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Problem
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m Increasing number of sockets
m Sequoia 98304, predicted Exascale 200000
m More frequent failures

m MTBF of the Exacale machine will be 720 seconds if MTBF
per socket remains at 5 years.
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Our Philosophy

m Runtime system support for fault tolerance
m Checkpoint Restart
m Message Logging
m Proactive Migration
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Our Philosophy

m Runtime system support for fault tolerance
m Keep progress rate despite of failures

m Optimize for the common case

® Minimize performance overhead
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Optimize for the common case

m Failures rarely bring down more than one node

m In Jaguar (now Titan, top 1 supercomputer), 92.27% of
failures are individual node crashes

Ahbbh bbb

0.1
System 12 System 18 System 19 System 20 System 21 MPP2 Tsubame Mercury

Frequency (%)

1 node = 2 nodes mmmm 3 nodes = 4 nodes mmmm >4 nodes 3
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Minimize performance overhead

m Decrease interference with
application

m Parallel recovery

m Automatic restart:

m Failure detection in runtime
system
m Immediate rollback-recovery

m Faster checkpoint
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Minimize performance overhead

m Decrease interference with
application
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m Parallel recovery

m Automatic restart:

Average waiting time(s)

m Faster checkpoint
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Checkpoint and Restart for Leanmd
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Limitation of Checkpoint/Restart

Relative Increase
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m Increase in memory size per year: 41%

m Increase in network bandwidth per year: 26%
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Outline

Checkpoint/Restart
m Synchronous
m Asynchronous
m Model

Minimize checkpoint interference to application
m Priority sending queue
m Opportunistic vs. random scheduling

Relieve memory pressure with SSD
Experiments

Conclusion



Asynchronous Checkpointing
L Checkpoint/Restart

Outline

Checkpoint/Restart
m Synchronous
m Asynchronous
m Model
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L Checkpoint/Restart

LSynchronous

Synchronous Checkpoint

barrier checkpoint done

Thlocking | Checkpoint

I
NODE]! () © X ‘ interval
| X | Sblocking | checkpoint
No“Ezi (B) ©) | | overhead

Tblocking

6 blocking

m Each node has a buddy node to store the checkpoint.

m Resume computation after all the nodes have successfully
saved the checkpoints in their buddy nodes.
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L Checkpoint/Restart

L Asynchronous

Solution: Asynchronous Checkpoint

local checkpoint remote checkpoint

barrier
done done

checkpoint interval

local checkpoint overhead
overlap period

remote checkpoint interference

€ T >N

m Resume computation as soon as each node stores its own
checkpoint (local checkpoint).

m Interleave the transmission of the checkpoint to buddy with
application execution (remote checkpoint).
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L Checkpoint/Restart

L Asynchronous

Drawback

m Probability to roll back to the previous checkpoint when
checkpointing overlaps with application

m Interference of the remote checkpoint to application
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- Checkpoint/Restart

L Model

T = Ts + 7_Iocal + Toverhead + 7—rework + Trestart

barrier local checkpoint remote checkpoint
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B Trestart Time to restart application
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L Checkpoint/Restart
L Model

Local Checkpoint Overhead

barrier local checkpoint remote checkpoint .
done “ m Local checkpoint Tjocay
”""E'il ' m Checkpoint interval 7
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L Checkpoint/Restart
L Model

Local Checkpoint Overhead

barrier :;lc:l checkpoint remote checkpoint

lone done,

| m Local checkpoint Tjoca
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L Checkpoint/Restart
L Model

Remote Checkpoint Interference
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L Checkpoint/Restart
L Model

Rework and Restart Time

remote checkpoint done
. Failurel  Failure2

roll ) :
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L Checkpoint/Restart
L Model

Rework and Restart Time

remote checkpoint done
. Failurel  Failure2

roll

NODE T \ T - T

m Rework time Trework

: T
[ Nu_mber of failures ¢
m Failure 1: at least 6 — ¢
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L Checkpoint/Restart
L Model

Rework and Restart Time

remote checkpoint done
. Failurel  Failure2

roll

NODE T \ T - T

m Rework time Tirenork
m Number of failures ﬁ
m Failure 1: at least 6 — ¢
m Failure 2: at most 0 —p + 7+ 4
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L Checkpoint/Restart
L Model

Rework and Restart Time

remote checkpoint done
. Failurel  Failure2

roll
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m Rework time Tepork
: T
[ Nu_mber of failures ¢
Failure 1: at least 8 — ¢
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L Checkpoint/Restart
L Model

Rework and Restart Time

remote checkpoint done
. Failurel  Failure2

roll

NODE T \ T - T

m Rework time Tepork
m Number of failures ﬁ
m Failure 1: at least 6 — ¢
m Failure 2: at most 0 —p + 749
" Trework = M'ITBF(TT-HS +0—9)

m Restart time T estart

m Restart time for one failure R

— T
B Trestart = WR
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- Checkpoint/Restart

L Model
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LMinimize checkpoint interference to application

Outline

Minimize checkpoint interference to application
m Priority sending queue
m Opportunistic vs. random scheduling
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LMinimize checkpoint interference to application

Charm-++ Runtime System

m Object based over-decomposition
m Asynchronous method invocation
m Migratable-object runtime system
m Worker thread & Communication thread
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LMinimize checkpoint interference to application

L Priority sending queue

Minimize Checkpoint Interference

reveve e | O O O

computation
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computation

m Separate checkpoint message queue

m Send checkpoint message only when there is no application
message ready to be sent

m Better overlap with computation
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L Minimize checkpoint interference to application

LOpportunistic vs. random scheduling
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m Use lottery scheduling to change the overlap period
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L Relieve memory pressure with SSD

Outline

Relieve memory pressure with SSD
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L Relieve memory pressure with SSD

Choose Data to Store in SSD

m Solid State Drive: becoming increasingly available on
individual nodes

m Full SSD strategy

m Half SSD strategy

m Only store remote checkpoint in SSD
m Faster checkpoint and restart
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L Relieve memory pressure with SSD

Asynchronous Checkpointing to SSD with 10 thread

worker worker worker worker 10
thread thread thread thread thread

I I I I SSD
request

write

i —)

SSD

Checkpoint
finishes

m |0 threads

m Write checkpoint to/Read

checkpoint from SSD
When receive request
from worker thread.

m Notify worker thread
When SSD is done with
certain request.
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L Experiments

Outline

Experiments
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L Experiments

Machine

Trestles @ SDSC
324 32-core nodes
120 GB flash memory (SSD) per node

100 Teraflops
Applications

m Wave2D: stencil computation
m ChaNGa: N-Body simulation
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L Experiments

Single Checkpoint Overhead
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m Semi-Blocking checkpoint reduces checkpoint overhead

significantly.
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L Experiments

Semi-Blocking Benefit
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m Semi-Blocking checkpoint reduces the total execution time up
to 22%.

29 /35



Asynchronous Checkpointing

L Experiments

Checkpoint/Restart on SSD
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m Half SSD strategy with asynchronous
reduces the timing penalty for
checkpointing to SSD
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L Conclusion

Outline

Conclusion
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L Conclusion

Conclusion

m Asynchronous checkpointing can help hide the checkpoint
overhead.

m SSD can be used in checkpointing to relieve memory pressure
with little overhead.
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L Conclusion

Future Work

m Log analysis is very helpful

m Failure distributions
m Cluster usage

m Failure prediction with different fault tolerate actions

m Proactive migration
m Proactive checkpoint

m Multilevel checkpointing
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L Conclusion

Thank you!
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L Conclusion

Increasing Checkpoint Overhead

m Checkpoint size:
16MB per core

m Checkpoint data is
sent to another
node across the
network

Checkpoint Overhead (s)
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