A Performance Measurement Approach for Modeling Latency and Bandwidth for Load Balancing

Laércio Lima Pilla

P.O.A. Navaux and J.F. Méhaut

What are we trying to solve here?

PROBLEM CHARACTERIZATION

General idea

Objectives

Objectives

- –Improve performance
- -Optimize resource usage
 - Reduce processor idleness
 - Reduce communication costs
 - Find the best trade-off

–Performance portability

• Different platforms, different applications

- Irregular Applications
 - Load imbalance
 - Complex
 communication
 patterns

Climatology

- Hierarchical Architectures
 - Memory hierarchy
 - Network hierarchy
 - Asymmetric
 communication costs

NUMANode P#4 (32GB)							
L3 (5118KB)							
L2 (512KB)	L2 (512KB)	L2 (512KB)	L2 (512KB)	L2 (512KB)	L2 (512KB)		
L1 (64KB)	L1 (64KB)	L1 (64KB)	L1 (64KB)	L1 (64KB)	L1 (64KB)		
Core P#0	Core P#1	Core P#2	Core P#3	Core P#4	Core P#5		

How can we handle this performance dilemma?

APPROACH

Load balancing

-Combine application information with a machine topology model

- Application information

 Execution time of tasks (load)
 Communication graph
 - -Current task mapping

- Machine topology model
 - -Topology (component sharing)
 - -Actual distances between components
 - Latency
 - -Time to start moving data
 - Bandwidth
 - -Time moving data around
 - -Obtained in feasible time

- Machine topology model
 - -Topology (component sharing)

-Benchmarked communication costs

NUMANode P#4 (32GB)								
L3 (5118KB)								
L2 (512KB)	L2 (512KB)	L2 (512KB)	L2 (512KB)	L2 (512KB)	L2 (512KB)			
L1(64KB)	L1 (64KB)							
Core P#0	Core P#1	Core P#2	Core P#3	Core P#4	Core P#5			

Benchmarked information

-Memory

- Latency: lat_mem_rd (LMbench)
- Bandwidth: bw_mem (LMbench)
- -Network
 - Latency and bw: MPI ping-pong (coNCePTuaL) + linear regression

hwloc: Portable Hardware Locality

- -Machine topology
- <u>http://www.open-mpi.org/projects/hwloc/</u>
- HieSchella project: extended model
 - -Benchmark the memory hierarchy
 - https://forge.imag.fr/projects/hieschella/

Topology benchmarking

Local memory latency on NUMA48

How do we glue those things together?

LOAD BALANCERS

• Charm++

-UIUC

- -Parallel programming language
- -Load balancing framework
- <u>http://charm.cs.uiuc.edu/</u>

NucoLB

-Clusters composed of NUMA nodes-NUCO factor

• HwTopoLB

-Multicore machines

-Proved asymptotically optimal

• HwTopoLB

-Asymptotically optimal algorithm

- Choose most loaded core with probability α
- Choose heaviest task with probability β
- Choose a mapping according to a Gibbs distribution over the set of predicted makespans

The Gibbs distribution with temperature T > 0 over the set of real values $v_1...v_n$ is the probability vector on $\{1...n\}$:

$$\left(\frac{\exp(-v_j/T)}{\sum_{j=1}^n \exp(-v_j/T)}\right)_{i=1\dots n}$$

• HwTopoLB

-Predicted makespans

- Compute the load of all cores for each mapping
- Take the **slowest core**
- Tasks' loads change depending where their neighbors are
 - Different latencies and bandwidths
- Communication cost
 - #messages*latency + #bytes/bandwidth
 - Depend on the first shared level of the topology

• HwTopoLB

–Performance improvement of 24% in average over other load balancers

-Asymptotically Optimal Load Balancing for Hierarchical Multi-Core Systems. To be published on ICPADS 2012.

-Working on an extend journal version

• Performance example

-Initial results on a cluster

- –LeanMD on 3 Cray XE6 nodes
 - Charm++ v6.4.0 mpi-crayxt-smt
 - 31 processing threads, 1 communication thread
 - 3024 computes
 - Cell array dimension: 6x6x6 of size 16x16x16
 - 1000 iterations, 10 load balancing calls
 - 20 runs

Performance Example

Initial results in a cluster

What can we take from this?

CLOSING

Closing

- Balance work distribution and affinity
- Reduce idleness and comm. costs
 - Irregular applications and hierarchical machines

Closing

- Balance work distribution and affinity
- Reduce idleness and comm. costs
 - Irregular applications and hierarchical machines
- Load balancing

Combine application information with a machine topology model

Closing

Future work

• Future work

- –Improve network modeling
- Evaluate performance on clusters
- Collaboration ideas
 - -Charm++ with hwloc
 - -Charm++ over low power proc. (ARM)
 - Hardware counters information for LB
 Distributed LB algorithms

A Performance Measurement Approach for Modeling Latency and Bandwidth for Load Balancing

Laércio Lima Pilla

laercio.pilla@inf.ufrgs.br pilla@imag.fr

P.O.A. Navaux and J.F. Méhaut

