Improving the computing efficiency of HPC systems using a combination of proactive and preventive fault tolerance actions

**Mohmed Slim Bouguerra**<sup>1</sup>, Leonardo Bautista Gomez, Ana Gainaru, Franck Cappello

November 21, 2012

slim.bouguerra@imag.fr (INRIA) Resilien

**Resilience and reliability of HPC systems** 

1 / 20

November 21, 2012

### Problem statement

slim.bouguerra@imag.fr (INRIA)

Optimistic: Without Failures



Resilience and reliability of HPC systems

▲□▶▲□▶▲≡▶▲≡▶ ● ● ● ●

### Problem statement

Optimistic: Without Failures



Real world Without FT

**Resilience and reliability of HPC systems** 

November 21, 2012 2 / 20

 $\mathcal{O} \mathcal{Q} \mathcal{O}$ 

▲□▶ < □▶ < □▶ < □▶ < □▶ < □▶</li>

Useful work

## Problem statement

**Optimistic:** Without Failures

> Real world Without FT

Real world With FT



# Classical checkpoint interval scheduling problem

#### The input:

- The checkpoint cost *c*
- The failure distribution F(t)
- The restart and down time cost R

- E

 $\checkmark Q (~$ 

▲ 伊 ▶ ▲ 王 ▶ ▲ 王 ▶

# Classical checkpoint interval scheduling problem

#### The input:

- The checkpoint cost c
- The failure distribution F(t)
- The restart and down time cost R

#### The output:

The optimal  $\tau$  that minimizes the total useful work ?

slim.bouguerra@imag.fr (INRIA) Resilience

**Resilience and reliability of HPC systems** 

 $\checkmark Q ( \land$ 

→ □ → → 匡 → → 匡 → □ 匡

# Classical checkpoint interval scheduling problem

#### The input:

- The checkpoint cost c
- The failure distribution F(t)
- The restart and down time cost R

#### The output:

The optimal  $\tau$  that minimizes the total useful work ?

### **Optimal solution**

Young 74, Daly 2006, · · ·

slim.bouguerra@imag.fr (INRIA)

Resilience and reliability of HPC systems

- ▲ □ ▶ - ▲ □ ▶ - □ □

November 21, 2012

 $\checkmark Q ( \land$ 

3 / 20

# What's wrong with Checkpoint/Restart



Percentage of Usage, 5 year MTBF per node

slim.bouguerra@imag.fr (INRIA) Resilience and reliability of HPC systems Novemb

November 21, 2012 4 / 20

1

 $\mathcal{A}$ 



#### Simulations 3



Conclusion and future work

slim.bouguerra@imag.fr (INRIA)

**Resilience and reliability of HPC systems** 

1

 $\checkmark Q (~$ 

5 / 20

< = > < = >

▲ 予 ▶

Estimate or predict

- The time to the next failure.
- The location of the next failure.
- What kind of failure: permanent, transient, hardware or software...

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ - 豆!

November 21, 2012

 $\checkmark Q (~$ 

6 / 20

Estimate or predict

- The time to the next failure.
- The location of the next failure.
- What kind of failure: permanent, transient, hardware or software...

### Probability distribution estimation

Estimate offline the probability distribution F(t) of the time to the next failure from the previous occurrence of failures.

 $\checkmark Q ( \land$ 

· < @ > < 트 > < 트 > · 트

Estimate or predict

- The time to the next failure.
- The location of the next failure.
- What kind of failure: permanent, transient, hardware or software...

### Probability distribution estimation

Estimate offline the probability distribution F(t) of the time to the next failure from the previous occurrence of failures.

#### Online failure prediction

Predict during runtime whether a failure will occur in the near future based on an assessment of the monitored current system state.

 $\checkmark Q (~$ 

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ─ 豆.



臣

 $\mathcal{A}$ 

7 / 20

< □ > < □ > < □ >

November 21, 2012

< □ ▶

slim.bouguerra@imag.fr (INRIA) Resilience and reliability of HPC systems



slim.bouguerra@imag.fr (INRIA) Resilience and reliability of HPC systems

November 21, 2012 7

E

< ∃ > < ∃ >

▲ ① ▶

< □ ▶

7 / 20





November 21, 2012

<ロト < 団ト < 巨ト < 巨ト = 巨

 $\mathcal{O} \mathcal{Q} \mathcal{O}$ 



#### Simulations 3



Conclusion and future work

slim.bouguerra@imag.fr (INRIA)

**Resilience and reliability of HPC systems** 

- E

 $\mathcal{A} \mathcal{A} \mathcal{A}$ 

< ≣ >

▲ 予 ▶

## FTI: high performance Fault Tolerance Interface

- Fast proactive checkpoint (save a process context in 2-3 second)
- Global preventive checkpoint (save the entire application state in a remote storage 10 min for current petaflops systems)

#### The proposed combination

- Perform or not fast proactive checkpoint of one process once a we have a failure a prediction
- Periodically perform a preventive checkpoint (as the recall < 100 %).



#### Proactive decision

• To checkpoint:

$$W_{p} = p\left(R + c_{2} + \Delta_{I} - c_{2}
ight) + \overline{p}c_{2}$$

• To ignore:

$$W_{np} = p\left(R + t_a + \Delta_I\right)$$

< □ > < □ > < □ >

November 21, 2012

< □ ▶

Ē

 $\mathcal{A} \mathcal{A} \mathcal{A}$ 

10 / 20

slim.bouguerra@imag.fr (INRIA) Resilience and reliability of HPC systems

#### Proactive decision

• To checkpoint:

$$W_p = p\left(R + c_2 + \Delta_I - c_2
ight) + \overline{p}c_2$$

$$W_{np} = p\left(R + t_a + \Delta_I\right)$$

The proactive action is performed iif

$$W_p \leq W_{np} \equiv \overline{p}c_2/p \leq t_a$$

slim.bouguerra@imag.fr (INRIA) Resilience and relia

Resilience and reliability of HPC systems

November 21, 2012

Ē

 $\checkmark Q (\sim$ 

10 / 20

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶

#### Preventive period

- Assuming that failures are exponentially distributed with a mean  $\mu$ .
- $t\overline{r}/\mu$  failures that we can not predict.
- $t \times r \times s/\mu$  failures predicted with a short lead time (s= $\mathbb{P}\{\Delta_l < c_2\}$ ).
- $t \times r \times q \times p/\mu$  Ignored true positive alerts (q is the probability that the decision is to ignore the alert).
- The preventive checkpoint cost  $c_1$ .

-▲圖▶ ▲토▶ ▲토▶ - 토

#### Preventive period

- Assuming that failures are exponentially distributed with a mean  $\mu$ .
- $t\overline{r}/\mu$  failures that we can not predict.
- $t \times r \times s/\mu$  failures predicted with a short lead time (s= $\mathbb{P}\{\Delta_l < c_2\}$ ).
- $t \times r \times q \times p/\mu$  Ignored true positive alerts (q is the probability that the decision is to ignore the alert).
- The preventive checkpoint cost  $c_1$ .

#### The optimal interval between preventive checkpoints:

$$\tau^* = \begin{cases} \sqrt{\frac{2\mu c_1 - srh^2}{1 - sr}} & \text{if } h < \sqrt{2\mu c_1} \\ \sqrt{2\mu c_1} & \text{if } h \ge \sqrt{2\mu c_1} \end{cases} \text{ where } h = \frac{c_2 \overline{p}}{p}$$

November 21, 2012

11 / 20

▲□▶ ▲圖▶ ▲불▶ ▲불▶ - 불



### 3 Simulations



Conclusion and future work

slim.bouguerra@imag.fr (INRIA) Resilience and re

**Resilience and reliability of HPC systems** 

November 21, 2012

< ∃ >

- 4 🗗 ▶

< □ ▶

<! ■ > = =

 $\mathcal{A} \mathcal{A} \mathcal{A}$ 

12 / 20

# The considered configuration

#### Table: Computing platform configuration

|                            | Petascale    | Intermediate | Exascale   | Exascale    |
|----------------------------|--------------|--------------|------------|-------------|
| Paramters                  | Jaguar, 10PF | 100PF        | Optimistic | Pessimistic |
| MTTF                       | 24h to 6h    | 6h to 4h     | 2h to 1h   | 30 min      |
| Preventive Checkpoint time | 30 min       | 10 min       | 2.5 min    | 10 min      |
| Proactive Checkpoint time  | 10 to 5 sec  | 5 to 1 sec   | 5 to 1 sec | 5 to 1 sec  |

- Petascale: the checkpoint size per node is between 100GBs and 200GBs and the writing speed is about 350MB/s.
- Exascale (64 petabytes of memory with 100k nodes): checkpoint size per node between 200GBs and 500GBs with a writing bandwidth of 3GB/s and 1GB/s for the pessimistic scenario (Non volatile RAM, Phase Change Memories and 3-D circuit)

### Impact of the recall



### Impact of the recall



### Impact of the checkpoint cost and the failure rate

### Recall of 50% and a prediction precision 80%.



### Impact of the checkpoint cost and the failure rate

### Recall of 50% and a prediction precision 80%.



### Impact of the checkpoint cost and the failure rate

### Recall of 50% and a prediction precision 80%.



### Impact of the checkpoint cost and the failure rate

Recall of 50% and a prediction precision 80%.



(a) Optimistic exascale configuration

(b) Pessimistic exascale configuration

- < @ ▶ < È ▶ < È ▶

slim.bouguerra@imag.fr (INRIA)

**Resilience and reliability of HPC systems** 

November 21, 2012

17 / 20

王

### Impact of the checkpoint cost and the failure rate

Recall of 50% and a prediction precision 80%.



(a) Optimistic exascale configuration

(b) Pessimistic exascale configuration

Resilience and reliability of HPC systems

November 21, 2012

王

17 / 20

## Conclusion

- Combining accurate failure prediction, fast proactive checkpointing and preventive multilevel checkpointing to mitigate the effects of failures and improve execution performance
- We developed a mathematical model that reflects the expected computing efficiency of our proposed technique.
- The prediction recall has an important impact on the overall efficiency improvement in contrary to the prediction precision, that has only a minor impact. (if failure predictors provide some flexible precision/recall trade-offs, one should favor first high recall as opposed to high precision.)
- With a 50% recall the performance achieved is equivalent to the performance of a system with an MTTBF two times higher.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ● 豆!

### Future work

- Manage the tradeoff between the lead-time and recall.
- Manage the tradeoff between the precision and the recall.
- Use different sources of failure prediction that concerns different component of the machine.



### Future work

- Investigate the failure distribution of the False positives prediction and its impact on the model.
- Extend the proposed protocol and the model to use different proactive actions like the replication and the migration.
- Provide more accurate model for the checkpoint cost.

