
Asynchronous Checkpointing

Scalable In-memory Checkpoint with Automatic
Restart on Failures

Xiang Ni, Esteban Meneses, Laxmikant V. Kalé

Parallel Programming Laboratory
University of Illinois at Urbana-Champaign

November, 2012
8th Joint Lab Workshop

1 / 35

Asynchronous Checkpointing

Problem

 100

 1000

 10000

 100000

 1e+06

 1994 1998 2002 2006 2010 2014 2018

N
um

be
r o

f S
oc

ke
ts

Year

Exascale

 0.1

 0.5
 1
 2

 10

 10000 20000 100000 200000

M
TB

F
M

ac
hi

ne
 (h

ou
rs

)

Number of Sockets

MTBF/Socket:10 years
5 years
2 years
1 year

Increasing number of sockets

Sequoia 98304, predicted Exascale 200000

More frequent failures

MTBF of the Exacale machine will be 720 seconds if MTBF
per socket remains at 5 years.

2 / 35

Asynchronous Checkpointing

Our Philosophy

Runtime system support for fault tolerance

Checkpoint Restart
Message Logging
Proactive Migration

3 / 35

Asynchronous Checkpointing

Our Philosophy

Runtime system support for fault tolerance

Keep progress rate despite of failures

Optimize for the common case
Minimize performance overhead

Time

P
ro

gr
es

s

Fault Tolerance Support

No Fault Tolerance Support

100%

Slowdown

Checkpoint

Failure

Recovery

P
o
w

er

TimeFailure

Checkpoint Checkpoint
Recovery

4 / 35

Asynchronous Checkpointing

Optimize for the common case

Failures rarely bring down more than one node

In Jaguar (now Titan, top 1 supercomputer), 92.27% of
failures are individual node crashes

 0.1

 1

 10

 100

System 12 System 18 System 19 System 20 System 21 MPP2 Tsubame Mercury

Fr
eq

ue
nc

y
(%

)

1 node 2 nodes 3 nodes 4 nodes > 4 nodes

5 / 35

Asynchronous Checkpointing

Minimize performance overhead

Decrease interference with
application

Parallel recovery

Automatic restart:

Failure detection in runtime
system
Immediate rollback-recovery

Faster checkpoint

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 120 240 360 480

Av
er

ag
e

w
ai

tin
g

tim
e(

s)

Number of cores require

6 / 35

Asynchronous Checkpointing

Minimize performance overhead

Decrease interference with
application

Parallel recovery

Automatic restart:

Failure detection in runtime
system
Immediate rollback-recovery

Faster checkpoint

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 120 240 360 480

Av
er

ag
e

w
ai

tin
g

tim
e(

s)

Number of cores require

6 / 35

Asynchronous Checkpointing

Checkpoint and Restart for Leanmd

 0

 10

 20

 30

 40

 50

 60

 2048 4096 8192 16384 32768

T
im

e(
m

s)

Number of processes

LeanMD Checkpoint Time on BlueGene/Q

2.8 million
1.6 million

 0

 20

 40

 60

 80

 100

 120

 140

 160

 2048 4096 8192 16384 32768

T
im

e(
m

s)

Number of processes

LeanMD Restart Time on BlueGene/Q

2.8 million
1.6 million

7 / 35

Asynchronous Checkpointing

Limitation of Checkpoint/Restart

Increase in memory size per year: 41%

Increase in network bandwidth per year: 26%

8 / 35

Asynchronous Checkpointing

Outline

1 Checkpoint/Restart
Synchronous
Asynchronous
Model

2 Minimize checkpoint interference to application
Priority sending queue
Opportunistic vs. random scheduling

3 Relieve memory pressure with SSD

4 Experiments

5 Conclusion

9 / 35

Asynchronous Checkpointing

Checkpoint/Restart

Outline

1 Checkpoint/Restart
Synchronous
Asynchronous
Model

2 Minimize checkpoint interference to application
Priority sending queue
Opportunistic vs. random scheduling

3 Relieve memory pressure with SSD

4 Experiments

5 Conclusion

10 / 35

Asynchronous Checkpointing

Checkpoint/Restart

Synchronous

Synchronous Checkpoint

NODE 1

NODE 2

barrier checkpoint done

𝜏blocking

βα

β α

𝛿blocking

τblocking checkpoint
interval

δblocking checkpoint
overhead

Each node has a buddy node to store the checkpoint.

Resume computation after all the nodes have successfully
saved the checkpoints in their buddy nodes.

11 / 35

Asynchronous Checkpointing

Checkpoint/Restart

Asynchronous

Solution: Asynchronous Checkpoint

NODE 1

NODE 2

barrier local checkpoint
done

remote checkpoint
done

𝛳

βα

β

𝛿 φ
𝜏

α

τ checkpoint interval
δ local checkpoint overhead
θ overlap period
ϕ remote checkpoint interference

Resume computation as soon as each node stores its own
checkpoint (local checkpoint).

Interleave the transmission of the checkpoint to buddy with
application execution (remote checkpoint).

12 / 35

Asynchronous Checkpointing

Checkpoint/Restart

Asynchronous

Drawback

Probability to roll back to the previous checkpoint when
checkpointing overlaps with application

Interference of the remote checkpoint to application

13 / 35

Asynchronous Checkpointing

Checkpoint/Restart

Model

T = Ts + Tlocal + Toverhead + Trework + Trestart

NODE 1

NODE 2

barrier local checkpoint
done

remote checkpoint
done

𝛳

βα

β

𝛿 φ
𝜏

α

Ts Workload

Tlocal Time for local checkpoint

Toverhead Interference of global
checkpoint

Trework Lost work for application

Trestart Time to restart application

14 / 35

Asynchronous Checkpointing

Checkpoint/Restart

Model

Local Checkpoint Overhead

NODE 1

NODE 2

barrier local checkpoint
done

remote checkpoint
done

𝛳

βα

β

𝛿 φ
𝜏

α

Local checkpoint Tlocal

Checkpoint interval τ
Work finished in one checkpoint
interval τ − ϕ
Number of checkpoints Ts

τ−ϕ

Local checkpoint overhead for
one checkpoint δ
Tlocal = Ts

τ−ϕδ

15 / 35

Asynchronous Checkpointing

Checkpoint/Restart

Model

Local Checkpoint Overhead

NODE 1

NODE 2

barrier local checkpoint
done

remote checkpoint
done

𝛳

βα

β

𝛿 φ
𝜏

α

Local checkpoint Tlocal

Checkpoint interval τ
Work finished in one checkpoint
interval τ − ϕ
Number of checkpoints Ts

τ−ϕ
Local checkpoint overhead for
one checkpoint δ
Tlocal = Ts

τ−ϕδ

15 / 35

Asynchronous Checkpointing

Checkpoint/Restart

Model

Remote Checkpoint Interference

NODE 1

NODE 2

barrier local checkpoint
done

remote checkpoint
done

𝛳

βα

β

𝛿 φ
𝜏

α

Interference of remote checkpoint
to application Toverhead

Interference for one checkpoint ϕ
Toverhead = Ts

τ−ϕϕ

16 / 35

Asynchronous Checkpointing

Checkpoint/Restart

Model

Rework and Restart Time

NODE 𝝳𝝉

Failure1

𝝉 𝝳

𝛳

𝝉

rollback

𝛳

Failure2
remote checkpoint done

Rework time Trework

Number of failures T
MTBF

Failure 1: at least θ − ϕ
Failure 2: at most θ − ϕ+ τ + δ
Trework = T

MTBF (τ+δ2 + θ − ϕ)

Restart time Trestart

Restart time for one failure R
Trestart = T

MTBF R

17 / 35

Asynchronous Checkpointing

Checkpoint/Restart

Model

Rework and Restart Time

NODE 𝝳𝝉

Failure1

𝝉 𝝳

𝛳

𝝉

rollback

𝛳

Failure2
remote checkpoint done

Rework time Trework

Number of failures T
MTBF

Failure 1: at least θ − ϕ

Failure 2: at most θ − ϕ+ τ + δ
Trework = T

MTBF (τ+δ2 + θ − ϕ)

Restart time Trestart

Restart time for one failure R
Trestart = T

MTBF R

17 / 35

Asynchronous Checkpointing

Checkpoint/Restart

Model

Rework and Restart Time

NODE 𝝳𝝉

Failure1

𝝉 𝝳

𝛳

𝝉

rollback

𝛳

Failure2
remote checkpoint done

Rework time Trework

Number of failures T
MTBF

Failure 1: at least θ − ϕ
Failure 2: at most θ − ϕ+ τ + δ

Trework = T
MTBF (τ+δ2 + θ − ϕ)

Restart time Trestart

Restart time for one failure R
Trestart = T

MTBF R

17 / 35

Asynchronous Checkpointing

Checkpoint/Restart

Model

Rework and Restart Time

NODE 𝝳𝝉

Failure1

𝝉 𝝳

𝛳

𝝉

rollback

𝛳

Failure2
remote checkpoint done

Rework time Trework

Number of failures T
MTBF

Failure 1: at least θ − ϕ
Failure 2: at most θ − ϕ+ τ + δ
Trework = T

MTBF (τ+δ2 + θ − ϕ)

Restart time Trestart

Restart time for one failure R
Trestart = T

MTBF R

17 / 35

Asynchronous Checkpointing

Checkpoint/Restart

Model

Rework and Restart Time

NODE 𝝳𝝉

Failure1

𝝉 𝝳

𝛳

𝝉

rollback

𝛳

Failure2
remote checkpoint done

Rework time Trework

Number of failures T
MTBF

Failure 1: at least θ − ϕ
Failure 2: at most θ − ϕ+ τ + δ
Trework = T

MTBF (τ+δ2 + θ − ϕ)

Restart time Trestart

Restart time for one failure R
Trestart = T

MTBF R

17 / 35

Asynchronous Checkpointing

Checkpoint/Restart

Model

T = Ts +
Ts

τ − ϕ
δ +

Ts

τ − ϕ
ϕ+

T

MTBF

(
R +

τ + δ

2
+ θ − ϕ

)

Tblocking = Ts+
Ts

τblocking
δblocking+

Tblocking

MTBF

(
R +

τblocking + δblocking
2

)
Benefit =

Tblocking − T

Tblocking

18 / 35

Asynchronous Checkpointing

Minimize checkpoint interference to application

Outline

1 Checkpoint/Restart
Synchronous
Asynchronous
Model

2 Minimize checkpoint interference to application
Priority sending queue
Opportunistic vs. random scheduling

3 Relieve memory pressure with SSD

4 Experiments

5 Conclusion

19 / 35

Asynchronous Checkpointing

Minimize checkpoint interference to application

Charm++ Runtime System

Object based over-decomposition

Asynchronous method invocation

Migratable-object runtime system

Worker thread & Communication thread

User View

System implementation

20 / 35

Asynchronous Checkpointing

Minimize checkpoint interference to application

Priority sending queue

Minimize Checkpoint Interference

sending queue

computation

application msg

checkpoint msg

computation

Separate checkpoint message queue

Send checkpoint message only when there is no application
message ready to be sent

Better overlap with computation

21 / 35

Asynchronous Checkpointing

Minimize checkpoint interference to application

Opportunistic vs. random scheduling

 0

 2

 4

 6

 8

 10

 6 7 8 9 10 11 12 13 14 15
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12

In
te

rfe
re

nc
e(

s)

Be
ne

fit
(%

)

Overlap(s)

O
pp

or
tu

ni
st

ic

interference
benefit

Use lottery scheduling to change the overlap period

Probabilistic deciding whether application or checkpoint queue
can send message

22 / 35

Asynchronous Checkpointing

Relieve memory pressure with SSD

Outline

1 Checkpoint/Restart
Synchronous
Asynchronous
Model

2 Minimize checkpoint interference to application
Priority sending queue
Opportunistic vs. random scheduling

3 Relieve memory pressure with SSD

4 Experiments

5 Conclusion

23 / 35

Asynchronous Checkpointing

Relieve memory pressure with SSD

Choose Data to Store in SSD

Solid State Drive: becoming increasingly available on
individual nodes

Full SSD strategy

Half SSD strategy

Only store remote checkpoint in SSD
Faster checkpoint and restart

24 / 35

Asynchronous Checkpointing

Relieve memory pressure with SSD

Asynchronous Checkpointing to SSD with IO thread

worker
thread

worker
thread

worker
thread

worker
thread

IO
thread

write
to
SSD

SSD
request

Checkpoint
finishes

IO threads

Write checkpoint to/Read
checkpoint from SSD
When receive request
from worker thread.
Notify worker thread
When SSD is done with
certain request.

25 / 35

Asynchronous Checkpointing

Experiments

Outline

1 Checkpoint/Restart
Synchronous
Asynchronous
Model

2 Minimize checkpoint interference to application
Priority sending queue
Opportunistic vs. random scheduling

3 Relieve memory pressure with SSD

4 Experiments

5 Conclusion

26 / 35

Asynchronous Checkpointing

Experiments

Machine

Trestles @ SDSC

324 32-core nodes

120 GB flash memory (SSD) per node

100 Teraflops

Applications

Wave2D: stencil computation
ChaNGa: N-Body simulation

27 / 35

Asynchronous Checkpointing

Experiments

Single Checkpoint Overhead

 0

 10

 20

 30

 40

 50

 60

 70

128 256 512 1024

Ch
ec

kp
oi

nt
 O

ve
rh

ea
d(

s)

Number of Cores

blocking checkpoint
semi blocking checkpoint

Wave2D Weak Scale

 0

 5

 10

 15

 20

 25

 30

 35

 40

128 256 512 1024

Ch
ec

kp
oi

nt
 O

ve
rh

ea
d(

s)

Number of Cores

blocking checkpoint
semi blocking checkpoint

ChaNGa Strong Scale

Semi-Blocking checkpoint reduces checkpoint overhead
significantly.

28 / 35

Asynchronous Checkpointing

Experiments

Semi-Blocking Benefit

 0

 5

 10

 15

 20

 25

 30

128 256 512 1024

Be
ne

fit
 (%

)

Number of Cores

MTBF:300s
600s

900s
1200s

1500s
1800s

Wave2D Weak Scale

 0

 5

 10

 15

 20

 25

 30

128 256 512 1024

Be
ne

fit
 (%

)

Number of Cores

MTBF:300s
600s

900s
1200s

1500s
1800s

ChaNGa Strong Scale

Semi-Blocking checkpoint reduces the total execution time up
to 22%.

29 / 35

Asynchronous Checkpointing

Experiments

Checkpoint/Restart on SSD

 0

 5

 10

 15

 20

 25

 30

0.45 1.34 2.23

Ti
m

in
g

Pe
na

lty
(s

)

Checkpoint Size/Node(GB)

half−aio
full−aio
half−sio
full−sio

 5

 10

 15

 20

 25

 30

 35

 40

 45

0.45 1.34 2.23

R
es

ta
rt

Ti
m

e(
s)

Checkpoint Size/Node(GB)

in−memory
half−aio
full−aio

Half SSD strategy with asynchronous IO
reduces the timing penalty for
checkpointing to SSD

Restart from SSD does not incur extra
overhead

aio asynchronous IO
sio synchronous IO

30 / 35

Asynchronous Checkpointing

Conclusion

Outline

1 Checkpoint/Restart
Synchronous
Asynchronous
Model

2 Minimize checkpoint interference to application
Priority sending queue
Opportunistic vs. random scheduling

3 Relieve memory pressure with SSD

4 Experiments

5 Conclusion

31 / 35

Asynchronous Checkpointing

Conclusion

Conclusion

Asynchronous checkpointing can help hide the checkpoint
overhead.

SSD can be used in checkpointing to relieve memory pressure
with little overhead.

32 / 35

Asynchronous Checkpointing

Conclusion

Future Work

Log analysis is very helpful

Failure distributions
Cluster usage

Failure prediction with different fault tolerate actions

Proactive migration
Proactive checkpoint

Multilevel checkpointing

33 / 35

Asynchronous Checkpointing

Conclusion

Thank you!

34 / 35

Asynchronous Checkpointing

Conclusion

Increasing Checkpoint Overhead

 0.1

 1

 10

2 4 8 16 32

C
he

ck
po

in
t O

ve
rh

ea
d

(s
)

Number of Cores per Node

Checkpoint size:
16MB per core

Checkpoint data is
sent to another
node across the
network

35 / 35

	Checkpoint/Restart
	Synchronous
	Asynchronous
	Model

	Minimize checkpoint interference to application
	Priority sending queue
	Opportunistic vs. random scheduling

	Relieve memory pressure with SSD
	Experiments
	Conclusion

