
November 22, 2011 – INRIA-UIUC joint laboratory

Latest improvements to
and ongoing

collaborations
Sébastien Fourestier
Harshitha Menon

Table of contents

Scotch 6.0

Dynamic load balancing in Charm++

Prospects

Sébastien Fourestier, Harshitha Menon November 22, 2011 – INRIA-UIUC joint laboratory – 2

Sébastien Fourestier, Harshitha Menon November 22, 2011 – INRIA-UIUC joint laboratory – 3

1
Scotch 6.0

The project

I Toolbox of graph partitioning methods,
which can be used in numerous contexts

I Sequential library
I Graph and mesh partitioning
I Static mapping (edge dilation)
I Graph and mesh reordering
I Clustering

I Parallel library
I Graph partitioning (edge)
I Static mapping (edge dilation)
I Graph reordering

Sébastien Fourestier, Harshitha Menon November 22, 2011 – INRIA-UIUC joint laboratory – 4

New functionalities of 6.0

I Partitioning and static mapping with fixed vertices
I Allows some vertices to be fixed on predefined parts

I Example: place special tasks on I/O nodes
I Enables multi-phase mapping

1. Maps the task graph of the first phase
2. Maps the task graph of the second phase along with the

mapped vertices of the first phase
I Sequential repartitioning and remapping with or without

fixed vertices
I Vertex migration costs

I Is independent of vertex computation weights
I Can be set individually for each vertex

Sébastien Fourestier, Harshitha Menon November 22, 2011 – INRIA-UIUC joint laboratory – 5

Improvements to internals

I Added k-way refinement algorithms
I Improves the execution time

I Improved the recursive bipartitioning algorithm
I Resultes in better quality

I New exactifier strategies
I Obtains better load balance by compromising

communication cost

Sébastien Fourestier, Harshitha Menon November 22, 2011 – INRIA-UIUC joint laboratory – 6

Experimental setup
I Original partition

I 16 parts
I Vertex loads are equal to 1

I First vertex load changes from 1 to V
2 × 16

(V : the number of vertices)
I runs on 1 processor, ParMeTiS on 2

processors
I Migration cost from 0.1 to 50

orig. partition 10 1 0.1

Sébastien Fourestier, Harshitha Menon November 22, 2011 – INRIA-UIUC joint laboratory – 7

Test graphs

Graph Vertex number Edge number Average degree
oilpan 73 752 1 761 718 47.8
fcondp2 201 822 5 546 247 55.0
troll 213 453 5 885 829 55.1
pwtk 217 918 5 708 253 52.4
bmw32 227 362 5 030 634 48.7
audikw1 943 695 38 354 076 81.3
conesphere1m 1 055 039 8 023 236 15.2
af shell10 1 508 065 25 582 130 34.0

I Specificities:
I fcondp2, troll, pwtk: close characteristics, same size
I oilpan, bmw32: same characteristics, increasing size
I audikw1: the highest degree
I conesphere1m, af shell10: > 1 million of vertices

Sébastien Fourestier, Harshitha Menon November 22, 2011 – INRIA-UIUC joint laboratory – 8

Percentage of migrated vertices

ParMeTiS

I migrates up to 4 times less than ParMeTiS

Sébastien Fourestier, Harshitha Menon November 22, 2011 – INRIA-UIUC joint laboratory – 9

Average load imbalance and cut size
Average load imbalance Cut size

I On average:
I and ParMeTiS have close imbalance
I brings a 25% better cut size

Sébastien Fourestier, Harshitha Menon November 22, 2011 – INRIA-UIUC joint laboratory – 10

Execution time

I Execution time on average:
I (1 proc): 7.35 s
I ParMeTiS (2 procs): 1.07 s

I is 9 times slower than ParMeTiS
(standard deviation: 4.47)

I Causes of the overhead:
I The gain brought by the parallelism on 2 processors
I To improve quality, we are using both the diffusive

method and the Fiduccia-Mattheyses heuristic
I The overhead induced by the mapping

functionalities (it takes target architecture into account
during the gain computation)

Sébastien Fourestier, Harshitha Menon November 22, 2011 – INRIA-UIUC joint laboratory – 11

Summary of experimental results

I migrate less than ParMeTiS
I On average, and ParMeTiS have close

imbalance
I is 9 times slower than ParMeTiS
I brings a 25% better cut size
I We are tuning 6.0 mapping strategy before

official publication

Sébastien Fourestier, Harshitha Menon November 22, 2011 – INRIA-UIUC joint laboratory – 12

Sébastien Fourestier, Harshitha Menon November 22, 2011 – INRIA-UIUC joint laboratory – 13

2
Dynamic load balancing in
Charm++

The Charm++ project

I A portable object oriented programming language with a
message driven execution model

I Capabilities:
I Promotes natural expression of parallelism
I Supports modularity
I Overlaps communication and computation
I Dynamic load balancing
I Tolerates component failures

Sébastien Fourestier, Harshitha Menon November 22, 2011 – INRIA-UIUC joint laboratory – 14

Dynamic load balancing in Charm++

I Principle of persistence
I Communication pattern and computational load of

objects tend to persist over time
I Measurement-based load balancing

I Instruments computation time and communication
volume at runtime

I Uses the database to make load balancing decisions
I Various load balancing strategies exist in Charm++
I is used in Charm++ as a load balancing

strategy aimed at optimizing communication

Sébastien Fourestier, Harshitha Menon November 22, 2011 – INRIA-UIUC joint laboratory – 15

kNeighbor benchmark

I Communication intensive benchmark
I In each iteration:

I Each object exchanges a message of size 8 KB with
fourteen other objects

I Object computational load is chosen uniformly at random
I The experiments were run on Intrepid (Blue Gene/P)

Sébastien Fourestier, Harshitha Menon November 22, 2011 – INRIA-UIUC joint laboratory – 16

kNeighbor: Imbalance ratio

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 2 4 6 8 10 12 14 16

A
ve

ra
ge

 t
im

e
pe

r
st

ep
 (

m
s)

Percentage imbalance allowed

kNeighbor: ScotchLB on Intrepid

2048 cores
1024 cores
512 cores
256 cores

I Imbalance ratio indicates the percentage of load
imbalance permissible during load balancing

I High imbalance ratio assist in optimizing communication
cost ; 8-12% imbalance gives the best results

Sébastien Fourestier, Harshitha Menon November 22, 2011 – INRIA-UIUC joint laboratory – 17

kNeighbor: Execution time & migrations

 1

 10

 100

 1000

512 1024 2048 4096 8192

A
ve

ra
ge

 t
im

e
pe

r
st

ep
 (

m
s)

Number of cores

kNeighbor: Execution time on Intrepid

No LB
GreedyLB
RefineLB

RefineCommLB
MetisLB

ScotchLB
ScotchRefineLB

100
101
102
103
104
105
106
107
108
109

512 1024 2048 4096 8192

N
um

be
r

of
 m

ig
ra

tio
ns

 p
er

 s
te

p

Number of cores

kNeighbor: Number of migrations on Intrepid

GreedyLB
RefineLB

RefineCommLB
MetisLB

ScotchLB
ScotchRefineLB

I MeTiS and have better execution time than
the other load balancers

I ScotchRefineLB migrates 50-70% fewer objects than
ScotchLB and still gives performance very similar to
MeTiS and

Sébastien Fourestier, Harshitha Menon November 22, 2011 – INRIA-UIUC joint laboratory – 18

stencil4d benchmark

I Representative of the communication pattern in a Lattice
QCD code

I Computation intensive benchmark
I In each iteration:

I Each object exchanges boundary data with its eight
neighbors

I Once the data exchange is done, each object computes a
9-point stencil on its data

I The experiments were run on Intrepid (Blue Gene/P)

Sébastien Fourestier, Harshitha Menon November 22, 2011 – INRIA-UIUC joint laboratory – 19

stencil4d: Execution time

 0

 0.5

 1

 1.5

 2

64 128 256 512 1024

A
ve

ra
ge

 t
im

e
pe

r
st

ep
 (

s)

Number of cores

stencil4d: Execution time on Intrepid

No LB
GreedyLB
RefineLB

RefineCommLB
MetisLB

ScotchLB
ScotchRefineLB

I All load balancers reduce the execution time by 50-65%
compared to No LB

I Due to the imbalance ratio parameter, ScotchLB gives
7-11% better performance compared to MetisLB

Sébastien Fourestier, Harshitha Menon November 22, 2011 – INRIA-UIUC joint laboratory – 20

stencil4d: Imbalance ratio & strategies

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 1 2 3 4 5 6 7 8 9

A
ve

ra
ge

 t
im

e
pe

r
st

ep
 (

s)

Percentage imbalance allowed

stencil4d: ScotchLB on Intrepid

2048 cores
1024 cores
512 cores
256 cores

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

128 256 512 1024 2048

A
ve

ra
ge

 t
im

e
pe

r
st

ep
 (

s)

Number of cores

stencil4d: STRAT_QUALITY versus STRAT_BALANCE

ScotchLB Quality
ScotchLB Balance

I Best performance is obtained when strict load balance is
ensured

I STRAT BALANCE outperforms STRAT QUALITY for
stencil4d because it prefers balancing loads over
optimizing communication

Sébastien Fourestier, Harshitha Menon November 22, 2011 – INRIA-UIUC joint laboratory – 21

Sébastien Fourestier, Harshitha Menon November 22, 2011 – INRIA-UIUC joint laboratory – 22

3
Prospects

Ongoing work

I Tuning 6.0 mapping strategy before official
publication

I Parallel version of 6.0 new functionalities
I Parallel static mapping
I Parallel partitioning and static mapping with fixed

vertices
I Parallel repartitioning and remapping
I Parallel repartitioning and remapping with fixed vertices

I Planed to be in 6.1
I Release at the beginning of 2012

Sébastien Fourestier, Harshitha Menon November 22, 2011 – INRIA-UIUC joint laboratory – 23

Ongoing collaborations within the joint laboratory

I Load balancing within Charm++
I Sanjay Kalé, Abhinav Bhatelé and Harshitha Menon
I A paper has been submitted to IPDPS

I Multi-phase mapping for OpenAtom (Charm++)
I Anshu Arya and Ramprasad Venkataraman

I static mapping comparison
I Torsten Hoelfer

I Clustering (fault resilence) (Charm++)
I Esteban Meneses-Rojas

I Power-aware load balancing (Charm++)
I Osman Sarood

Sébastien Fourestier, Harshitha Menon November 22, 2011 – INRIA-UIUC joint laboratory – 24

Thanks

Dynamic repartitioning

I Multilevel framework
adapted for repartitioning

I Coarsening mates only
vertices belonging to the
same part

I Initial mapping by
recursive bimapping (with
fictive edges)

I K -way mapping
refinement (with fictive
edges)

Sébastien Fourestier, Harshitha Menon November 22, 2011 – INRIA-UIUC joint laboratory – 26

Jug of the Danaides

I Sketch of the algorithm

Sébastien Fourestier, Harshitha Menon November 22, 2011 – INRIA-UIUC joint laboratory – 27

	Scotch 6.0
	Dynamic load balancing in Charm++
	Prospects

