Asynchronous Checkpointing

Scalable In-memory Checkpoint with Automatic

Restart on Failures

Xiang Ni, Esteban Meneses, Laxmikant V. Kalé

Parallel Programming Laboratory
University of lllinois at Urbana-Champaign

November, 2012
8th Joint Lab Workshop



Asynchronous Checkpointing

Problem

1e+06 T T T T
Exascale MTBF/Socket:10 years
\ 10 - 5 years s 1
ERE 2 years
%) L aammmg, 5 . FE—
§ 100000 . R 1year
S < 2l T,
o
0 . =S [
k] 10000 f  =essmms < 1r
3 g os
g w
= 1000 | [
= ot
1994 1998 2002 2006 2010 2014 2018 10000 20000 100000 200000
Year Number of Sockets

m Increasing number of sockets
m Sequoia 98304, predicted Exascale 200000
m More frequent failures

m MTBF of the Exacale machine will be 720 seconds if MTBF
per socket remains at 5 years.



Asynchronous Checkpointing

Our Philosophy

m Runtime system support for fault tolerance
m Checkpoint Restart
m Message Logging
m Proactive Migration



Asynchronous Checkpointing

Our Philosophy

m Runtime system support for fault tolerance
m Keep progress rate despite of failures

m Optimize for the common case

® Minimize performance overhead

—> No Fault Tolerance Support
——3 Fault Tolerance Support

A
T B e e PP

i
i Checkpoint

« i

2 i

g Slowdown i

) i

e i

o
| AN
H Recovery
i
i

Failure Time



Asynchronous Checkpointing

Optimize for the common case

m Failures rarely bring down more than one node

m In Jaguar (now Titan, top 1 supercomputer), 92.27% of
failures are individual node crashes

Ahbbh bbb

0.1
System 12 System 18 System 19 System 20 System 21 MPP2 Tsubame Mercury

Frequency (%)

1 node = 2 nodes mmmm 3 nodes = 4 nodes mmmm >4 nodes 3



Asynchronous Checkpointing

Minimize performance overhead

m Decrease interference with
application

m Parallel recovery

m Automatic restart:

m Failure detection in runtime
system
m Immediate rollback-recovery

m Faster checkpoint



Asynchronous Checkpointing

Minimize performance overhead

m Decrease interference with
application

40000
35000
30000
25000
20000

m Failure detection in runtime ::ZEEJ
system s000
m Immediate rollback-recovery ° o0 %0 a0

Number of cores require

m Parallel recovery

m Automatic restart:

Average waiting time(s)

m Faster checkpoint



Asynchronous Checkpointing

Checkpoint and Restart for Leanmd

LeanMD Checkpoint Time on BlueGene/Q LeanMD Restart Time on BlueGene/Q
60 160
2.8 million =—e— 140 2.8 million —e—
50 + 1.6 million == > 1.6 million - o
120
40 \
'ET — ’g 100
5 30 s
= =4
20 fr
10 20
0
2048 4096 8192 16384 32768 2048 4096 8192 16384 32768

Number of processes Number of processes



Asynchronous Checkpointing

Limitation of Checkpoint/Restart

Relative Increase

60
50
40
30
20
10

il Memory Size —— ' ' G

| Network Bandwidth —»— S

_2 “0“ o -
§ »’/' g

-2 g
___.o"' ______ x

| e R i |
5.2 1 1 1 1

2008 2010 2012 2014 2016 2018 2020

Year

m Increase in memory size per year: 41%

m Increase in network bandwidth per year: 26%

35



Asynchronous Checkpointing

Outline

Checkpoint/Restart
m Synchronous
m Asynchronous
m Model

Minimize checkpoint interference to application
m Priority sending queue
m Opportunistic vs. random scheduling

Relieve memory pressure with SSD
Experiments

Conclusion



Asynchronous Checkpointing
L Checkpoint/Restart

Outline

Checkpoint/Restart
m Synchronous
m Asynchronous
m Model

10/35



Asynchronous Checkpointing
L Checkpoint/Restart

LSynchronous

Synchronous Checkpoint

barrier checkpoint done

Thlocking | Checkpoint

I
NODE]! () © X ‘ interval
| X | Sblocking | checkpoint
No“Ezi (B) ©) | | overhead

Tblocking

6 blocking

m Each node has a buddy node to store the checkpoint.

m Resume computation after all the nodes have successfully
saved the checkpoints in their buddy nodes.

11/35



Asynchronous Checkpointing

L Checkpoint/Restart

L Asynchronous

Solution: Asynchronous Checkpoint

local checkpoint remote checkpoint

barrier
done done

checkpoint interval

local checkpoint overhead
overlap period

remote checkpoint interference

€ T >N

m Resume computation as soon as each node stores its own
checkpoint (local checkpoint).

m Interleave the transmission of the checkpoint to buddy with
application execution (remote checkpoint).

12/35



Asynchronous Checkpointing
L Checkpoint/Restart

L Asynchronous

Drawback

m Probability to roll back to the previous checkpoint when
checkpointing overlaps with application

m Interference of the remote checkpoint to application

13 /35



Asynchronous Checkpointing

- Checkpoint/Restart

L Model

T = Ts + 7_Iocal + Toverhead + 7—rework + Trestart

barrier local checkpoint remote checkpoint
e “\ m T, Workload
NODE 1, ® - . .
I B Tjocas Time for local checkpoint
e Odi @
A F Toverheaa Interference of global
Y T checkpoint
B Trenork Lost work for application
B Trestart Time to restart application

14 /35



Asynchronous Checkpointing
L Checkpoint/Restart
L Model

Local Checkpoint Overhead

barrier local checkpoint remote checkpoint .
done “ m Local checkpoint Tjocay
”""E'il ' m Checkpoint interval 7
o @ @ m Work finished in one checkpoint
5 o ! 12 interval 7 — ¢
T m Number of checkpoints TEW

15/35



Asynchronous Checkpointing
L Checkpoint/Restart
L Model

Local Checkpoint Overhead

barrier :;lc:l checkpoint remote checkpoint

lone done,

| m Local checkpoint Tjoca

NODE 14

0 ' m Checkpoint interval 7
e ol @ - m Work finished in one checkpoint
P— prd .
s ] . 7 interval 7 — ¢

T

m Number of checkpoints —L=

m Local checkpoint overhe;a for
one checkpoint §

g
B Tiocal = 5<p6

T—

15 /35



Asynchronous Checkpointing
L Checkpoint/Restart
L Model

Remote Checkpoint Interference

"I :'*FZMM ‘r’f’mlwmwm m Interference of remote checkpoint
NO"E'i to application Toyerhead
~ooe 2+ [T > . m Interference for one checkpoint ¢
!QFBF—T—D! 7 B Toverhead = TEDSD
T

16 /35



Asynchronous Checkpointing
L Checkpoint/Restart
L Model

Rework and Restart Time

remote checkpoint done
. Failurel  Failure2

roll ) :
NODE T \ T - T
et e
[} o

m Rework time Tirenork
= Number of failures 5757



Asynchronous Checkpointing
L Checkpoint/Restart
L Model

Rework and Restart Time

remote checkpoint done
. Failurel  Failure2

roll

NODE T \ T - T

m Rework time Trework

: T
[ Nu_mber of failures ¢
m Failure 1: at least 6 — ¢



Asynchronous Checkpointing
L Checkpoint/Restart
L Model

Rework and Restart Time

remote checkpoint done
. Failurel  Failure2

roll

NODE T \ T - T

m Rework time Tirenork
m Number of failures ﬁ
m Failure 1: at least 6 — ¢
m Failure 2: at most 0 —p + 7+ 4



Asynchronous Checkpointing
L Checkpoint/Restart
L Model

Rework and Restart Time

remote checkpoint done
. Failurel  Failure2

roll

NODE T \ T - T

m Rework time Tepork
: T
[ Nu_mber of failures ¢
Failure 1: at least 8 — ¢
Failure 2: at most 0 — o+ 7+ 6
T rework = M'ITBF(TT-HS +0—¢)




Asynchronous Checkpointing
L Checkpoint/Restart
L Model

Rework and Restart Time

remote checkpoint done
. Failurel  Failure2

roll

NODE T \ T - T

m Rework time Tepork
m Number of failures ﬁ
m Failure 1: at least 6 — ¢
m Failure 2: at most 0 —p + 749
" Trework = M'ITBF(TT-HS +0—9)

m Restart time T estart

m Restart time for one failure R

— T
B Trestart = WR

17/35



Asynchronous Checkpointing

- Checkpoint/Restart

L Model

Ts Ts T T+6
T=T. ) R+ — 46—
A +T—¢@+MTBF< T T 90)
Thiockin Thlocking + Oblockin
Thiocking = Tet——>—Oplocking + 2228 (R g 5
blocking S+Tblocking block ng+ MTBE + 2
Thiocking — T
Benefit — —Plocking — ©

blocking

18/35



Asynchronous Checkpointing

LMinimize checkpoint interference to application

Outline

Minimize checkpoint interference to application
m Priority sending queue
m Opportunistic vs. random scheduling

19/35



Asynchronous Checkpointing

LMinimize checkpoint interference to application

Charm-++ Runtime System

m Object based over-decomposition
m Asynchronous method invocation
m Migratable-object runtime system
m Worker thread & Communication thread

20 /35



Asynchronous Checkpointing
LMinimize checkpoint interference to application

L Priority sending queue

Minimize Checkpoint Interference

reveve e | O O O

computation

oo N EEEE
EE =N

computation

m Separate checkpoint message queue

m Send checkpoint message only when there is no application
message ready to be sent

m Better overlap with computation

21/35



Asynchronous Checkpointing

L Minimize checkpoint interference to application

LOpportunistic vs. random scheduling

10 Il Il Il Il — Il
interference ——| 7 T =
benefit ----x--- i
8 . "‘x/ o L
- 4] L
g - -
o 67 T 5 I
o o 3
(0] ;
T 4 L o L
£ £ I
2 4 * L
O ': T T T T T T T T
6 7 8 9 10 11 12 13 14 15
Overlap(s)

12
11
10

N WS OO N

m Use lottery scheduling to change the overlap period

m Probabilistic deciding whether application or checkpoint queue

can send message

Benefit(%)



Asynchronous Checkpointing

L Relieve memory pressure with SSD

Outline

Relieve memory pressure with SSD

23 /35



Asynchronous Checkpointing

L Relieve memory pressure with SSD

Choose Data to Store in SSD

m Solid State Drive: becoming increasingly available on
individual nodes

m Full SSD strategy

m Half SSD strategy

m Only store remote checkpoint in SSD
m Faster checkpoint and restart

24 /35



Asynchronous Checkpointing
L Relieve memory pressure with SSD

Asynchronous Checkpointing to SSD with 10 thread

worker worker worker worker 10
thread thread thread thread thread

I I I I SSD
request

write

i —)

SSD

Checkpoint
finishes

m |0 threads

m Write checkpoint to/Read

checkpoint from SSD
When receive request
from worker thread.

m Notify worker thread
When SSD is done with
certain request.

25 /35



Asynchronous Checkpointing

L Experiments

Outline

Experiments

26 /35



Asynchronous Checkpointing

L Experiments

Machine

Trestles @ SDSC
324 32-core nodes
120 GB flash memory (SSD) per node

100 Teraflops
Applications

m Wave2D: stencil computation
m ChaNGa: N-Body simulation

27 /35



Asynchronous Checkpointing

L Experiments

Single Checkpoint Overhead

70

blocking checkpoint s
semi-blocking checkpoint ===
60 1

Checkpoint Overhead(s)

128 256 512 1024
Number of Cores

Wave2D Weak Scale

Checkpoint Overhead(s)

40

35

bloéking checkpé\nl —
semi-blocking checkpoint === 1

128 256 512 1024
Number of Cores

ChaNGa Strong Scale

m Semi-Blocking checkpoint reduces checkpoint overhead

significantly.

28 /35



Asynchronous Checkpointing

L Experiments

Semi-Blocking Benefit

30 T 30
25 25
20 20 E\
g f & g »\\E’\E\
£ 15 s 15 =~
2 2 :\’
g — 8 —
i\< 3
4
5 5
0 0
128 256 512 1024 128 256 512 1024
Number of Cores Number of Cores
MTBF:300s —H&— 900s =~ 1500s MTBF:300s —H&— 900s =~ 1500s
600s —0— 1200s =t 1800s —©— 600s —@— 1200s —t— 1800s —©—

Wave2D Weak Scale ChaNGa Strong Scale

m Semi-Blocking checkpoint reduces the total execution time up
to 22%.

29 /35



Asynchronous Checkpointing

L Experiments

Checkpoint/Restart on SSD

30 - T
half-aio
full-aio smmmm
half-sio  mem—"

25 full-sio mem—

Timing Penalty(s)
Restart Time(s)

0.45 1.34 223
Checkpoint Size/Node(GB)

m Half SSD strategy with asynchronous
reduces the timing penalty for
checkpointing to SSD

45

40t

35

30

25

20

m Restart from SSD does not incur extra

overhead

in-memory —
half-aio smmmm
full-aio  se—

0.45

1.34 223
Checkpoint Size/Node(GB)

aio
sio

asynchronous 10
synchronous 10

30/35



Asynchronous Checkpointing

L Conclusion

Outline

Conclusion

31/35



Asynchronous Checkpointing

L Conclusion

Conclusion

m Asynchronous checkpointing can help hide the checkpoint
overhead.

m SSD can be used in checkpointing to relieve memory pressure
with little overhead.

32/35



Asynchronous Checkpointing

L Conclusion

Future Work

m Log analysis is very helpful

m Failure distributions
m Cluster usage

m Failure prediction with different fault tolerate actions

m Proactive migration
m Proactive checkpoint

m Multilevel checkpointing

33/35



Asynchronous Checkpointing

L Conclusion

Thank you!

34 /35



Asynchronous Checkpointing

L Conclusion

Increasing Checkpoint Overhead

m Checkpoint size:
16MB per core

m Checkpoint data is
sent to another
node across the
network

Checkpoint Overhead (s)

0.1

2 4 8 16 32
Number of Cores per Node

35/35



	Checkpoint/Restart
	Synchronous
	Asynchronous
	Model

	Minimize checkpoint interference to application
	Priority sending queue
	Opportunistic vs. random scheduling

	Relieve memory pressure with SSD
	Experiments
	Conclusion

