
PERFORMANCE MODELING FOR PARALLEL
SOFTWARE DEVELOPMENT AND TUNING

TORSTEN HOEFLER

All used images belong to the owner/creator!

 David Patterson: “A portable parallel program is
an oxymoron”
 Certainly true, isn’t it?

 And it gets worse … why?

 Performance is complex
 In parallel even more …

 We need tools to understand and generalize!

 Even correctness is complex
 Mainly fixed by models of computation/invariants

 We propose performance modeling for a change!

MOTIVATION

Torsten Hoefler Slide 2 of 27

PERFORMANCE MODELING
 Representing performance with analytic expressions

 Not just series of points from benchmarks

 Algebraic derivation to find sweet-spots

 Why performance modeling?

 Extrapolation (scalability)

 Insight into requirements
 Message sizes, HW/SW Co-Design

 Purchasing decisions based on models

 BUT: It’s mostly used by computer scientists!

 Our goal: enable application developers and domain

scientists to use performance modeling

Torsten Hoefler Slide 3 of 27

OUR SIMPLE METHODOLOGY
 Combine analytical methods and empirical

performance measurement tools

 Programmer specifies expectation
 E.g., T = a+b*N3

 Tools find the parameters
 Empirically, e.g., least squares

 We derive the scaling analytically and
fill in the constants with empirical measurements

 Models must be as simple and effective as possible

 Simplicity increases the insight

 Precision needs to be just good enough to drive action

Torsten Hoefler

Details: Hoefler et al.: “Performance Modeling for Systematic Performance Tuning.”, SC11, SotP

Slide 4 of 27

OTHER PHILOSOPHIES

 Simulation:

 Very accurate prediction, little insight

 Traditional Performance Modeling (PM):

 Focuses on accurate predictions

 Tool for computer scientists, not application developers

Performance Engineering

Torsten Hoefler Slide 5 of 27

WHEN AND WHERE SHOULD IT BE USED?

 During the whole software development cycle
 Analysis (pick the right algorithms)

 Design (pick the right design pattern)

 Implementation (choose implementation options)

 Testing (test if performance expectations are met)

 Maintenance (monitor performance)

 Performance bugs can be as serious and
as expensive as correctness bugs!

Torsten Hoefler Slide 6 of 27

SOFTWARE DEVELOPMENT - EXAMPLE - MM

 Matrix multiplication (N3 algorithm)

 Trivial (non-blocked) algorithm

 Analytic Model:
 N3 FP add/mult, 4N3 FP load/store, +int ops
 How can we get to an execution time?  very hard!

for(int i=0; i<N; ++i)

 for(int j=0; j<N; ++j)

 for(int k=0; k<N; ++k)

 C[i+j*N] += A[i+k*N] * B[k+j*N];

1 1 3 1
1 4 1 7
9 4 1 2
1 5 1 3

1 3 0 1
3 7 4 1
3 0 9 8
1 2 5 6

5

…

Torsten Hoefler Slide 7 of 27

SEMI-EMPIRIC MODEL FOR MM

 T(N) = tN3

 POWER7
 t=2.2ns

 0.8% err

 Is that all?
 Requirement

Model delivers
more insight!

Torsten Hoefler Slide 8 of 27

REQUIREMENTS MODEL FOR MM

 Required floating point operations: 2N3 (verified)

 Cache misses?
 Semi-analytic!

 C(N) = aN3 – bN2

 POWER7
 a=3.8e-4

 a=2.7e-1

Torsten Hoefler Slide 9 of 27

 Performance Optimization
 Identify bottlenecks and problems

during porting

 System Design
 Co-design based on application requirements

 System Deployment and Testing
 Know what to expect, find performance issues quickly

 During System Operation
 Detect silent (and slow) performance degradation

MORE USES OF MODELS

Torsten Hoefler Slide 10 of 27

OUR PROCESS FOR EXISTING CODES
 Simple 6-step process:

 Analytical steps (domain expert or source-code)

1) identify input parameters that influence runtime

2) identify most time-intensive kernels

3) determine communication pattern

4) determine communication/computation overlap

 Empirical steps (benchmarks/performance tools)

1) determine sequential baseline

2) determine communication parameters

Details: Hoefler et al.: “Performance Modeling for Systematic Performance Tuning.”, SC11, SotP

Torsten Hoefler Slide 11 of 27

ALL STEPS BY EXAMPLE – MILC

• MIMD Lattice Computation

• Gains deeper insights in

fundamental laws of physics

• Determine the predictions of

lattice field theories (QCD &

Beyond Standard Model)

• Major NSF application

• Challenge:

• High accuracy (computationally intensive) required for

comparison with results from experimental programs in

high energy & nuclear physics

Bernard, Gottlieb et al.: Studying Quarks and Gluons On Mimd Parallel Computers
 Torsten Hoefler Slide 12 of 27

STEP 1: CRITICAL PARAMETERS
 Best way: ask a domain expert!

 Or: look through the code/input file format

 For MILC (thanks to S. Gottlieb):

Torsten Hoefler Slide 13 of 27

STEP 2: FIND KERNELS

 E.g., investigate call-tree or source-code

 Control logic
 update

 MILC’s kernels:
 LL (load_longlinks)

 FL (load_fatlinks)

 CG (ks_congrad)

 GF (imp_gauge_force)

 FF (eo_fermion_force_twoterms)

Torsten Hoefler Slide 14 of 27

STEP 4: SEQUENTIAL PERFORMANCE

 MILC “only” loops over the lattice 

T(V) = tV

 Wait, it’s not that simple with caches 

 Small V fit in cache!

T(V) = t1 * min(s, V) + t2 * max(0, V-s)

 Cache holds s data elements

 Three parameters for each kernel

Torsten Hoefler Slide 15 of 27

AN EXAMPLE KERNEL: GF (GAUGE FORCE)

 Hopper (XE6):
 t1=81 μs, t2=261 μs

 s=1.500

 Kraken (XT-5):
 t1=74 μs, t2=387 μs

 s=1.500

 Surveyor (BG/P):
 T1=483 μs, t2=567 μs

 s=2000

Bauer, Gottlieb, Hoefler: “Performance Modeling and Comparative Analysis of the MILC …, CCGRID 2012c

Data from Hopper

Torsten Hoefler Slide 16 of 27

COMPLETE SERIAL PERFORMANCE MODEL

 High predictability!

 Low variance

 Avg. model error <5%

Torsten Hoefler Slide 17 of 27

STEP 3: COMMUNICATION PATTERN
 4d domain is cut in all dimensions (cubic)

 4d nearest-neighbor communication (8 neighbors)

 Allreduce to check CG convergence

 One per iteration on full process set

 We counted messages and sizes

 Separate for each kernel

 See paper for
sizes and full
model equation!

Torsten Hoefler

Bauer, Gottlieb, Hoefler: “Performance Modeling and Comparative Analysis of the MILC …, CCGRID 2012

Slide 18 of 27

STEP 6: COMMUNICATION PARAMETERS

 Two options:
 Semi-analytic – fit measurements to get effective latency and

bandwidth
 Enables to check if they match expectations

 Analytic – derive parameters separately (e.g., documentation
or separate benchmark)
 Often problematic if they do not match expectations

 We did both! “Measure” impact of topology!
 Uses analytic LogGP parameters (measured by Netgauge [1])

 Observe effective bandwidth and latency semi-analytically!

[1] Hoefler et al.: Low-Overhead LogGP Parameter Assessment for Modern Interconnection Networks

Torsten Hoefler Slide 19 of 27

THE ANALYTIC PARALLEL MODEL

Data from POWER5

Torsten Hoefler Slide 20 of 27

THE ANALYTIC PARALLEL MODEL

Data from POWER5

Torsten Hoefler Slide 21 of 27

 … you have a machine like this (from a user):

BUT WHAT IF …

Graph by Steven Gottlieb, Indiana University

Torsten Hoefler Slide 22 of 27

 User functions as expected performance

 Capture variance during measurements as deviation model 
machine characteristic!

 99% network variations in our tests

 Effective latency and bandwidth (+variance) [1]:

 BG/P (P=4096): 16.1 us (2%), 118 MiB/s (0.2%)

 XT-5 (P=2048): 10.3 us (5%), 211 MiB/s (3.8%)

 XE6 (P=8291): 41.5 us (4.8%), 232 MiB/s (1.7%)

 IB (P=2048): 33.6 us (16%), 164 MiB/s (3%)

 Relatively low network variance leads to high
performance variance  conjecture network noise [2]

STATISTICAL MODELING

[1]: Bauer, Gottlieb, Hoefler: “Performance Modeling and Comparative Analysis of the MILC …, CCGRID 2012
[2]: Hoefler, Schneider, Lumsdaine: “The Effect of Network Noise on *…+ Collective Communication, PPL 2009

Torsten Hoefler Slide 23 of 27

USE-CASE 1: MODEL-GUIDED OPTIMIZATION
 Parallel application performance is complex

 Often unclear how optimizations impact performance

 Issue for applications at large-scale

 Models can guide optimizations

 The developed model shows:

 Local memory copies to prepare
 communication are significant
 Re-engineering resulted in 20% performance gain of a QCD code

 Frequent communication synchronizations are critical
 Importance increases with P – new algorithms in development

 Torsten Hoefler Slide 24 of 27

USE-CASE 2: ARCHITECTURAL OBSERVATIONS

 How important is topology (at 1024 cores)?

 Compare LogGP analytic results with effective BWs

Performance degradation
over ideal (uncongested) network

Expected performance
degradation due to network variance

Torsten Hoefler Slide 25 of 27

COLLABORATION OPPORTUNITIES

 Autotuning – use model-driven tuning
 Use user-specified functions to improve the

surrogate function of the tuning search space

 Fault-tolerance – determine best checkpoint places
 Maybe introduce application-specific checkpointing

automatically or support the user to do so

 Application Modeling – done for many SPP apps, may be improved
 Apply and develop automatic tools?

 Runtime Performance Models – provide performance guarantees
 E.g., MPI implementations  - provable performance?

 Investigate network topologies – different core counts

 Others: how to deal with the variance? Are stochastic models a
good idea? Better job placement/scheduling? What else?

Torsten Hoefler Slide 26 of 27

ACKNOWLEDGMENTS

Torsten Hoefler Slide 27 of 27

