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Solution of sparse linear systems

Sparse linear systems

Linear system

Find x such that: Ax =54
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by * Ais an n x n real matrix.

: * b is a real n-vector.
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Solution of sparse linear systems

Sparse linear systems

Linear system

Find x such that: Ax =15
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Solution of sparse linear systems
Application consumers of linear solvers

Scientific and engieneering application areas
* Accelerator physics
* Chemical process simulations
* Earth and environmental sciences including climate
Fluid flow
Fusion energy
Structural analysis
Structural biology

*

*

*

*
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Solution of sparse linear systems
lterative methods

Principle

Iterative methods for solving linear system .Ax = b, begin with initial
guess for solution and successively improve it until solution is as
accurate as desired.
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Solution of sparse linear systems
lterative methods

Principle

Iterative methods for solving linear system .Ax = b, begin with initial
guess for solution and successively improve it until solution is as
accurate as desired.

Two main classes
* Stationary methods (fixed point schemes: e.g., Jacobi,
Gauss-Seidel, .. .).

» Krylov subspace methods ( CG [Hestenes, Stiefel, NIST, 52],. GMRES
[Saad, Schultz, SISC, 86], Bi-CGStab [vorst, SISC, 92], .. .)
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Faults in HPC Systems
General framework

Faults in the literature
* Soft errors.
* Hard faults.

In this presentation
* Hard fault: invalid core (memory, caches, network connections,
).
= Assumption: when a fault occurs we can start a new process
on another core.
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1. Fixed point schemes and resilience
2. Recovery strategies in Krylov subspace methods
3. Preliminary experimental results

4. Concluding remarks and perspectives
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Mathematical models: fixed point iteration

x* = F(x*) = X1 = F(xb)

Governing ideas to express parallelism

Split the problem in sub-problems, solve the subproblems in
parallel with updates along the interfaces using available data
(no-synchronization).

Chaotic/Asynchronous scheme definition
Let x" € E we consider the series of iterates defined by:

_ [ x it pés(k)
vk eN, Yp e {l,..,m}, 5! —{ F’;,(W) if pesk)

where w = (xzé(k))gzhm , w € E;ci(k) =k — dy(k) accounts for delays
and s(p) defines the relaxation strategy
(e.g. s(k) ={1,....,m}and d; = 0 reduces to block Jacobi).




Convergence theory: contraction based

Theorem [J.c. Miellou, 75; F. Robert, 75]
Let assume that

F is a J-contraction with respect to the fixed point x*, that is
there exists a nonnegative matrix J € R™*" with p(J) < 1 such

1F(x1) = F)l [l = x7lls
: <J. :
1 (em) — F (55) lm [ = X

Then chaotic relaxation scheme defines the iterates x* converge to
x* the fixed point of F.




Fixed point schemes and resilience

Brief overview on chaotic relaxation schemes

* Brief history (non-exhaustive):

» Pioneer paper [D. Chazan and W. Miranker, LAA, 69].

» Convergence analysis: contraction properties [D. Chazan and
W. Miranker, LAA, 69],[F. Robert, LAA, 75], [L. Giraud, P. Spiteri, RAIRO, 91],
order interval [J.C. Miellou, RAIRO, 75], [J.C. Miellou, D. El Baz, P. Spiteri,
MathComp, 98].

Recent book [J. Bahi,S. Contassot-Vivier, R. Couturier, Chapman & Hall,
2007].

» Application areas: PDE [D. Amitai, A. Averbuch, M. Israeli, S. ltzikowitz,
SISC, 98], DDM [A. Frommer, D. Szyld, JCAM, 97] inverse problems [Vv.
Pereyra, ANM, 99], convex optimization [P. Tseng, SIOPT, 91], network
flow [P. Tseng, D. P. Bertsekas, J. N. Tsitsiklis, SICON, 90], etc ...

» Renewed interest with Grid computing (latency/bandwith
network).
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Fixed point schemes and resilience

Asynchronous relaxation v.s. resilience

= By construction, the chaotic relaxation schemes are resilient to
message loss.

» To comply with fault tolerance, the c¢x(p) non decreasing
function of p implies uncoordinated local checkpointing of each
core running on E; (no synchronization).

» Good candidates for fault tolerance: classical fixed point
iterations where convergence analysis is based on contraction
properties

Ax=0>b

the scheme x**! = x* + B(b — AxF), will converge for any x° if
p(I —BA) < 1;
e.g. classical Schwarz alternating method (1870).
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Fixed point schemes and resilience

Schwarz Alternating method

—Au = f in Q7 0 T \}1—‘1 1923
u = 0 on 0. )

o9
Fixed point iteration scheme

_Au’ll+l = f in Ql, and —Aug+l = f in Qz’
Wt = W, onTy, u;" = ", onT.

Convergence analysis based on contraction property of a product
of projectors (also referred to as multiplicative Schwarz) [PL. Lions, 8g].
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Fixed point schemes and resilience

Schwarz Alternating method: 1D illustration

rn Iy

o

2,

» Contraction based analysis, Vug ||u — u¥|| < p¥|lu — u||.
* Matlab demo: visual evidence.
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Fixed point schemes and resilience Krylov subspace methods

Krylov subspace methods

General concept of Krylov subspace methods

Search for the slolution of a linear system of dimension n in a
specific subspace of dimension k& smaller than n. Basically,
¥ =F0, ..., X,
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Fixed point schemes and resilience Krylov subspace methods

Krylov subspace methods

General concept of Krylov subspace methods

Search for the slolution of a linear system of dimension n in a
specific subspace of dimension k& smaller than n. Basically,
¥ =F0, ..., X,

Krylov subspace

LetA € R™" and b € R", let k < n, the space denoted by x(b,A, k)
with k(b, A, k) = Span{b, Ab, ..., A*='b} is referred to as the Krylov
space of dimension k associated with A and b.
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Fixed point schemes and resilience Krylov subspace methods

Parallelization of the iterative methods

Distribution of a sparse matrix
gy 44 M b }
et W oY
;a32a33334::; k b3 }Pl
X7
BN }Pz
At %
L e B,
R LIk
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Fixed point schemes and resilience Krylov subspace methods

Data lost when fault occurs

Two categories of lost data
» Static data:
Matrix A, right-hand side » and possibly preconditioner M.
*» Dynamic data:

all the vectors and small matrices generated by Krylov
solvers during the iterations.
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Fixed point schemes and resilience Krylov subspace methods

Data lost when fault occurs

Assume the core number I fails at the k™ iteration

Before fault
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Fixed point schemes and resilience Krylov subspace methods

Data lost when fault occurs

Assume the core number I fails at the k™ iteration

Before fault After fault
x}k) ?
xgk) xﬁk)
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Fixed point schemes and resilience

Krylov subspace methods

Data lost when fault occurs

Assume the core number I fails at the k™ iteration

Before fault

After fault

(k)
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Fixed point schemes and resilience

Data lost when fault occurs

Krylov subspace methods

Assume the core number I fails at the k™ iteration

Before fault

HIEPACS

After fault
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Fixed point schemes and resilience

Data lost when fault occurs

Krylov subspace methods

Assume the core number I fails at the k™ iteration

Before fault

(k)

After fault

(k)
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Recovery strategies in Krylov subspace methods

Linear System (LS)

Interpolation methods

Linear system

X

X[

Apr+1
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Recovery strategies in Krylov subspace methods

Interpolation methods

Linear System (LS)

Linear system

Arr-1 Arg

Arr+1

X

X[

by

Recovery

*x Appxp = (b — Apj—1xi—1 — Ar141X141)-
* Exact strategy for single fault, if the solver had converged.
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Recovery strategies in Krylov subspace methods

Interpolation methods

Linear System (LS)

Linear system

Arit+1

X

X1

by

Recovery

*x Appxp = (b — Apj—1xi—1 — Ar11X141)-
* Exact strategy for single fault, if the solver had converged.
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Recovery strategies in Krylov subspace methods Interpolation methods

Linear Least Squares (LLS)

Linear least square problem

XI

by

Arr-1 Arr | Ari+

Recovery of x;

* A jx—1 +A xp +A x4 = b.

* bpew = b _A:,Iflxlfl +A:,I+1xl+1-
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Recovery strategies in Krylov subspace methods Interpolation methods

Linear Least Squares (LLS)

Linear least square problem

XI

by

Arr-1 Arr | Ari+

Recovery of x;

* A j_x—1 +A xp +A x4 = b.

* bpew = b _A:,Iflxlfl +A:,I+1xl+1-
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Recovery strategies in Krylov subspace methods Interpolation methods

Linear Least Squares (LLS)

Linear least square problem

XI

by

Arr-1 Arr | Ari+

Recovery of x;

* A jx—1 +A xp +A x4 = b.

* bpew = b _A:,Iflxlfl +A:,I+1xl+1-
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Recovery strategies in Krylov subspace methods Interpolation methods

Linear Least Squares (LLS)

Linear least square problem

Ari— Apg Ar it

XI

by

Recovery of x;

* A jx—1 +A xp +A x4 = b.

* bpew = b —A;,],l)C],l +A:,I+1xl+l-
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Recovery strategies in Krylov subspace methods Interpolation methods

Linear Least Squares (LLS)

Linear least square problem

X]

by

Recovery of x;

x; = argmin||bye,, —

Arr—1 Arg Arry1
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Recovery strategies in Krylov subspace methods

Multiple Faults

More than one fault at the same iteration

Processors I and J failed

Interpolation methods

Arr—1 Arr | Arrs

Arrs2

X1

by

Ajg—2 | Aj—1 | Ay

b}
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XJ

by
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Recovery strategies in Krylov subspace methods

Multiple Faults

More than one fault at the same iteration

Processors I and J failed

Interpolation methods

Ari—1 | A | Ari+

Arrs2

X]
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Ajg—2 | Aj—1 | Ay
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Recovery strategies in Krylov subspace methods

Multiple Faults

More than one fault at the same iteration

Processors I and J failed

Interpolation methods

Arr—1 Arr | Arrs
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by
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Recovery strategies in Krylov subspace methods

Parallel recovery

Parallel recovery: handle each block independently

Recovery of x;

Interpolation methods

Ap 41
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Recovery strategies in Krylov subspace methods

Parallel recovery

Parallel recovery: handle each block independently

Recovery of x;

Interpolation methods
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Recovery strategies in Krylov subspace methods

Assembled recovery

Assembled recovery: assemble blocks that failed

Assembled recovery

Interpolation methods

A1 Arp | Ayt
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Aj it
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Preliminary experimental results
Experimental set up

Experimental environment

* Matlab prototype.

*

Weibull distribution.

*

»*

»*

behaviour only.

Simulation of a parallel environment.

Set Mean Time Between Fault (MTBF) of cores.
Assumption “instantaneous recovery” : study numerical

HIEPACS

Toward robust numerical linear solvers for large scale simulations




Preliminary experimental results

Single fault

GMRES- Matrix Nasa_nasa290 - P= 34 - (32 faults)

GMRES —Matrix: Nasa—nasa 290 (n=1806, nna=63454) — P = 34 - MTBF= 15.2393 Mflop
T T

n0° T T T T T
: : : Aesst

. . . LS- Far
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LLS - A==

e O W | D ¥ 1 U T P u
TR H H RAst (no Eul)

[ksm =511l
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Preliminary experimental results

Single fault

BICGSTAB- Matrix Nasa_nasa290 - P= 34 - ( 9 faults)

, BIZOSTABS ~Matrin: Masa—nasa 230 (n=1806, nne=63454) — P = 34 - MTBF= 15.23%3 Milop
T T

H RAezat
LS~ Far
LLS - Par
L5 - fes 1
LLE - A==
Aet(no wult)[]

10
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0
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Preliminary experimental results

Multiple faults

GMRES- Matrix Nasa_nasa290 - P= 34 - (18 MF )

GMRES —Matrix: Nasa—nasa 290 (n=1806, nnz=63454) — P = 34 — MTEF= 1.4034 Mflop

Ae=st

LS~ Far
LLS - Par
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LLE - A==
Aet (no Bul)

WL

[ksm =511l
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Preliminary experimental results

Multiple faults

BICGSTAB- Matrix Nasa_nasa290 - P= 34 - ( 29 MF )
, BISGSTAB -Matrin: Masanasa230 (n=1806, nnz=63454) - F = 34 - MTBF= 14094 Mflop
10
: ! RAezat
LS- Far
LLS - Par
L b Ls-a= [
] LLS - A==
i '\ Ast {no Bulf) []
w0~
=
- w’
T
2
= -
T s
BT kS
- : : : )
0 1m 2m 00
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Preliminary experimental results

Impact of the MTBF on the convergence rate

GMRES - LLS-A - Matrix Nasa_nasa290 - P= 34
N CGMRES —-LL 54 —Matrin:Waza—nasa230 (n=1806, noz=63454) — F =34
" | ' ' ' ' I —TEF 8 7950
MTEF =53.4991
MTEF =325.3963
| MTEF =1872.1513
! MTEF =12037 7526
Ast (no tault)
B T e P
=
-
T
"
=
BT L A R L NS © OO . . T LY T
0"
]
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Concluding remarks

Concluding remarks

Overhead free when no fault.

Reset strategy does not work.

The parallel recovery might be poor.

The assembled recovery is more robust, but more costly.
* Convergence speed increases when fault rate decreases.

*
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Perspectives

Estimation of the recovery costs.

Inexact recovery strategies (iterative based).
» ABFT variant, and possible hybrid.

Soft error recovery ?
ANR blanche RESCUE project (GRAND-LARGE, ROMA); G8 ECS project.
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Concluding remarks

Concluding remarks

Overhead free when no fault.

Reset strategy does not work.

The parallel recovery might be poor.

The assembled recovery is more robust, but more costly.
» Convergence speed increases when fault rate decreases.

*

*

»*

»*

Thank you pour votre attention. Questions ?

Perspectives

Estimation of the recovery costs.

Inexact recovery strategies (iterative based).
» ABFT variant, and possible hybrid.

Soft error recovery ?
ANR blanche RESCUE project (GRAND-LARGE, ROMA); G8 ECS project.

*

*

*
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