Toward robust numerical linear solvers for large scale simulations

LUC GIRAUD

joint work with E. Agullo, A. Guermouche, J. Roman and M. Zounon

joint Inria-CERFACS Lab. on High Performance Computing Inria / Univ. Bordeaux / CNRS (LaBRI)

Inria-NCSA workshop, Nov. 22, 2011

This work was supported in part by the ANR RESCUE project

Sparse linear systems

Sparse linear systems

Application consumers of linear solvers

Scientific and engieneering application areas

- ★ Accelerator physics
- * Chemical process simulations
- * Earth and environmental sciences including climate
- ★ Fluid flow
- ★ Fusion energy
- * Structural analysis
- * Structural biology

Iterative methods

Principle

Iterative methods for solving linear system Ax = b, begin with initial guess for solution and successively improve it until solution is as accurate as desired.

Two main classes

- Stationary methods (fixed point schemes: e.g., Jacobi, Gauss-Seidel, ...).
- Krylov subspace methods (CG [Hestenes, Stiefel, NIST, 52], GMRES
 [Saad, Schultz, SISC, 86], Bi-CGStab [Vorst, SISC, 92], ...)

Iterative methods

Principle

Iterative methods for solving linear system Ax = b, begin with initial guess for solution and successively improve it until solution is as accurate as desired.

Two main classes

- ★ Stationary methods (fixed point schemes: e.g., Jacobi, Gauss-Seidel, ...).
- ★ Krylov subspace methods (CG [Hestenes, Stiefel, NIST, 52], GMRES [Saad, Schultz, SISC, 86], Bi-CGStab [Vorst, SISC, 92], ...)

General framework

Faults in the literature

- ★ Soft errors.
- ★ Hard faults.

In this presentation

- ★ Hard fault: invalid core (memory, caches, network connections, ...).
- Assumption: when a fault occurs we can start a new process on another core.

- 1. Fixed point schemes and resilience
- 2. Recovery strategies in Krylov subspace methods
- 3. Preliminary experimental results
- 4. Concluding remarks and perspectives

Mathematical models: fixed point iteration

$$x^* = F(x^*) \Rightarrow x^{k+1} = F(x^k)$$

Governing ideas to express parallelism

Split the problem in sub-problems, solve the subproblems in parallel with updates along the interfaces using available data (no-synchronization).

Chaotic/Asynchronous scheme definition

Let $x^0 \in E$ we consider the series of iterates defined by:

$$\forall k \in \mathbb{N}, \ \forall p \in \{1, ..., m\}, \ x_k^{k+1} = \begin{cases} x_p^k & \text{if } p \notin s(k) \\ F_p(w) & \text{if } p \in s(k) \end{cases}$$

where $w = (x_{\ell}^{c_{\ell}(k)})_{\ell=1,m}$, $w \in E$; $c_{\ell}(k) = k - d_{\ell}(k)$ accounts for delays and s(p) defines the relaxation strategy (e.g. $s(k) \equiv \{1, ..., m\}$ and $d_{\ell} \equiv 0$ reduces to block Jacobi).

Theorem [J.C. Miellou, 75; F. Robert, 75]

Let assume that

F is a *J*-contraction with respect to the fixed point x^* , that is there exists a nonnegative matrix $J \in \mathbb{R}^{m \times m}$ with $\rho(J) < 1$ such that

$$\begin{pmatrix} \|F(x_1) - F(x_1^*)\|_1\\ \vdots\\ \|F(x_m) - F(x_m^*)\|_m \end{pmatrix} < J. \begin{pmatrix} \|x_1 - x_1^*\|_1\\ \vdots\\ \|x_m - x_m^*\|_m \end{pmatrix}$$

Then chaotic relaxation scheme defines the iterates x^k converge to x^* the fixed point of *F*.

Brief overview on chaotic relaxation schemes

- ★ Brief history (non-exhaustive):
 - Pioneer paper [D. Chazan and W. Miranker, LAA, 69].
 - Convergence analysis: contraction properties [D. Chazan and W. Miranker, LAA, 69], [F. Robert, LAA, 75], [L. Giraud, P. Spiteri, RAIRO, 91], order interval [J.C. Miellou, RAIRO, 75], [J.C. Miellou, D. El Baz, P. Spiteri, MathComp, 98].
 Recent book [J. Bahi, S. Contassot-Vivier, R. Couturier, Chapman & Hall,

2007].

- Application areas: PDE [D. Amitai, A. Averbuch, M. Israeli, S. Itzikowitz, SISC, 98], DDM [A. Frommer, D. Szyld, JCAM, 97] inverse problems [V. Pereyra, ANM, 99], convex optimization [P. Tseng, SIOPT, 91], network flow [P. Tseng, D. P. Bertsekas, J. N. Tsitsiklis, SICON, 90], etc ...
- Renewed interest with Grid computing (latency/bandwith network).

Asynchronous relaxation v.s. resilience

- ★ By construction, the chaotic relaxation schemes are resilient to message loss.
- * To comply with fault tolerance, the $c_k(p)$ non decreasing function of p implies uncoordinated local checkpointing of each core running on E_i (no synchronization).
- * <u>Good candidates for fault tolerance:</u> classical fixed point iterations where convergence analysis is based on contraction properties

$$Ax = b$$

the scheme $x^{k+1} = x^k + B(b - Ax^k)$, will converge for any x^0 if $\rho(I - BA) < 1$; e.g. classical Schwarz alternating method (1870). Fixed point schemes and resilience

Schwarz Alternating method [H.A. Schwarz, 1870]

$$\begin{cases} -\Delta u = f & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$

Fixed point iteration scheme

$$\begin{cases} -\Delta u_1^{n+1} = f & \text{in } \Omega_1, \\ u_1^{n+1} = u_2^n|_{\Gamma_1} & \text{on } \Gamma_1, \end{cases} \text{ and } \begin{cases} -\Delta u_2^{n+1} = f & \text{in } \Omega_2, \\ u_2^{n+1} = u_1^{n+1}|_{\Gamma_2} & \text{on } \Gamma_1. \end{cases}$$

Convergence analysis based on contraction property of a product of projectors (also referred to as multiplicative Schwarz) [P.L. Lions, 88].

Fixed point schemes and resilience

Schwarz Alternating method: 1D illustration

- ★ Contraction based analysis, $\forall u_0 \| u u^k \| \le \rho^k \| u u^0 \|$.
- Matlab demo: visual evidence.

HIEPACS

Krylov subspace methods

General concept of Krylov subspace methods

Search for the slolution of a linear system of dimension *n* in a specific subspace of dimension *k* smaller than *n*. Basically, $x^k = F(x^0, ..., x^{k-1})$.

Krylov subspace

Let $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^n$, let $k \le n$, the space denoted by $\kappa(b, A, k)$ with $\kappa(b, A, k) = Span\{b, Ab, ..., A^{k-1}b\}$ is referred to as the Krylov space of dimension k associated with A and b.

Krylov subspace methods

General concept of Krylov subspace methods

Search for the slolution of a linear system of dimension *n* in a specific subspace of dimension *k* smaller than *n*. Basically, $x^k = F(x^0, ..., x^{k-1})$.

Krylov subspace

Let $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^n$, let $k \le n$, the space denoted by $\kappa(b, A, k)$ with $\kappa(b, A, k) = Span\{b, Ab, ..., A^{k-1}b\}$ is referred to as the Krylov space of dimension k associated with A and b.

Parallelization of the iterative methods

Distribution of a sparse matrix

Two categories of lost data

★ Static data:

Matrix A, right-hand side b and possibly preconditioner M.

⋆ Dynamic data:

all the vectors and small matrices generated by Krylov solvers during the iterations.

Linear System (LS) [J. Langou et al., SISC, 2007]

Linear system

$\left(\right)$	· : ··.	$A_{I-1,I}$	· ·) : :		(·) :			
	$A_{I,I-1}$	$A_{I,I}$	$A_{I,I+1}$	\times	x_I	=	b_I	
	· · : :	$A_{I+1,I}$	· :)		:			

Linear System (LS) [J. Langou et al., SISC, 2007]

Linear system

Recovery

- * $A_{I,I}x_I = (b_I A_{I,I-1}x_{I-1} A_{I,I+1}x_{I+1}).$
- * Exact strategy for single fault, if the solver had converged.

Linear System (LS) [J. Langou et al., SISC, 2007]

Linear system

Recovery

*
$$A_{I,I}x_I = (b_I - A_{I,I-1}x_{I-1} - A_{I,I+1}x_{I+1}).$$

* Exact strategy for single fault, if the solver had converged.

Linear least square problem

Recovery of x_I

*
$$A_{:,I-1}x_{I-1} + A_{:,I}x_I + A_{:,I+1}x_{I+1} = b.$$

*
$$b_{new} = b - A_{:,I-1}x_{I-1} + A_{:,I+1}x_{I+1}$$
.

Linear least square problem

Recovery of x_I

*
$$A_{:,I-1}x_{I-1} + A_{:,I}x_I + A_{:,I+1}x_{I+1} = b.$$

*
$$b_{new} = b - A_{:,I-1}x_{I-1} + A_{:,I+1}x_{I+1}$$
.

Linear least square problem

Recovery of *x*_{*I*}

*
$$A_{:,I-1}x_{I-1} + A_{:,I}x_I + A_{:,I+1}x_{I+1} = b.$$

*
$$b_{new} = b - A_{:,I-1}x_{I-1} + A_{:,I+1}x_{I+1}$$
.

Linear least square problem

Recovery of x_I

*
$$A_{:,I-1}x_{I-1} + A_{:,I}x_I + A_{:,I+1}x_{I+1} = b.$$

*
$$b_{new} = b - A_{:,I-1}x_{I-1} + A_{:,I+1}x_{I+1}$$
.

Linear least square problem

$$\begin{pmatrix} \vdots & \cdots & A_{I-1,I} & \vdots & \vdots \\ \hline A_{I,I-1} & A_{I,I} & A_{I,I+1} \\ \hline & \ddots & & \\ \vdots & \vdots & A_{I+1,I} & \ddots & \vdots \\ \vdots & \vdots & & & \end{pmatrix} \times \begin{pmatrix} \vdots \\ \vdots \\ x_I \\ \vdots \\ \vdots \end{pmatrix} = \begin{pmatrix} \vdots \\ b_I \\ \vdots \\ \vdots \end{pmatrix}$$

Recovery of x_I

$$x_{I} = \operatorname{argmin} \|b_{new} - \begin{pmatrix} A_{I-1,I} \\ A_{I,I} \\ A_{I+1,I} \end{pmatrix} x\|.$$

Multiple Faults

More than one fault at the same iteration

Processors I and J failed

$\left(\right)$	· : ·.			· · : :	$\left \begin{array}{ccc} \cdot & \cdots \\ \vdots & \ddots \end{array}\right\rangle$		$\left(\begin{array}{c} \cdot \\ \cdot \\ \cdot \end{array}\right)$		$\left(\begin{array}{c} \cdot \\ \cdot \\ \cdot \end{array}\right)$	
	$A_{I,I-1}$	$A_{I,I}$	$A_{I,I+1}$	$A_{I,I+2}$	· · : :		<i>x</i> _I		b_I	
	· : ·.	· · : :	· · : :	· · :::	· ··· : ··.	×	:	=	:	
	$A_{J,J-2}$	A_{J-1}	$A_{J,J}$	$A_{J,J+1}$	· ·		<i>x</i> _J		b_J	
	· : ·.	· · : :	· · : :	· · : :	· ··· : ···)				$\left(\begin{array}{c} \cdot \\ \vdots \end{array}\right)$	

Multiple Faults

More than one fault at the same iteration

Processors I and J failed

Multiple Faults

More than one fault at the same iteration

Processors I and J failed

$\left(\right)$	· : ·.	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · : :	$\left \begin{array}{ccc} \cdot & \cdots \\ \vdots & \ddots \end{array}\right\rangle$		$\left(\begin{array}{c} \cdot \\ \cdot \\ \cdot \end{array}\right)$		$\left(\begin{array}{c} \cdot \\ \cdot \end{array}\right)$	
	$A_{I,I-1}$	$A_{I,I}$	$A_{I,I+1}$	$A_{I,I+2}$	· · · · · · · · · · · · · · · · · · ·		<i>x</i> _I		b_I	
	· ···	· · : :	· · : :	· ·	· ··· : ··.	×		=	:	
	$A_{J,J-2}$	A_{J-1}	$A_{J,J}$	$A_{J,J+1}$	· · : :		xJ		b_J	
	·	· · : :	· · : :	· · : :	· ··· : ···)		·) (:)		·)	

Parallel recovery

Parallel recovery: handle each block independently

Recovery of x_I

$\left(\right)$	· ··· : ··.		· · · · · · · · · · · · · · · · · · ·	· · : :	· ···) : ··.				$\begin{pmatrix} \cdot \\ \vdots \end{pmatrix}$
	$A_{I,I-1}$	$A_{I,I}$	$A_{I,I+1}$	$A_{I,I+2}$	· · : :		·		b_I
	· : ·.	· · : :	· · : :	· · : :	· ··· : ··.	×	÷	=	:
	$A_{J,J-2}$	A_{J-1}	$A_{J,J}$	$A_{J,J+1}$	· · : :		0 _J		b_J
	· ··· : ··.	· · : :	· · : :	· · : :	· ··· : ···)				

Parallel recovery

Parallel recovery: handle each block independently

Recovery of x_J

$\left(\right)$	· : ·.		· · ·	· · : :	· ···) : ··.		$\begin{pmatrix} \cdot \\ \vdots \end{pmatrix}$	$\begin{pmatrix} \cdot \\ \vdots \end{pmatrix}$
	$A_{I,I-1}$	$A_{I,I}$	$A_{I,I+1}$	$A_{I,I+2}$	· · : :		01	b_I
	· : ·.	· · : :	· · :::	· · : :	· ··· : ··.	×	: =	:
	$A_{J,J-2}$	A_{J-1}	$A_{J,J}$	$A_{J,J+1}$	· · : :		XJ	b_J
	· ··· : ··.	· · : :	· · : :	· · : :	· ··· : ···)			

Assembled recovery

Assembled recovery: assemble blocks that failed

Assembled recovery

			 : :	$\left \begin{array}{cccc} \cdot & \cdots & \cdot \\ \vdots & \ddots & \end{array}\right $	$\begin{pmatrix} \cdot \\ \cdot \end{pmatrix} \begin{pmatrix} \cdot \\ \cdot \end{pmatrix}$
$A_{I,I-1}$	A _{I,I}	$A_{I,I+1}$	$A_{I,I+2}$	· · : :	x_I b_I
$A_{J,J-2}$	A_{J-1}	$A_{J,J}$	$A_{J,J+1}$	· · : :	\times x_J = b_J
· ··· : ··.	· · : :	· · : :	· · : :	· ···· : ··.	
· ···· (: ···	· · : :	· · : :	· · : :	· · · · · · · · · · · · · · · · · · ·	$\left(\begin{array}{c} \cdot \\ \vdots \end{array}\right) \left(\begin{array}{c} \cdot \\ \vdots \end{array}\right) \left(\begin{array}{c} \cdot \\ \vdots \end{array}\right)$

Experimental set up

Experimental environment

- * Matlab prototype.
- * Simulation of a parallel environment.
- Weibull distribution.
- * Set Mean Time Between Fault (MTBF) of cores.
- Assumption "instantaneous recovery" : study numerical behaviour only.

Single fault

GMRES- Matrix Nasa_nasa290 - P= 34 - (32 faults)

Single fault

BICGSTAB- Matrix Nasa_nasa290 - P= 34 - (9 faults)

HIEPACS

Toward robust numerical linear solvers for large scale simulations

Multiple faults

GMRES- Matrix Nasa_nasa290 - P= 34 - (18 MF)

HIEPACS

Toward robust numerical linear solvers for large scale simulations

Multiple faults

BICGSTAB- Matrix Nasa_nasa290 - P= 34 - (29 MF)

Preliminary experimental results

Impact of the MTBF on the convergence rate

GMRES - LLS-A - Matrix Nasa_nasa290 - P= 34

HIEPACS

Toward robust numerical linear solvers for large scale simulations

Concluding remarks

- * Overhead free when no fault.
- * Reset strategy does not work.
- ★ The parallel recovery might be poor.
- ★ The assembled recovery is more robust, but more costly.
- * Convergence speed increases when fault rate decreases.

Concluding remarks

Concluding remarks

- * Overhead free when no fault.
- ★ Reset strategy does not work.
- ★ The parallel recovery might be poor.
- * The assembled recovery is more robust, but more costly.
- * Convergence speed increases when fault rate decreases.

Perspectives

- ★ Estimation of the recovery costs.
- * Inexact recovery strategies (iterative based).
- * ABFT variant, and possible hybrid.
- ★ Soft error recovery ?

ANR blanche RESCUE project (GRAND-LARGE, ROMA); G8 ECS project.

Concluding remarks

Concluding remarks

- * Overhead free when no fault.
- * Reset strategy does not work.
- ★ The parallel recovery might be poor.
- ★ The assembled recovery is more robust, but more costly.
- * Convergence speed increases when fault rate decreases.

Thank you pour votre attention. Questions ?

Perspectives

- * Estimation of the recovery costs.
- * Inexact recovery strategies (iterative based).
- * ABFT variant, and possible hybrid.
- ★ Soft error recovery ?

ANR blanche RESCUE project (GRAND-LARGE, ROMA); G8 ECS project.