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 David Patterson: “A portable parallel program is 
an oxymoron” 
 Certainly true, isn’t it?  

 And it gets worse … why? 

 Performance is complex 
 In parallel even more … 

 We need tools to understand and generalize! 

 Even correctness is complex 
 Mainly fixed by models of computation/invariants 

 We propose performance modeling for a change! 

MOTIVATION 
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PERFORMANCE MODELING 
 Representing performance with analytic expressions 

 Not just series of points from benchmarks 

 Algebraic derivation to find sweet-spots 

 Why performance modeling? 

 Extrapolation (scalability) 

 Insight into requirements 
 Message sizes, HW/SW Co-Design 

 Purchasing decisions based on models 

 BUT: It’s mostly used by computer scientists! 

 Our goal: enable application developers and domain 

scientists to use performance modeling 
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OUR SIMPLE METHODOLOGY 
 Combine analytical methods and empirical  

performance measurement tools 

 Programmer specifies expectation  
 E.g., T = a+b*N3 

 Tools find the parameters 
 Empirically, e.g., least squares 

 We derive the scaling analytically and  
fill in the constants with empirical measurements 

 Models must be as simple and effective as possible 

 Simplicity increases the insight 

 Precision needs to be just good enough to drive action 

 
Torsten Hoefler 

Details: Hoefler et al.: “Performance Modeling for Systematic Performance Tuning.”, SC11, SotP 
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OTHER PHILOSOPHIES 

 Simulation: 

 Very accurate prediction, little insight  

 Traditional Performance Modeling (PM): 

 Focuses on accurate predictions 

 Tool for computer scientists, not application developers 

Performance Engineering 
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WHEN AND WHERE SHOULD IT BE USED? 

 During the whole software development cycle 
 Analysis (pick the right algorithms) 

 Design (pick the right design pattern) 

 Implementation (choose implementation options) 

 Testing (test if performance expectations are met) 

 Maintenance (monitor performance) 

 Performance bugs can be as serious and  
as expensive as correctness bugs! 
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SOFTWARE DEVELOPMENT - EXAMPLE - MM 

 Matrix multiplication (N3 algorithm) 
 
 
 

 Trivial (non-blocked) algorithm 
 

 Analytic Model: 
 N3 FP add/mult, 4N3 FP load/store, +int ops 
 How can we get to an execution time?  very hard! 

for(int i=0; i<N; ++i) 

  for(int j=0; j<N; ++j) 

    for(int k=0; k<N; ++k) 

      C[i+j*N] += A[i+k*N] * B[k+j*N]; 

 

1 1 3 1 
1 4 1 7 
9 4 1 2 
1 5 1 3 

1 3 0 1 
3 7 4 1 
3 0 9 8 
1 2 5 6 

5 

… 
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SEMI-EMPIRIC MODEL FOR MM 

 T(N) = tN3 

 

 POWER7 
 t=2.2ns 

 0.8% err 
 

 Is that all? 
 Requirement 

Model delivers 
more insight! 
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REQUIREMENTS MODEL FOR MM 

 Required floating point operations: 2N3 (verified) 

 

 Cache misses? 
 Semi-analytic! 

 C(N) = aN3 – bN2 

 

 POWER7 
 a=3.8e-4 

 a=2.7e-1 
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 Performance Optimization  
 Identify bottlenecks and problems  

during porting 

 System Design 
 Co-design based on application requirements 

 System Deployment and Testing 
 Know what to expect, find performance issues quickly 

 During System Operation 
 Detect silent (and slow) performance degradation 

MORE USES OF MODELS 
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OUR PROCESS FOR EXISTING CODES 
 Simple 6-step process: 

 

 Analytical steps (domain expert or source-code) 

1) identify input parameters that influence runtime 

2) identify most time-intensive kernels 

3) determine communication pattern 

4) determine communication/computation overlap 

        

 Empirical steps (benchmarks/performance tools) 

1) determine sequential baseline 

2) determine communication parameters 

Details: Hoefler et al.: “Performance Modeling for Systematic Performance Tuning.”, SC11, SotP 
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ALL STEPS BY EXAMPLE – MILC  

• MIMD Lattice Computation 

• Gains deeper insights in  

fundamental laws of physics 

• Determine the predictions of  

lattice field theories (QCD &  

Beyond Standard Model) 

• Major NSF application 

• Challenge: 

• High accuracy (computationally intensive) required for 

comparison with results from experimental programs in 

high energy & nuclear physics 

 

 

Bernard, Gottlieb et al.: Studying Quarks and Gluons On Mimd Parallel Computers 
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STEP 1: CRITICAL PARAMETERS 
 Best way: ask a domain expert! 

 Or: look through the code/input file format 

 For MILC (thanks to S. Gottlieb): 
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STEP 2: FIND KERNELS 

 E.g., investigate call-tree or source-code 

 Control logic 
 update 

 MILC’s kernels: 
 LL (load_longlinks) 

 FL (load_fatlinks) 

 CG (ks_congrad) 

 GF (imp_gauge_force) 

 FF (eo_fermion_force_twoterms) 
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STEP 4: SEQUENTIAL PERFORMANCE 

 MILC “only” loops over the lattice   

T(V) = tV 

 Wait, it’s not that simple with caches  

 Small V fit in cache! 

T(V) = t1 * min(s, V) + t2 * max(0, V-s) 

 Cache holds s data elements 

 Three parameters for each kernel 

 

 
Torsten Hoefler Slide 15 of 27 



AN EXAMPLE KERNEL: GF (GAUGE FORCE) 

 Hopper (XE6): 
 t1=81 μs, t2=261 μs 

 s=1.500 

 Kraken (XT-5): 
 t1=74 μs, t2=387 μs 

 s=1.500 

 Surveyor (BG/P): 
 T1=483 μs, t2=567 μs 

 s=2000 

 
 

 

Bauer, Gottlieb, Hoefler: “Performance Modeling and Comparative Analysis of the MILC …, CCGRID 2012c 

Data from Hopper 
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COMPLETE SERIAL PERFORMANCE MODEL 

 High predictability! 

 Low variance 

 Avg. model error <5% 
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STEP 3: COMMUNICATION PATTERN 
 4d domain is cut in all dimensions (cubic) 

 4d nearest-neighbor communication (8 neighbors) 

 Allreduce to check CG convergence 

 One per iteration on full process set 

 We counted messages and sizes 

 Separate for each kernel 

 See paper for  
sizes and full 
model equation! 

 
Torsten Hoefler 

Bauer, Gottlieb, Hoefler: “Performance Modeling and Comparative Analysis of the MILC …, CCGRID 2012 
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STEP 6: COMMUNICATION PARAMETERS 

 Two options: 
 Semi-analytic – fit measurements to get effective latency and 

bandwidth 
 Enables to check if they match expectations 

 Analytic – derive parameters separately (e.g., documentation  
or separate benchmark) 
 Often problematic if they do not match expectations 

 We did both! “Measure” impact of topology! 
 Uses analytic LogGP parameters (measured by Netgauge [1]) 

 Observe effective bandwidth and latency semi-analytically! 

[1] Hoefler et al.: Low-Overhead LogGP Parameter Assessment for Modern Interconnection Networks  
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THE ANALYTIC PARALLEL MODEL 

Data from POWER5 
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THE ANALYTIC PARALLEL MODEL 

 

Data from POWER5 
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 … you have a machine like this (from a user): 

BUT WHAT IF …  

Graph by Steven Gottlieb, Indiana University 
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 User functions as expected performance 

 Capture variance during measurements as deviation model  
machine characteristic! 

 99% network variations in our tests 

 Effective latency and bandwidth (+variance) [1]: 

 BG/P (P=4096): 16.1 us (2%), 118 MiB/s (0.2%) 

 XT-5 (P=2048): 10.3 us (5%), 211 MiB/s (3.8%) 

 XE6 (P=8291): 41.5 us (4.8%), 232 MiB/s (1.7%) 

 IB (P=2048): 33.6 us (16%), 164 MiB/s (3%) 

 Relatively low network variance leads to high 
performance variance  conjecture network noise [2] 

 

STATISTICAL MODELING 

[1]: Bauer, Gottlieb, Hoefler: “Performance Modeling and Comparative Analysis of the MILC …, CCGRID 2012 
[2]: Hoefler, Schneider, Lumsdaine: “The Effect of Network Noise on *…+ Collective Communication, PPL 2009 
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USE-CASE 1: MODEL-GUIDED OPTIMIZATION 
 Parallel application performance is complex 

 Often unclear how optimizations impact performance 
 

 Issue for applications at large-scale 

 Models can guide optimizations 
 

 The developed model shows: 

 Local memory copies to prepare 
 communication are significant 
 Re-engineering resulted in 20% performance gain of a QCD code 

 Frequent communication synchronizations are critical 
 Importance increases with P – new algorithms in development 
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USE-CASE 2: ARCHITECTURAL OBSERVATIONS 

 How important is topology (at 1024 cores)? 

 Compare LogGP analytic results with effective BWs 

Performance degradation  
over ideal  (uncongested) network 

Expected performance  
degradation  due to network variance 
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COLLABORATION OPPORTUNITIES 

 Autotuning – use model-driven tuning 
 Use user-specified functions to improve the  

surrogate function of the tuning search space 

 Fault-tolerance – determine best checkpoint places 
 Maybe introduce application-specific checkpointing  

automatically or support the user to do so 

 Application Modeling – done for many SPP apps, may be improved 
 Apply and develop automatic tools? 

 Runtime Performance Models – provide performance guarantees 
 E.g., MPI implementations  - provable performance? 

 Investigate network topologies – different core counts 

 Others: how to deal with the variance? Are stochastic models a 
good idea?  Better job placement/scheduling? What else? 
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