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i > applications

* Number of cores on one CPU and number of CPU grows

 Can expect frequent hardware failures

 What fault tolerance protocol to use in large scale systems?

- Coordinated checkpointing, message logging, etc. protocols don't
scale well as is

* For message passing applications hybrid protocols are the
most promising

- Hierarchical rollback-recovery protocols
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i > protocols

* Goal: failure containment
* Divide ps-s in clusters
* Inside cluster: coordinated checkpointing protocol
* Between clusters: message logging protocol
- Assume sender-based message logging

* Clustering algorithm should balance:

- Number of ps-s in cluster (for coordinated checkpointing protocol)

- Number of clusters (for message logging protocol) -
* Upon failure:

- When a ps fails all ps-s in the same cluster

rollback and restart

- Others re-send messages to rolled back ps-s



eref®.... o1 Recovery with hybrid RR protocols

'pv. . t .

- Focus is on Failure-free performance vs. Provision of
enough data to be able to recover

>  What we need to log to be able to recover?

But what about optimizing performance of the
recovery?
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m1\
P11 \ - / 8- Execution before the failure:
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P1—1 i > Wrong execution in recovery:
| m4/ \ . m4 received before m1

——  Message re-sent from logs

* Guarantee replay of orphan messages (m2)

- otherwise execution path is not the same anymore
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HydEE - hierarchical rollback-recovery protocol
—  Attaches phase numbers to messages to describe causal order

* Separate recovery process controls the recovery
* |t has the info about phases of logged and orphan messages

* |t ensures the causal order or messages sends
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—— Orphan message
* Orphan message replay is guaranteed by send-determinism

* Not scalable!
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i S application

* In any correct execution:

— Same messages are always sent in the same order
— The reception order has no impact on the execution
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‘ft%b@ ' Distributed recovery: principle idea

Rolled back ps notifies everyone about the date from
which it restarts

> ps-s in the same cluster roll back too and notify
everyone

> ps-s in other clusters compute what messages to re-
send and start re-sending one by one to recovering ps-s

* Replay of orphan messages: guaranteed by send-
determinism

* Causal dependency? Correct order of receives?
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* Named point-to-point communication OK (assume FIFO)
* Problem arrises with anonymous reception calls
MPI _Recv(..., MPI _ANY SOURCE, ...)

Next message selection:

? Is this a message re-sent to me from logs?

? Is this a message fo be generated by another restarted PE and
I need to wait for it ?

* Some additional info is necessary for message matching

. 5

match by communication pattern
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* Confines matching send and receive calls

* Has unique id and a counter

- id and counter attached to every outgoing message

- match attached value to local value upon receive

for(inti=0; i< nb_loop; i++){ \
/
for(j=0; j < nprocs; j++) {
Counter++ MPI_Irecv( msgl, ..., MPI_ ANY SOURCE,
every time tag0, ... );
we loop MPI_Isend( msgl, ..., j, tag0, ...);
back here ] ) (R (88 cetem A
MPI_Waitall();

. MPI_Barrier( MPI_COMM_WORLD );

}
10
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fft%)b@ ! Communication patterns detection

* Automatically during runtime x
- Too difficult to detect matching send and receive calls in the code
* Manual O

- Programmer adds special function calls in the code with anonymous
receives

DECLARE_PATTERN(name) — declare new pattern and init its counter
BEGIN_ITERATION(name) — increment counter on every call

END_ITERATION(name) — end of comm pattern
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* Sender and receiver increment counters simultaneously

* During receive match rank, tag, pattern id and counter

NEW_PATTERN(”A”);
for(inti=0; i< nb_loop; i++){

BEGIN _ITERATION (”A”);

for(j=0; j < nprocs; j++) {

MPI _Irecv( msgl, ..., MPI ANY_SOURCE,
tago, ... );

MPI_Isend( msgl, ..., j, tag0, ...);

}

MPI_Waitall();

MPI_Barrier( MPI. COMM_WORLD );

}
END ITERATION(”A”);
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* Attach pattern id and counter value to each outgoing
message

* Log outgoing messages and ...

What else is necessary to restore
a correct execution?

13



oo, 8 W Protocol: recovery

ecovering ps:

* execute normally

Match pattern id and counter for incoming messages
* don't send inter-cluster messages for real
Replaying ps:

* Resend messages on each channel for which we have logged

messages
/g\v‘

Msg3 ‘

replaying ps recovering ps-s
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Sending (and receiving) consists of several events

first last
R %C “ % © Cgmpliting - MPI library
MPI_ISG}Q#H‘ P MPI_Wait” ‘T > Application
post X done

block until completion

Completion order A
(during failure free) y'
msg3

msg1 replaying ps

2
" megs (@)

If we "wait” in wrong order in replay we can
potentially block forever

recovering ps-s
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* Attach pattern id and counter value to each outgoing
message

* Log messages and the order of request completion of
inter-cluster messages

first last
packet packet ooy
pleting )
A 7& }"3 I - MPI library
MPI_lseng” \ MPI_Wait”" \ . Applcation
post \
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* NAS Benchmark (nprocs=64, class=“B")

* Grid5000 (Nancy:graphene)

. 1 CPU Intel@2.53GHz, 4 cores/CPU, 16GB RAM
. Infiniband-20G (Mellanox Technologies MT26418 )

* (Clustering tool

 Recovery / failure free for different cluster sizes

Expect speed up from:
> Recovering ps doesn't send inter cluster messages

> Replaying ps deliver message earlier than recovering ps does receive
call

17
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Recovery cluster size 8

15 Recovery cluster size 16
: 1.2

BT CG FT MG CG
BT CG FT MG CG B Failure-free M Recovery

M Failure-free M Recovery

Recovery cluster size 32
1.2

Sometimes recovery is 1
slower than failure free o8

execution, hmm... 0.6
04

0.2

BT CG FT MG CG

M Failure-free ® Recovery
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* More analysis needed to understand what impacts recovery
speed

. Number of channels?

. Size of messages?

* What will happen on larger scale?

e (Can we do better?

. Send first n messages on channel and only then start completing

19
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* Ability to do partial process restart with MPICH2?

* Communication pattern detection during compilation?
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Thank you
Questions?
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