
1

Distributed recovery for send-
deterministic HPC applications

Tatiana V. Martsinkevich, Thomas Ropars, Amina
Guermouche, Franck Cappello

2

Fault-tolerance in HPC
applications

• Number of cores on one CPU and number of CPU grows

• Can expect frequent hardware failures

• What fault tolerance protocol to use in large scale systems?

- Coordinated checkpointing, message logging, etc. protocols don't
scale well as is

• For message passing applications hybrid protocols are the
most promising

- Hierarchical rollback-recovery protocols

3

Hierarchical rollback-recovery
protocols

 Goal: failure containment

 Divide ps-s in clusters

 Inside cluster: coordinated checkpointing protocol

 Between clusters: message logging protocol
− Assume sender-based message logging

 Clustering algorithm should balance:
− Number of ps-s in cluster (for coordinated checkpointing protocol)

− Number of clusters (for message logging protocol)

 Upon failure:
− When a ps fails all ps-s in the same cluster

rollback and restart

− Others re-send messages to rolled back ps-s

P P

P

P

P

P P

4

Recovery with hybrid RR protocols

 Focus is on Failure-free performance vs. Provision of
enough data to be able to recover

 What we need to log to be able to recover?

 But what about optimizing performance of the
recovery?

5

Recovery issues

 Preserve causal dependency between messages

 Guarantee replay of orphan messages (m2)

− otherwise execution path is not the same anymore

P0

P1

P3

P2

m1

m2 m3

m4

P0

P1

P3

P2

m1

m2m3

m4

Message re-sent from logs

Execution before the failure:
m1 → m4

Wrong execution in recovery:
m4 received before m1

6

Background & Motivation: Recovery in
HydEE

• HydEE – hierarchical rollback-recovery protocol

– Attaches phase numbers to messages to describe causal order

• Separate recovery process controls the recovery

• It has the info about phases of logged and orphan messages

• It ensures the causal order or messages sends

• Orphan message replay is guaranteed by send-determinism

• Not scalable!

Orphan message

P0

P1

P2

P3

C1

C2

C3 2

3 3
RP

2

1

1

2

1

2

m1

m2

m3

m4

① m1, m2

replayed

② send next msg

② send next msg

1

7

Prerequisite: Send-deterministic
application

• In any correct execution:
– Same messages are always sent in the same order

– The reception order has no impact on the execution

P0

P1

P2

m1

m2

m3

m4

P0

P1

P2

m1

m2

m3

m4
≈

8

Distributed recovery: principle idea

 Rolled back ps notifes everyone about the date from
which it restarts

 ps-s in the same cluster roll back too and notify
everyone

 ps-s in other clusters compute what messages to re-
send and start re-sending one by one to recovering ps-s

 Replay of orphan messages: guaranteed by send-
determinism

 Causal dependency? Correct order of receives?
P0

P1

P3

P2

m1

m2m3

m4

9

Receive order

 Named point-to-point communication OK (assume FIFO)

 Problem arrises with anonymous reception calls

 MPI_Recv(..., MPI_ANY_SOURCE, ...)

 Some additional info is necessary for message matching

Next message selection:
? Is this a message re-sent to me from logs?

? Is this a message to be generated by another restarted PE and
I need to wait for it ?

match by communication pattern

10

Communication patterns

 Confnes matching send and receive calls

 Has unique id and a counter
− id and counter attached to every outgoing message

− match attached value to local value upon receive

for(int i = 0; i< nb_loop; i++){

 for(j=0; j < nprocs; j++) {
 MPI_Irecv(msg1, ... , MPI_ANY_SOURCE,
 tag0, ...);
 MPI_Isend(msg1, ... , j, tag0, ...);
 }
 MPI_Waitall();
 MPI_Barrier(MPI_COMM_WORLD);

}

Pattern “A”

Counter++
every time

we loop
back here

11

Communication patterns detection

 Automatically during runtime ×
− Too difficult to detect matching send and receive calls in the code

 Manual ○
− Programmer adds special function calls in the code with anonymous

receives

DECLARE_PATTERN(name) – declare new pattern and init its counter

BEGIN_ITERATION(name) – increment counter on every call

END_ITERATION(name) – end of comm pattern

12

Communication patterns detection

 Sender and receiver increment counters simultaneously

 During receive match rank, tag, pattern id and counter

NEW_PATTERN(”A”) ;
for(int i = 0; i< nb_loop; i++){
 BEGIN_ITERATION (”A”) ;
 for(j=0; j < nprocs; j++) {
 MPI_Irecv(msg1, ... , MPI_ANY_SOURCE,
tag0, ...);
 MPI_Isend(msg1, ... , j, tag0, ...);
 }
 MPI_Waitall();
 MPI_Barrier(MPI_COMM_WORLD);
}
END_ITERATION(”A”) ;

13

Protocol: failure-free execution(1)

 Attach pattern id and counter value to each outgoing
message

 Log outgoing messages and …

 What else is necessary to restore
a correct execution?

14

Protocol: recovery

 Recovering ps:

* execute normally

Match pattern id and counter for incoming messages

* don't send inter-cluster messages for real

Replaying ps:

* Resend messages on each channel for which we have logged
messages

0

1

2

3

msg1

msg2

msg3

replaying ps recovering ps-s

15

Protocol: recovery

 Sending (and receiving) consists of several events

MPI library

Application

post

MPI_Isend

first
packet

last
packet

MPI_Wait

done

completing

block until completion

Completion order
(during failure free)

msg3
msg1
msg2

0

1

2

3

msg1

msg2

msg3

replaying ps recovering ps-s

If we “wait” in wrong order in replay we can
potentially block forever

16

Protocol: failure-free execution(2)

 Attach pattern id and counter value to each outgoing
message

 Log messages and the order of request completion of
inter-cluster messages

MPI library

Application

post

MPI_Isend

first
packet

last
packet

MPI_Wait

done

completing

log message log request completion

17

Testing

 NAS Benchmark (nprocs=64, class=“B”)

 Grid5000 (Nancy:graphene)
 1 CPU Intel@2.53GHz, 4 cores/CPU, 16GB RAM

 Infniband-20G (Mellanox Technologies MT26418)

 Clustering tool

 Recovery / failure free for different cluster sizes

Expect speed up from:

 Recovering ps doesn't send inter cluster messages

 Replaying ps deliver message earlier than recovering ps does receive
call

18

Early results

BT CG FT MG CG
0

0.2

0.4

0.6

0.8

1

1.2

Recovery cluster size 32

Failure-free Recovery

BT CG FT MG CG
0

0.2

0.4

0.6

0.8

1

1.2
Recovery cluster size 16

Failure-free RecoveryBT CG FT MG CG
0

0.2

0.4

0.6

0.8

1

1.2

Recovery cluster size 8

Failure-free Recovery

Sometimes recovery is
slower than failure free

execution, hmm...

19

Conclusions & Future work

 More analysis needed to understand what impacts recovery
speed

 Number of channels?

 Size of messages?

 What will happen on larger scale?

 Can we do better?
 Send frst n messages on channel and only then start completing

20

Collaboration

 Ability to do partial process restart with MPICH2?

 Communication pattern detection during compilation?

21

Thank you
Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

