
Mesh-based Data and Algorithms across the
Simulation Process: anecdotes, activities,
and opportunities

Timothy J. Tautges, Vijay Mahadevan, Rajeev
Jain, Tom Peterka

Mathematics and Computer Science Division
Argonne National Laboratory

Joint Lab Workshop
Argonne National Laboratory
November 20, 2012

11/20/2012 Joint Lab Workshop 2

Outline
 Applications
 Mesh Generation for Reactor Simulation
 Mesh Issues in Coupled Multi-Physics
 Conclusions

11/20/2012 Joint Lab Workshop 3

Simulation Is Really A Process, Rarely Once-Through

•

• Spatial domain model the starting point for most PDE-based
simulation

• Sometimes geometric details are important, sometimes not
– MPP-enabled resolution should resolve geometric features (where

possible & useful?)

– The more details you resolve, the harder it is to generate the mesh

• Large-code architecture often organized around handling of the
spatial domain (mesh) and fine-grained data on the mesh (fields)

Continuous domain
(geometry)

Discrete domain
(mesh)

Simulation Viz/Analysis

11/20/2012 Joint Lab Workshop 4

Applications

• Reactor simulation
– Geometry is important

– Repeated structures
sometimes dominant

– Mostly 3D meshes,
some all-hex, some not

• Climate
– Little/no geometry

– Mesh usually 2D
(+ 1d data vectors
for 3rd dimension)

• Fusion
– Sometimes geometry,

sometimes not/little

MassLWR Experiment

VHTR Core

CAM-SE
ITER 40deg

11/20/2012 Joint Lab Workshop 5

Approach

• Small (miniscule)-f framework
– Distinct components defined along functional lines

– Individual components can be used w/o other components

– Applications composed from many of these components

– Get just what you need, no more

• Mesh-Oriented datABase (MOAB)
– Library for representing, manipulating structured, unstructured mesh

models

– Supported mesh types:

• FE zoo (vertices, edges, tri, quad, tet, pyramid, wedge, knife, hex)

• Polygons/polyhedra

• Structured mesh

– Implemented in C++, but uses array-based storage model

– Mesh I/O from/to various formats (HDF5 native)

– Parallel representation typical domain-decomposed model, with sharing
& ghosting

Coupe'

Nek UNIC

MOAB/MBCouplerData/Vis

11/20/2012 Joint Lab Workshop 6

Mesh Generation: 2 Strategies

• Geometry-intensive: CUBIT • Core lattices: RGG

VHTR full core: 23M hexes, 5.5GB RAM,
 30 mins. 313 assemblies.

11/20/2012 Joint Lab Workshop 7

Coupled Neutron, Fluid, Heat Transport

fission
heating

Code1 (UNIC or proxy)

Code 2 (Nek5000 or proxy)

T-dependentrho, T-dependent

11/20/2012 Joint Lab Workshop 8

Full/Original Physics Codes
Nek5000 UNIC

Physics Incompressible NS Boltzmann transport

Discretization SEM w/ LES turb
(NxNxN GLL basis)

FEM
(linear, quadratic)

Solver Native semi-implicit with
AMG

3-level hierarchy
(eigenvalue, energy,
space/angle), with PETSc
for space/angle

Materials, BCs User-defined functions ExodusII-like element
blocks, sidesets

Mesh type Ucd hex Ucd hex, tet, prism

Implementation F77 + C, 100k lines F90, 260k lines

Mesh, data storage Common blocks F90 modules

Scalability 2000 Gorden Bell prize,
71% strong scaling on
262k cores

2009 Gordon Bell finalist,
76% strong scaling on
295k cores

Effort invested ~30 man-years ~10 man-years

11/20/2012 Joint Lab Workshop 9

Coupling Approach

Loose:

…
A

B

…
A

B

tn: k k+1 …

A

B
…

A

B

tn+1: k k+1 …

• Different flavors of coupling schemes have variations in stability,
accuracy, and software characteristics

 Tight: Full:

…
tn

C=(A, B) …

steady-state

…

tn: k k+1 …

AB

C

AB

C
…

tn+1: k k+1 …

AB

C

AB

C

Jacobi Gauss-Seidel

• Driver (Coupe')

– Support loose, tight coupling
with run-time switching

• Use MOAB

– Solution transfer

– Other mesh-based services

– Data conduit

Coupe'

Nek UNIC

MOAB/MBCouplerData/Vis

11/20/2012 Joint Lab Workshop 10

p1

p3

p2

p4

OR

p1 p2

p3 p4

p6p5

p8p7

MOAB-Based Solution Transfer
 Meshes: Each physics type is solved on an independent mesh whose
characteristics (element type, density, etc.) is most appropriate for the
physics

 Distribution: Each physics type and mesh is distributed
independently across a set of processors, defined by an MPI
communicator for each mesh

 Implementation: On a given processor, all meshes are stored in a
single iMesh instance, and that instance communicates with all other
processors containing pieces of any of those meshes.

Physics 1 Physics 2

11/20/2012 Joint Lab Workshop 11

Solution Transfer: 4 Steps

1

4

2

3

421 3

421 3 421 3

421 3

1. Initialization

1

4

2

3

421 3

421 3 421 3

421 3

2. Point Location

(x,y,z)

p, i

i: (x, y, z), h, (u, v, w)
…

h, p, i
…

3. Interpolation

i

Φ(x,y,z)

source
mesh

kdtrees

target procs
store

all kdtree roots

a. target finds
candidate
source procs

b. aggregate
request to
interpolate points

c. return index
to interpolated
point

Source proc: index of mapped points:
Target position, local element handle,
param coords

Target proc: local handle, source proc,
remote index

a. aggregate
request: indices
only!

b. aggregate reply:
integrated field

Minimize data transferred
– Store index close to source

field, communicate indices
only

All communication
aggregated, using “crystal
router” for generalized all-
to-all

4. Normalization

11/20/2012 Joint Lab Workshop 12

Solution Transfer: Performance, Accuracy

7M Hexes

28M Tets

11/20/2012 Joint Lab Workshop 13

Exascale Issues

• Partitioning physics over processors

• Parallel solution transfer

• Local tree search

• Memory sharing

11/20/2012 Joint Lab Workshop 14

Solution Transfer: Distribution Over Processors

• Assuming fixed number of procs and fixed (possibly non-equal)
problem sizes for physics, 2 choices for partitioning physics
solutions over machine

• Homogeneous: each proc solves a piece of each physics
– Requires good strong scaling of each physics

– Can do both Jacobi- and Gauss-Siedel-type loose coupling

– Easier load balancing, even with sub-cycling in time

• Disjoint: each physics solved on set of procs disjoint from other
physics procs
– Lighter strong scaling requirements

– Gauss-Siedel scheme leaves processor sets idle, Jacobi requires
accurate prediction of runtime

• Our approach: don't over-constrain any of the underlying support
(i.e. solution transfer can support both homogeneous and disjoint
scenarios)

11/20/2012 Joint Lab Workshop 15

Solution Transfer: Mesh Search Details

• Current parallel search method does linear search over top-level
boxes on each proc, which is both scalability and memory
problem

• Change to a rendezvous-type method, where intermediate set of
procs with deterministic partition of overall bounding box &
intersecting processor boxes directs packets to correct proc(s)

• Local search tree currently a kdtree, but probably more efficient to
use a bvh tree
– Tree search consists of tree traversal (cheap), in-leaf element query

(expensive); bvh adds tree complexity to reduce leaf complexity

• In process of implementing/testing bvh tree

• Will implement rendezvous method in FY13

11/20/2012 Joint Lab Workshop 16

Memory Sharing Between Physics, MOAB
• MOAB uses array-based storage of most “heavy” data, and

exposes API functions giving access to contiguous chunks of those
data (mesh definition & mesh-based variables)

 Range::iterator iter = myrange.begin(); int count; double *data;
 while (iter != myrange.end()) {

 tag_iterate(tag_handle, iter, myrange.end(), count, (void*&)data_ptr);

 iter += count;

 }

• Small applications show that this almost completely eliminates API
cost for accessing variable data memory owned by MOAB

• Advantages:
– Eliminates memory copy between physics & backplane, saving

memory and time

– Allows direct use of parallel services like I/O, in-situ viz

– Simplifies workflow (pre, analysis, post) because no issues with
data formats for various physics

– Will allow faster transition to memory manipulations for manycore,
GPU

• The fine print: depends heavily on mesh, DOF ordering in physics

11/20/12 Go to ”Insert (View) | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All" 17

Ordering Issues

● partition generated w/o regard to
material types

● element, set order from file, ghost
order from ghost exchange

● fluid elements first, then solid
elements

● one contiguous index space

● distinguish between “modeled” (has
non-ghost elems) and “unmodeled”
(no non-ghost elems) ghost materials

elements

material_set

21 3 1

vertices

P0

ghosts

Serial/file:

P1 P2

…
 MOAB/Parallel:

P0 P1 P2

…
 Nek:

fluid solid

P0

modeled

P1 P2

…

UNIC:

unmodeled

● Moral: to meet application requirements, reordering often necessary,
either during handoff to physics, or in MOAB before handoff

11/20/2012 Joint Lab Workshop 18

Opportunities

• Mesh generation
– AMR

• Coupled multi-physics
– More physics codes (Saturne? Code Aster?)

– Solution transfer scalability

• Partitioning/reordering
– Multiple ordering criteria, e.g. by proc then material

	Slide 1
	Slide 2
	Geometry, Mesh, Simulation Data
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	MOAB-Based Solution Transfer
	Solution Transfer: 4 Steps
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

