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Classical checkpoint interval scheduling problem

The input:

The checkpoint cost c

The failure distribution F (t)

The restart and down time cost R

The output:

The optimal ⌧ that minimizes the total useful work ?

Optimal solution

Young 74, Daly 2006, · · ·
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What’s wrong with Checkpoint/Restart
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Failure Modeling

Failure Modeling

Estimate or predict

The time to the next failure.

The location of the next failure.

What kind of failure: permanent, transient, hardware or software...

Probability distribution estimation

Estimate o✏ine the probability distribution F (t) of the time to the next
failure from the previous occurrence of failures.

Online failure prediction

Predict during runtime whether a failure will occur in the near future
based on an assessment of the monitored current system state.
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The recall: r = #True positive

#True positive+#False negative

The precision: p =

#True positive

#True positive+#False positive
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Online Failure prediction
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Fault tolerance actions scheduling

FTI: high performance Fault Tolerance Interface

Fast proactive checkpoint (save a process context in 2-3 second)
Global preventive checkpoint (save the entire application state in a
remote storage 10 min for current petaflops systems)

The proposed combination

Perform or not fast proactive checkpoint of one process once a we
have a failure a prediction

Periodically perform a preventive checkpoint (as the recall < 100 %).
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Fault tolerance actions scheduling

Mathematical Modeling

Proactive decision

To checkpoint:

Wp = p (R + c2 +�l � c2) + pc2

To ignore:
Wnp = p (R + ta +�l)

The proactive action is performed iif

Wp  Wnp ⌘ pc2/p  ta
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Fault tolerance actions scheduling

Mathematical Modeling

Preventive period

Assuming that failures are exponentially distributed with a mean µ.

tr̄/µ failures that we can not predict.

t ⇥ r ⇥ s/µ failures predicted with a short lead time (s=P {�l < c2}).
t ⇥ r ⇥ q ⇥ p/µ Ignored true positive alerts (q is the probability that
the decision is to ignore the alert).

The preventive checkpoint cost c1.

The optimal interval between preventive checkpoints:

⌧⇤ =

( q
2µc1�srh2

1�sr if h <
p
2µc1p

2µc1 if h �
p
2µc1

where h =
c2p

p
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Simulations

The considered configuration

Table: Computing platform configuration

Petascale Intermediate Exascale Exascale
Paramters Jaguar, 10PF 100PF Optimistic Pessimistic

MTTF 24h to 6h 6h to 4h 2h to 1h 30 min

Preventive Checkpoint time 30 min 10 min 2.5 min 10 min

Proactive Checkpoint time 10 to 5 sec 5 to 1 sec 5 to 1 sec 5 to 1 sec

Petascale: the checkpoint size per node is between 100GBs and
200GBs and the writing speed is about 350MB/s.

Exascale (64 petabytes of memory with 100k nodes): checkpoint size
per node between 200GBs and 500GBs with a writing bandwidth of
3GB/s and 1GB/s for the pessimistic scenario (Non volatile RAM,
Phase Change Memories and 3-D circuit)
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Simulations

Impact of the recall
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Simulations

Impact of the checkpoint cost and the failure rate

Recall of 50% and a prediction precision 80%.
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Fig. 5. Percentage of the wasted time versus the variation of the mean time to failure.

Aupy et al. [2] present a fault tolerance strategy that uses
the prediction alerts to compute an optimal checkpointing
interval. Compared to our model, they do not consider the lead
time distribution nor different costs for proactive and preventive
checkpointing. Moreover the proposed solution does not handle
false positive alerts and the optimal solution is not analytic.
The important difference between the two models concerns the
notion of prediction time windows: instead of considering a
sharp prediction time, they consider that actual failures will
happen inside a non negligible time window. Our observations
in actual failure logs [14] show that this window is extremely
small: between 1 and 2 seconds and thus offers very small
opportunities for improving the checkpoint interval and could
be neglected.

Li et al. [24] consider a different model of prediction
mechanism. Here the prediction mechanism is supposed to
provide a probability of failure when the application ask for a
prediction. Then by considering a specific application model
where proactive checkpoints or migration can be performed at
a predefined location during the execution.

In a previous work, Cappello et al. [4] proposed two proactive
fault tolerance strategies. Both strategies rely on a perfect
prediction mechanism. The perfect prediction mechanism is
supposed to have a 100% recall, 100% precision and enough
lead time to perform either checkpointing or migration. These
two related works are not suitable for the current prediction
mechanism systems. As we pointed out in section II the current
prediction systems with high recall provide alerts online within
a short time window from the failure occurrence. Therefore, it
is necessary to implement and evaluate fast proactive techniques
and couple them with low-overhead preventive schemes, as
proposed in our work.

Finally, in one of our previous papers [15], we have explored
the effects of failure prediction on the computing waste when
using checkpointing. We provided a formulation of the waste
including the precision and recall parameters. However, this
study was only analytic and used a model much simpler that
the one presented in this paper. There was no simulation of
future large scale HPC systems or experimental evaluation
of failure prediction in the context of periodic multi-level
checkpointing with real HPC scientific applications deployed

on current supercomputers.

VII. CONCLUSION

A major impediment against successful completion for
parallel applications in large scale HPC systems are failures.
The situation might be critical for extreme scale platforms,
suggesting that the solutions cannot come from only one
technique. For this reason, the HPC community is recently
looking into combining different fault tolerance techniques,
in order to achieve the necessary improvements for reliable
extreme scale simulations. In this work, we propose and
implement a complete scheme, combining accurate failure
prediction, fast proactive checkpointing and preventive multi-
level checkpointing to mitigate the effects of failures and
improve execution performance. Experimentations with actual
HPC scientific applications (including irregular applications)
in a large supercomputer (i.e. TSUBAME2) on hundreds
of processes showed that the overhead of the combination
of failure prediction, proactive checkpointing and preventive
checkpointing, in failure free situation, compared to preventive
checkpointing alone is very low: 2% to 6%. This is, to best of
our knowledge, the first time that multi-level checkpointing, fast
proactive checkpointing and failure predictors are implemented
together and evaluated with production-level HPC applications
in a large scale supercomputer.

Moreover, in order to understand how the prediction pa-
rameters and the checkpoint interval influence the computing
efficiency for current and future exascale systems, we developed
a mathematical model that reflects the expected computing
efficiency of our proposed technique. Our results show, that
the proposed strategy highly improves the system’s efficiency
in comparison with the classic periodic checkpointing strat-
egy. For instance, optimal solutions improve the computing
efficiency up to 30% and even up to 50% for pessimistic
exascale scenarios. This is to be compared with the 2% to
6% overhead previously mentioned. This demonstrated that
the combination of proactive and preventive fault tolerance
techniques can potentially mitigate the effects of failures and
improve execution performance. Our study puts in evidence
an unexpected result: the prediction recall has an important



Simulations

Impact of the checkpoint cost and the failure rate

Recall of 50% and a prediction precision 80%.

 0

 10

 20

 30

 40

 50

 60

 70

 80

0.5 0.75
1 1.25

1.5 1.75
2 0.5 0.75

1 1.25
1.5 1.75

2

Pe
rc

en
ta

ge
 o

f w
as

te
d 

tim
e

Mean time to failure (hours)

Preventive periodic Checkpoint
Restart and down time

False positive checkpoint 
True positive checkpoint

Lost work

Periodic StrategyProactive Strategy

Figure: default

slim.bouguerra@imag.fr (INRIA) Resilience and reliability of HPC systems November 21, 2012 17 / 20

11

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

0.5 0.75
1 1.25

1.5 1.75
2 0.5 0.75

1 1.25
1.5 1.75

2

Pe
rc

en
ta

ge
 o

f w
as

te
d 

tim
e

Mean time to failure (hours)

Preventive periodic Checkpoint
Restart and down time

False positive checkpoint 
True positive checkpoint

Lost work

Periodic StrategyProactive Strategy

(a) Optimistic exascale configuration

 0

 10

 20

 30

 40

 50

 60

 70

 80

0.5 0.75
1 1.25

1.5 1.75
2 0.5 0.75

1 1.25
1.5 1.75

2

Pe
rc

en
ta

ge
 o

f w
as

te
d 

tim
e

Mean time to failure (hours)

Preventive periodic Checkpoint
Restart and down time

False positive checkpoint 
True positive checkpoint

Lost work

Periodic StrategyProactive Strategy

(b) Pessimistic exascale configuration

Fig. 5. Percentage of the wasted time versus the variation of the mean time to failure.

Aupy et al. [2] present a fault tolerance strategy that uses
the prediction alerts to compute an optimal checkpointing
interval. Compared to our model, they do not consider the lead
time distribution nor different costs for proactive and preventive
checkpointing. Moreover the proposed solution does not handle
false positive alerts and the optimal solution is not analytic.
The important difference between the two models concerns the
notion of prediction time windows: instead of considering a
sharp prediction time, they consider that actual failures will
happen inside a non negligible time window. Our observations
in actual failure logs [14] show that this window is extremely
small: between 1 and 2 seconds and thus offers very small
opportunities for improving the checkpoint interval and could
be neglected.

Li et al. [24] consider a different model of prediction
mechanism. Here the prediction mechanism is supposed to
provide a probability of failure when the application ask for a
prediction. Then by considering a specific application model
where proactive checkpoints or migration can be performed at
a predefined location during the execution.

In a previous work, Cappello et al. [4] proposed two proactive
fault tolerance strategies. Both strategies rely on a perfect
prediction mechanism. The perfect prediction mechanism is
supposed to have a 100% recall, 100% precision and enough
lead time to perform either checkpointing or migration. These
two related works are not suitable for the current prediction
mechanism systems. As we pointed out in section II the current
prediction systems with high recall provide alerts online within
a short time window from the failure occurrence. Therefore, it
is necessary to implement and evaluate fast proactive techniques
and couple them with low-overhead preventive schemes, as
proposed in our work.

Finally, in one of our previous papers [15], we have explored
the effects of failure prediction on the computing waste when
using checkpointing. We provided a formulation of the waste
including the precision and recall parameters. However, this
study was only analytic and used a model much simpler that
the one presented in this paper. There was no simulation of
future large scale HPC systems or experimental evaluation
of failure prediction in the context of periodic multi-level
checkpointing with real HPC scientific applications deployed

on current supercomputers.

VII. CONCLUSION

A major impediment against successful completion for
parallel applications in large scale HPC systems are failures.
The situation might be critical for extreme scale platforms,
suggesting that the solutions cannot come from only one
technique. For this reason, the HPC community is recently
looking into combining different fault tolerance techniques,
in order to achieve the necessary improvements for reliable
extreme scale simulations. In this work, we propose and
implement a complete scheme, combining accurate failure
prediction, fast proactive checkpointing and preventive multi-
level checkpointing to mitigate the effects of failures and
improve execution performance. Experimentations with actual
HPC scientific applications (including irregular applications)
in a large supercomputer (i.e. TSUBAME2) on hundreds
of processes showed that the overhead of the combination
of failure prediction, proactive checkpointing and preventive
checkpointing, in failure free situation, compared to preventive
checkpointing alone is very low: 2% to 6%. This is, to best of
our knowledge, the first time that multi-level checkpointing, fast
proactive checkpointing and failure predictors are implemented
together and evaluated with production-level HPC applications
in a large scale supercomputer.

Moreover, in order to understand how the prediction pa-
rameters and the checkpoint interval influence the computing
efficiency for current and future exascale systems, we developed
a mathematical model that reflects the expected computing
efficiency of our proposed technique. Our results show, that
the proposed strategy highly improves the system’s efficiency
in comparison with the classic periodic checkpointing strat-
egy. For instance, optimal solutions improve the computing
efficiency up to 30% and even up to 50% for pessimistic
exascale scenarios. This is to be compared with the 2% to
6% overhead previously mentioned. This demonstrated that
the combination of proactive and preventive fault tolerance
techniques can potentially mitigate the effects of failures and
improve execution performance. Our study puts in evidence
an unexpected result: the prediction recall has an important



Conclusion and future work

Conclusion

Combining accurate failure prediction, fast proactive checkpointing
and preventive multilevel checkpointing to mitigate the e↵ects of
failures and improve execution performance

We developed a mathematical model that reflects the expected
computing e�ciency of our proposed technique.

The prediction recall has an important impact on the overall e�ciency
improvement in contrary to the prediction precision, that has only a
minor impact. (if failure predictors provide some flexible
precision/recall trade-o↵s, one should favor first high recall as
opposed to high precision.)

With a 50% recall the performance achieved is equivalent to the
performance of a system with an MTTBF two times higher.
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Conclusion and future work

Future work

Manage the tradeo↵ between the lead-time and recall.

Manage the tradeo↵ between the precision and the recall.

Use di↵erent sources of failure prediction that concerns di↵erent
component of the machine.
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Figure 2: (a) Precision (b) Recall

crossover operation breeds new individuals from two se-
lected parents by copying some bits from each parent. The
mutation operation makes small random changes to a single
bit in a genetic sequence from its original state. In general,
crossover produces elite children, whereas mutation main-
tains genetic diversity [11].

5 Experiments

In our experiments, a real RAS log and a job log col-
lected from the ‘Intrepid’ system are studied (see Table 1).
We first pre-process the RAS log using the method pre-
sented in our previous work [25]. For the purpose of train-
ing and testing, we split the RAS log into two parts: the
log events in first 50 days with 430 fatal events are used for
training, and log events in the last 31 days with the rest 190
fatal events is used for testing. The job log is collected in the
same period of 31 days as the testing part of the RAS log,
which is used to examine the impact of failure prediction
results on fault management.

As mentioned earlier, the main objective of this study is
to show the importance of incorporating location and lead
time information for practical failure prediction. Toward
this end, we compare our GA-based method (denoted as
GA-1) as against a standard GA method which uses a fit-
ness function of (w1 · recall + w2 · precision) (denoted as
GA-2). Note that the standard GA method uses the tradi-
tional prediction metrics without considering location and
lead time.

Our evaluation is divided into two parts: (1) Examining
prediction accuracy between GA-1 and GA-2; and (2) Ex-
amining their impact on service unit loss (SUL).

5.1 Prediction Accuracy

In our experiments, we set the lower bound of lead time
at 120 seconds to train our GA-based method (GA-1). This
generates 37 rules - 10 rules providing midplane-level loca-
tions, 7 rules giving rack-level locations, and 20 rules with-
out any specific location information. GA-2 generates 41
rules without location and lead time information.

To study the impact of lead time on prediction accuracy,
we vary the lead time from 0 to 600 seconds for testing.
Figure 2 presents prediction accuracy by using GA-1 and
GA-2. Here, we use the refined metrics defined in Section 3
for evaluation. As we can see, overall trend shows that both
precision and recall decrease with a growing lead time.
This is due to the fact that an increasing lead time means
that more precursor events cannot be used for prediction.
For both GA-1 and GA-2, this scenario will introduce more
false negatives.

When lead time is set as 0 for testing, GA-2 provides
better recall over GA-1. This is because GA-2 only pro-
vides prediction on system-level, and some results of GA-1
on midplane- or rack-level will inevitably introduce more
false negatives. As lead time increases, GA-1 outperforms
GA-2 in recall. The main reason is that GA-2 is prone to
rely on non-fatal events immediately preceding fatal events
for prediction. When lead time increases, many of these
precursor non-fatal events may be discarded because these
non-fatal events are too close to the fatal events. Thereby
we will see more false negatives. On the other hand, GA-1
explicitly incorporates lead time in its fitness function dur-
ing the training phase, hence it is less sensitive to the growth
of lead time.

GA-1 significantly outperforms GA-2 with respect to
precision. The figure shows that GA-2 can only achieve
about 0.1 on precision, while GA-1 can provide up to four
times improvement on precision. The major reason is that
GA-2 leads to 12 false alarms at the system level. Based
on our refined metrics, GA-2 totally generates 960 false
positives on the 80 midplanes. On the other hand, GA-1
only generates 5 false alarms at the system level, 7 at the
midplane-level, and 3 at the rack-level. As a result, num-
ber of false positives introduced by GA-1 is much less than
GA-2. However, precision is not high even with GA-1. The
reason is that not every rule generated by GA-1 includes
specific location information. As a result, there are non-
trivial amount of false positives.

5.2 Impact on Fault Management

Our next goal is to examine the impact on fault manage-
ment by using different predictive methods. Service unit
loss (SUL) is a widely used metric to measure the amount
of system resource loss caused by failure [21]. It is de-
fined as product of wasted wall clock hours and number
of CPUs. This metric directly indicates the computing cy-
cles lost due to failure and checkpointing overhead. Check-
point and restart is commonly used in the field of high per-
formance computing for fault management. On ‘Intrepid’,
IBM Checkpoint library is available for user-level check-
pointing. Hence, we chose it as our fault management strat-
egy.
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Conclusion and future work

Future work

Investigate the failure distribution of the False positives prediction
and its impact on the model.

Extend the proposed protocol and the model to use di↵erent proactive
actions like the replication and the migration.

Provide more accurate model for the checkpoint cost.
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