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Solution of sparse linear systems

Sparse linear systems

Linear system
Find x such that: Ax = b

a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

an,1 an,2 · · · an,n

×


x1
x2
...

xn

 =


b1
b2
...

bn

 F A is an n × n real matrix.
F b is a real n-vector.
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Solution of sparse linear systems

Application consumers of linear solvers

Scientific and engieneering application areas
F Accelerator physics
F Chemical process simulations
F Earth and environmental sciences including climate
F Fluid flow
F Fusion energy
F Structural analysis
F Structural biology
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Solution of sparse linear systems

Iterative methods

Principle
Iterative methods for solving linear system Ax = b, begin with initial
guess for solution and successively improve it until solution is as
accurate as desired.

Two main classes
F Stationary methods (fixed point schemes: e.g., Jacobi,

Gauss-Seidel, . . . ).
F Krylov subspace methods ( CG [Hestenes, Stiefel, NIST, 52],. GMRES

[Saad, Schultz, SISC, 86], Bi-CGStab [Vorst, SISC, 92], . . . )
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Faults in HPC Systems

General framework

Faults in the literature
F Soft errors.
F Hard faults.

In this presentation
F Hard fault: invalid core (memory, caches, network connections,

. . . ).
F Assumption: when a fault occurs we can start a new process

on another core.
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Outline

1. Fixed point schemes and resilience

2. Recovery strategies in Krylov subspace methods

3. Preliminary experimental results

4. Concluding remarks and perspectives
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Mathematical models: fixed point iteration

x∗ = F(x∗) ⇒ xk+1 = F(xk)

Governing ideas to express parallelism
Split the problem in sub-problems, solve the subproblems in
parallel with updates along the interfaces using available data
(no-synchronization).

Chaotic/Asynchronous scheme definition
Let x0 ∈ E we consider the series of iterates defined by:

∀k ∈ N, ∀p ∈ {1, ..., m}, xk+1
k =

{
xk

p if p 6∈ s(k)
Fp(w) if p ∈ s(k)

where w = (xc`(k)
` )`=1,m , w ∈ E; c`(k) = k − d`(k) accounts for delays

and s(p) defines the relaxation strategy
( e.g. s(k) ≡ {1, ..., m}and d` ≡ 0 reduces to block Jacobi).



Convergence theory: contraction based

Theorem [J.C. Miellou, 75; F. Robert, 75]

Let assume that
F is a J-contraction with respect to the fixed point x∗, that is
there exists a nonnegative matrix J ∈ Rm×m with ρ(J) < 1 such
that  ‖F(x1)− F(x∗1)‖1

...
‖F(xm)− F(x∗m)‖m

 < J.

 ‖x1 − x∗1‖1
...

‖xm − x∗m‖m

 .

Then chaotic relaxation scheme defines the iterates xk converge to
x∗ the fixed point of F.



Fixed point schemes and resilience

Brief overview on chaotic relaxation schemes

F Brief history (non-exhaustive):
I Pioneer paper [D. Chazan and W. Miranker, LAA, 69].
I Convergence analysis: contraction properties [D. Chazan and

W. Miranker, LAA, 69],[F. Robert, LAA, 75], [L. Giraud, P. Spiteri, RAIRO, 91],
order interval [J.C. Miellou, RAIRO, 75], [J.C. Miellou, D. El Baz, P. Spiteri,
MathComp, 98].
Recent book [J. Bahi,S. Contassot-Vivier, R. Couturier, Chapman & Hall,
2007].

I Application areas: PDE [D. Amitai, A. Averbuch, M. Israeli, S. Itzikowitz,
SISC, 98], DDM [A. Frommer, D. Szyld, JCAM, 97] inverse problems [V.
Pereyra, ANM, 99], convex optimization [P. Tseng, SIOPT, 91], network
flow [P. Tseng, D. P. Bertsekas, J. N. Tsitsiklis, SICON, 90], etc ...

I Renewed interest with Grid computing (latency/bandwith
network).
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Fixed point schemes and resilience

Asynchronous relaxation v.s. resilience

F By construction, the chaotic relaxation schemes are resilient to
message loss.

F To comply with fault tolerance, the ck(p) non decreasing
function of p implies uncoordinated local checkpointing of each
core running on Ei (no synchronization).

F Good candidates for fault tolerance: classical fixed point
iterations where convergence analysis is based on contraction
properties

Ax = b

the scheme xk+1 = xk + B(b − Axk), will converge for any x0 if
ρ(I − BA) < 1;
e.g. classical Schwarz alternating method (1870).
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Fixed point schemes and resilience

Schwarz Alternating method [H.A. Schwarz, 1870]

{
−∆u = f in Ω,

u = 0 on ∂Ω.

Fixed point iteration scheme{
−∆un+1

1 = f in Ω1,

un+1
1 = un

2|Γ1 on Γ1,
and

{
−∆un+1

2 = f in Ω2,

un+1
2 = un+1

1 |Γ2 on Γ1.

Convergence analysis based on contraction property of a product
of projectors (also referred to as multiplicative Schwarz) [P.L. Lions, 88].
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Fixed point schemes and resilience

Schwarz Alternating method: 1D illustration

u
′′

= 0, u(0) = a, u(1) = b

b

a

Γ2 Γ1

Ω1 Ω2

F Contraction based analysis, ∀u0 ‖u − uk‖ ≤ ρk‖u − u0‖.
F Matlab demo: visual evidence.
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Fixed point schemes and resilience Krylov subspace methods

Krylov subspace methods

General concept of Krylov subspace methods
Search for the slolution of a linear system of dimension n in a
specific subspace of dimension k smaller than n. Basically,
xk = F(x0, ..., xk−1).

Krylov subspace
Let A ∈ Rn×n and b ∈ Rn, let k ≤ n, the space denoted by κ(b, A, k)
with κ(b, A, k) = Span{b, Ab, ..., Ak−1b} is referred to as the Krylov
space of dimension k associated with A and b.
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Fixed point schemes and resilience Krylov subspace methods

Parallelization of the iterative methods

Distribution of a sparse matrix
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Fixed point schemes and resilience Krylov subspace methods

Data lost when fault occurs

Two categories of lost data
F Static data:

Matrix A, right-hand side b and possibly preconditioner M.
F Dynamic data:

all the vectors and small matrices generated by Krylov
solvers during the iterations.
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Fixed point schemes and resilience Krylov subspace methods

Data lost when fault occurs

Assume the core number I fails at the kth iteration

Before fault

.

...

x(k)
I

...

x(k)
J
.
...
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...
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.
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Checkpoint

.

...

x(k)
I

...
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J
.
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Data lost when fault occurs
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Before fault

.

...

x(k)
I

...

x(k)
J
.
...



After fault

.

...

?

...

x(k)
J
.
...



Reset

.

...

0(k)
I

...

x(k)
J
.
...
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Fixed point schemes and resilience Krylov subspace methods

Data lost when fault occurs

Assume the core number I fails at the kth iteration

Before fault

.

...

x(k)
I

...

x(k)
J
.
...



After fault

.

...

?

...

x(k)
J
.
...



Interpolation

.

...

x(k)
Inew

...

x(k)
J
.
...
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Recovery strategies in Krylov subspace methods Interpolation methods

Linear System (LS) [J. Langou et al., SISC, 2007]

Linear system
. . . .
...

. . .
AI−1,I

. .

...
...

AI,I−1 AI,I AI,I+1

. .

...
...

AI+1,I

. . .
...

. . . .

×


.
...
xI
...
.

 =


.
...

bI
...
.
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Recovery strategies in Krylov subspace methods Interpolation methods
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Linear system
. . . .
...

. . .
AI−1,I

. .

...
...

AI,I−1 AI,I AI,I+1

. .

...
...

AI+1,I

. . .
...

. . . .

×


.
...
xI
...
.

 =


.
...

bI
...
.



Recovery
F AI,IxI = (bI − AI,I−1xI−1 − AI,I+1xI+1).
F Exact strategy for single fault, if the solver had converged.
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Recovery strategies in Krylov subspace methods Interpolation methods

Linear Least Squares (LLS)

Linear least square problem
. . . .
...

. . .
AI−1,I

. .

...
...

AI,I−1 AI,I AI,I+1

. .

...
...

AI+1,I

. . .
...

. . . .

×


.
...
xI
...
.

 =


.
...

bI
...
.



Recovery of xI

F A:,I−1xI−1 + A:,IxI + A:,I+1xI+1 = b.

F bnew = b − A:,I−1xI−1 + A:,I+1xI+1.
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Recovery of xI

xI = argmin‖bnew −

 AI−1,I
AI,I

AI+1,I

x‖.
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Recovery strategies in Krylov subspace methods Interpolation methods

Multiple Faults

More than one fault at the same iteration

Processors I and J failed

. . . .

...
. . .

. .

...
...

. .

...
...

. .

...
...

. . . .

...
. . .

AI,I−1 AI,I AI,I+1 AI,I+2
. .
...

...
. . . .
...

. . .

. .

...
...

. .

...
...

. .

...
...

. . . .

...
. . .

AJ,J−2 AJ−1 AJ,J AJ,J+1
. .
...

...
. . . .
...

. . .

. .

...
...

. .

...
...

. .

...
...

. . . .

...
. . .



×



.

...

xI

...

xJ

.

...



=



.

...

bI

...

bJ

.

...
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Recovery strategies in Krylov subspace methods Interpolation methods

Parallel recovery

Parallel recovery: handle each block independently

Recovery of xI

. . . .

...
. . .

. .

...
...

. .

...
...

. .

...
...

. . . .

...
. . .
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. .
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. . . .
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. . .

. .
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. .

...
...

. .

...
...

. . . .

...
. . .
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.
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.
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=



.
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...

bJ

.

...
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Recovery strategies in Krylov subspace methods Interpolation methods

Parallel recovery

Parallel recovery: handle each block independently

Recovery of xJ
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Recovery strategies in Krylov subspace methods Interpolation methods

Assembled recovery

Assembled recovery: assemble blocks that failed

Assembled recovery
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Preliminary experimental results

Experimental set up

Experimental environment
F Matlab prototype.
F Simulation of a parallel environment.
F Weibull distribution.
F Set Mean Time Between Fault (MTBF) of cores.
F Assumption “instantaneous recovery” : study numerical

behaviour only.
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Preliminary experimental results

Single fault

GMRES- Matrix Nasa nasa290 - P= 34 - (32 faults)
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Preliminary experimental results

Single fault

BICGSTAB- Matrix Nasa nasa290 - P= 34 - ( 9 faults)
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Preliminary experimental results

Multiple faults

GMRES- Matrix Nasa nasa290 - P= 34 - (18 MF )
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Preliminary experimental results

Multiple faults

BICGSTAB- Matrix Nasa nasa290 - P= 34 - ( 29 MF )
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Preliminary experimental results

Impact of the MTBF on the convergence rate

GMRES - LLS-A - Matrix Nasa nasa290 - P= 34
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Concluding remarks

Concluding remarks
F Overhead free when no fault.
F Reset strategy does not work.
F The parallel recovery might be poor.
F The assembled recovery is more robust, but more costly.
F Convergence speed increases when fault rate decreases.
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Concluding remarks
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F The parallel recovery might be poor.
F The assembled recovery is more robust, but more costly.
F Convergence speed increases when fault rate decreases.

Thank you pour votre attention. Questions ?

Perspectives
F Estimation of the recovery costs.
F Inexact recovery strategies (iterative based).
F ABFT variant, and possible hybrid.
F Soft error recovery ?

ANR blanche RESCUE project (GRAND-LARGE, ROMA); G8 ECS project.
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