?
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τ-Correction Error Detection

`fine

`check

||F(x)−b|| small

||FH(R̂x)−Rb− τ|| small

`fine

`check

||F(x)−b|| small

||FH(R̂x)−Rb− τ|| large

X X

x solving fine problem F(x) = b
check residual of R̂x on a τ-corrected coarse grid

As R̂x solves the τ-corrected coarse grid problem, residual should be small

incorrect result indicates error in fine grid residual evaluation

identifies the location of the error
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Conclusions

multilevel methods allow efficient simulation

can be leveraged to increase resiliency

FAS Checkpointing allows for minimal overhead state reconstruction

FAS Error Detection and Correction can be built into the solves

other possibilities (Ensemble MG, etc.) loom

We’ve made progress towards having this working

segmental refinement experiments and experience (Adams, 2012)

FAS framework in place in PETSc
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