Joint Laboratory - \
* for Petascale Computation

wllh e =

-

Distributed recovery for send-
deterministic HPC applications

Tatiana V. Martsinkevich, Thomas Ropars, Amina
Guermouche, Franck Cappello

: informatics, mathematics

ENS DE LYON

|||W|||
~C
>
=
s
(7]
co
O
=m
Ill




A W e\ Fault-tolerance in HPC
' for Petas;ale Comput'atio_p‘_‘., ! \

i > applications

* Number of cores on one CPU and number of CPU grows

 Can expect frequent hardware failures

 What fault tolerance protocol to use in large scale systems?

- Coordinated checkpointing, message logging, etc. protocols don't
scale well as is

* For message passing applications hybrid protocols are the
most promising

- Hierarchical rollback-recovery protocols



A W e\ Hierarchical rollback-recovery
' for Petas;ale Computjatio_p‘_‘.., ! \

i > protocols

* Goal: failure containment
* Divide ps-s in clusters
* Inside cluster: coordinated checkpointing protocol
* Between clusters: message logging protocol
- Assume sender-based message logging

* Clustering algorithm should balance:

- Number of ps-s in cluster (for coordinated checkpointing protocol)

- Number of clusters (for message logging protocol) -
* Upon failure:

- When a ps fails all ps-s in the same cluster

rollback and restart

- Others re-send messages to rolled back ps-s



eref®.... o1 Recovery with hybrid RR protocols

'pv. . t .

- Focus is on Failure-free performance vs. Provision of
enough data to be able to recover

>  What we need to log to be able to recover?

But what about optimizing performance of the
recovery?



int Lab ‘t’ - A\ '
(AN gt PR U R\ Recovery issues

-

m1\
P11 \ - / 8- Execution before the failure:
P2 —] > m1 — m4
___________________ ml\______ e P
P3 | -
po —1 \ -
1
P1—1 i > Wrong execution in recovery:
| m4/ \ . m4 received before m1

——  Message re-sent from logs

* Guarantee replay of orphan messages (m2)

- otherwise execution path is not the same anymore



};mmbo-rﬁ / '.:._Background & Motivation: Recovery in
HydEE

* Jfor Petascale Computation &
g ,’"- ) :‘—’ -

HydEE - hierarchical rollback-recovery protocol
—  Attaches phase numbers to messages to describe causal order

* Separate recovery process controls the recovery
* |t has the info about phases of logged and orphan messages

* |t ensures the causal order or messages sends

1 2 2 .
______ T TN e
P1 I m1 m3 . R
1 1 \3 @ml. M2 *@
P2 —j}— * ———— replayed ..~ S 9
MmN 7Zm4 et ™
P3 1 2’ " @°

—— Orphan message
* Orphan message replay is guaranteed by send-determinism

* Not scalable!



AW T A\ Prerequisite: Send-deterministic
' for Petas;ate Comput'atio'n. \

i S application

* In any correct execution:

— Same messages are always sent in the same order
— The reception order has no impact on the execution

4 - P~ 4 >
~
m2/ m& m2/ m&




i

‘ft%b@ ' Distributed recovery: principle idea

Rolled back ps notifies everyone about the date from
which it restarts

> ps-s in the same cluster roll back too and notify
everyone

> ps-s in other clusters compute what messages to re-
send and start re-sending one by one to recovering ps-s

* Replay of orphan messages: guaranteed by send-
determinism

* Causal dependency? Correct order of receives?

v




l

AT R PR .
J('Jl.rflor PaetagggleoCbmp'utatio_p‘?:, A \ R\ Re Ce|Ve O rd e r

g

* Named point-to-point communication OK (assume FIFO)
* Problem arrises with anonymous reception calls
MPI _Recv(..., MPI _ANY SOURCE, ...)

Next message selection:

? Is this a message re-sent to me from logs?

? Is this a message fo be generated by another restarted PE and
I need to wait for it ?

* Some additional info is necessary for message matching

. 5

match by communication pattern



i

oy 8 Communication patterns

* Confines matching send and receive calls

* Has unique id and a counter

- id and counter attached to every outgoing message

- match attached value to local value upon receive

for(inti=0; i< nb_loop; i++){ \
/
for(j=0; j < nprocs; j++) {
Counter++ MPI_Irecv( msgl, ..., MPI_ ANY SOURCE,
every time tag0, ... );
we loop MPI_Isend( msgl, ..., j, tag0, ...);
back here ] ) (R (88 cetem A
MPI_Waitall();

. MPI_Barrier( MPI_COMM_WORLD );

}
10



i

fft%)b@ ! Communication patterns detection

* Automatically during runtime x
- Too difficult to detect matching send and receive calls in the code
* Manual O

- Programmer adds special function calls in the code with anonymous
receives

DECLARE_PATTERN(name) — declare new pattern and init its counter
BEGIN_ITERATION(name) — increment counter on every call

END_ITERATION(name) — end of comm pattern

11



i

ff”;)b@ ' Communication patterns detection

* Sender and receiver increment counters simultaneously

* During receive match rank, tag, pattern id and counter

NEW_PATTERN(”A”);
for(inti=0; i< nb_loop; i++){

BEGIN _ITERATION (”A”);

for(j=0; j < nprocs; j++) {

MPI _Irecv( msgl, ..., MPI ANY_SOURCE,
tago, ... );

MPI_Isend( msgl, ..., j, tag0, ...);

}

MPI_Waitall();

MPI_Barrier( MPI. COMM_WORLD );

}
END ITERATION(”A”);

12



Joint La bo'r.a‘t&

",.for Petas;ate Cgmputjatio:rjy;:_:: _ PrOtOCO| : fa I I U re_free exeCUti 0 n ( 1 )

* Attach pattern id and counter value to each outgoing
message

* Log outgoing messages and ...

What else is necessary to restore
a correct execution?

13



oo, 8 W Protocol: recovery

ecovering ps:

* execute normally

Match pattern id and counter for incoming messages
* don't send inter-cluster messages for real
Replaying ps:

* Resend messages on each channel for which we have logged

messages
/g\v‘

Msg3 ‘

replaying ps recovering ps-s

14



Joint La bo'r.a‘t&

.‘,.for Petas;ate Cgmputjatio:rjy;,'_; \ PrOtO COl : recove ry

Sending (and receiving) consists of several events

first last
R %C “ % © Cgmpliting - MPI library
MPI_ISG}Q#H‘ P MPI_Wait” ‘T > Application
post X done

block until completion

Completion order A
(during failure free) y'
msg3

msg1 replaying ps

2
" megs (@)

If we "wait” in wrong order in replay we can
potentially block forever

recovering ps-s

15



J"?E?E}Pi?agiifzﬁ’mpm_m _ = ' Protocol: failure-free execution(2)

* Attach pattern id and counter value to each outgoing
message

* Log messages and the order of request completion of
inter-cluster messages

first last
packet packet ooy
pleting )
A 7& }"3 I - MPI library
MPI_lseng” \ MPI_Wait”" \ . Applcation
post \

16



Joint La bdrafo_

' for Petas;ale Cgmp.utatio_p‘_‘.:; \Ates Te Stl n g

-

* NAS Benchmark (nprocs=64, class=“B")

* Grid5000 (Nancy:graphene)

. 1 CPU Intel@2.53GHz, 4 cores/CPU, 16GB RAM
. Infiniband-20G (Mellanox Technologies MT26418 )

* (Clustering tool

 Recovery / failure free for different cluster sizes

Expect speed up from:
> Recovering ps doesn't send inter cluster messages

> Replaying ps deliver message earlier than recovering ps does receive
call

17



int Labbrato _ \
T o G W Early results

Recovery cluster size 8

15 Recovery cluster size 16
: 1.2

BT CG FT MG CG
BT CG FT MG CG B Failure-free M Recovery

M Failure-free M Recovery

Recovery cluster size 32
1.2

Sometimes recovery is 1
slower than failure free o8

execution, hmm... 0.6
04

0.2

BT CG FT MG CG

M Failure-free ® Recovery

18



Joint La bo'r.é}

o ressle e W Conclusions & Future work

-

* More analysis needed to understand what impacts recovery
speed

. Number of channels?

. Size of messages?

* What will happen on larger scale?

e (Can we do better?

. Send first n messages on channel and only then start completing

19



Joint La bor.a‘t&

.‘,for PetasFate Cgmputatiop”‘.f_'_:: N\ COI Ia bO ratl O n

* Ability to do partial process restart with MPICH2?

* Communication pattern detection during compilation?

20



Joint La bor.a‘ta;

* for Petascale Computation
_ ‘ il =

Thank you
Questions?

21



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

