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Why Global-View?
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= Mechanism for dealing with large datasets

— Similar convenience as shared memory
e Don’t operate on data in-place
* No coherence across data copies

= Mechanism for coping with sparse, unbalanced computations
— Work distribution decoupled from data distribution
— More flexible load balancing
= Computational chemistry apps exhibit both of these characteristics

= Specifically Investigate: NWChem and Global Arrays
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Why One-Sided?
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= Explicit message exchange couples two operations:

1. Synchronization of processes
e Operation completes when sender calls send and receiver calls receive

2. Data movement
®" One-sided decouples these operations

— Enables asynchronous data movement
— Efficient support through RDMA-capable networks



Global Arrays and ARMCI
The Aggregate Remote Memory Copy Interface

Global Arrays (GA)

— Distributed, shared arrays

ARMCI

— GA’s runtime system

— Manages array data

— Provides portability
Async., one-sided comm.

— Get, put, accumulate, ...

— Noncontiguous operations
Mutexes, atomics, collectives,
processor groups, ...
Consistency model

— Remote: Location consistent

— Local: Direct load/store allowed

GA_Put({x,y}L{x’y’'})

> ARMCI_PutS(rank, addr, ...)




The GA/ARMCI Software Stack

— Natively implemented NWChaam NWEheam
Global Arrays Global Arrays
— Sparse vendor support ARMCI —>| ARMCI .
— Implementations lag systems MPI | | MPI
Native Native

= MPI is ubiquitous

— Support one-sided for 15 years

" Goal: Use MPI RMA to implement ARMCI

Portable one-sided communication for NWChem users
MPI-2: drive implementation performance, one-sided tools
MPI-3: motivate features

i

Interoperability: Increase resources available to application
e ARMCI/MPI share progress, buffer pinning, network and host resources

" Challenge: Mismatch between MPI-RMA and ARMCI



MPI Remote Memory Access Interface

= Active and Passive target Modes Rank 0 Rank 1
— Active: target participates
— Passive: target does not participate

* Window: Expose memory for RMA

— Logical public and private copies

— Conservative data consistency model

Private
= Accesses must occur within an epoch Copy

— Lock(window, rank) ... Unlock(window, rank)

— Access mode can be exclusive or shared

— Operations are not ordered within an epoch



MPI-2 RMA “Separate” Memory Model

Concurrent, conflicting accesses are erroneous

- Same source
Same epoch Diff. Sources
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= Conservative, but extremely portable
= Compatible with non-coherent memory systems



Translation: Global Memory Regions

Absolute Process Id

= Translate between ARMCI
and MPI shared data

0 Ox6b7 O0x7af 0x0c1
segment representations 1 0x9d9  OxO0 0x0
— ARMCI: Array of base pointers 2 0x611 Ox38b 0x659
* Translate between MPland
ARMCI comm. parameters
— MPI: <win., win. rank, disp.> :
Allocation Metadata
— ARMCI: <abs. rank, address> o
MPI_Win window;
" Preserve MPI RMA semantics int size[nproc];
ARMCI_Group grp;
— Manage access epochs ARMCI Mutex rmw:

— Avoid conflicting accesses

— Protect shared buffers



GMR: Preserving MPI local access semantics

Absolute Process Id
ARMCI_Put( src = 0x9e0, dst = 0x39b,

size = 8 bytes, rank =1 );

0 Ox6b7 Ox7af 0x0c1
=  Problem: Local buffer is also shared 1 0x9d91 0x0 0x0
— Can’t access without epoch - —_
_ Canwe lock it? ‘2 ) Ox611 [0x38b 0x659
e Same window: not allowed 3 Oxab3 0x3f8 0x0
e Diff window: can deadlock
= Solution: Copy to private buffer
src_copy = Lock; memcpy; Unlock Allocation Metadata
window = win;
xrank = GMR _Translate(comm, rank) Size ={1024, ..};
Grp = comm;

Lock(win, Xxrank)
Put(src_cpy, dst, size, xrank)
Unlock(win, Xrank)




ARMCI Noncontiguous Operations: 1/0 Vector

" Generalized noncontiguous transfer
with uniform segment size:

typedef struct {

void **src_ptr_array; // Source addresses

void **dst_ptr_array; // Dest. Addresses

int bytes; // Length of all seg.

int ptr_array_len; // Number of segments
}armci_giov_t;

lARMCI_GetV(...)

= Three methods to support in MPI
1. Conservative (one epoch): Lock, Put/Get/Acc, Unlock, ...
2. Batched (multiple epochs): Lock, Put/Get/Acc, ..., Unlock

3. Direct: Generate MPI indexed datatype for source and destination
e Single operation/epoch: Lock, Put/Get/Acc, Unlock
e Handoff processing to MPI
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Avoiding concurrent, conflicting accesses

Contiguous operations 0x917 — 0xb10
— Don’t know what other nodes do

— Worap each call in an exclusive epoch

= Noncontiguous operations 0x3f0 — 0x517

— 1/0 Vector segments may overlap
— MPI Error!
= Must detect errors and fall back to Ox1a6 —0x200 | | Ox8bb — 0xa02

conservative mode if needed
— MPI Errors can be fatal

m  Generate a conflict tree
— Sorted, self-balancing AVL tree 0x518 — 0x812 Oxf37 — Oxf47

1. Search the tree for a match
2. If (match found): Conflict!
3. Else: Insert into the tree

=  Merge search/insert steps into a single traversal

11



Experimental Setup

IBM BG/P (Intrepid) 40,960 1x4 2 GB

Cray XE6 (Hopper) 6,392 2x12 32 GB

= Communicaton Benchmarks
— Contiguous bandwidth
— Noncontiguous Bandwidth

= NWChem performance evaluation
— CCSD(T) calculation on water pentamer

= |B, XT5: Native much better than
ARMCI-MPI (needs tuning/MPI-3)

3D Torus

Gemini

IBM MPI

Cray MPI
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Bandwidth (GB/Sec)
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Contiguous Communication Bandwidth (BG/P & XE6)
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= BG/P: Native is better for small to medium size messages

— Bandwidth regime: get/put are same and acc is ~15% less BW

= XE: ARMCI-MPI is 2x better for get/put

— Double precision accumulate, 2x better small, same large xfers
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Strided Communication Bandwidth (BG/P)
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Strided Communication Benchmark (XE6)
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NWChem Performance (BG/P)
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NWChem Performance (XE6)
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e
ARMCI on MPI-2 Implementation Checklist

1. One-sided

v" Translation provided by GMR

— Effort needed to avoid concurrent, conflicting accesses
2. Collectives

v" Implemented as MPI user-defined collectives

3. Mutexes
— MPI-2 RMA does not support atomic RMW operations
e Read, modify, write is forbidden within an epoch
— Queueing mutex implementation (Latham, Ross, & Thakur [IJHPCA ‘07])
X O(P) space
4. One-sided atomic swap, fetch-and-add (atomic w.r.t. other atomics)

X Attach an RMW mutex to each GMR
e Mutex_lock, get, modify, put, Mutex_unlock
¢ Slow, best we can do in MPI-2

5. Non-blocking operations
X Implemented as blocking

6. Non-collective processor groups

— Recursive intercomm. merging algorithm (Dinan, et al. [EuroMPI '11])
X O(log? P) communication cost
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New Capabilities and Features in MPI-3 RMA

= “Unified” memory model
— Take advantage of coherent hardware

— Relaxed synchronization will yield
better performance

= Conflicting accesses

— Localized to locations accessed -

— Relaxed to undefined

Private

— Load/store does not “corrupt” Copy

= Atomic CAS, and Fetch-and-Add, Ucr‘:;id
and new accumulate operations S—
— Mutex space overhead MPI-3: O(1)

= Request-based non-blocking ops
= Shared memory (IPC) windows
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Implementation of MPI-3 RMA in MPICH

= Extensive remodeling of CH3
RMA implementation

— New window types

— New communication operations
— New synchronization operations/modes
— Passive target at multiple targets

" Created new infrastructure to enable performance research
— Tracking of operations, window synchronization state
— More flexible passive target sync. and completion of operations

= MPI-3 RMA is available in MPICH 3.0rc1

— Released: Nov. 13, 2012
— Please try it out!
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ARMCI on MPI-3 Implementation (ongoing work)

1. One-sided
v" Translation provided by GMR
v" No need to avoid concurrent, conflicting accesses (undefined results)

2. Collectives
v" Implemented as MPI user-defined collectives

3. Mutexes
v" Space-scalable, using distributed MCS lock

4. One-sided atomic swap, fetch-and-add (atomic w.r.t. other
atomics)

v" Implementation using MPI-3 RMW operations
5. Non-blocking operations
v" Implementation using MPI-3 request-generating operations

6. Non-collective processor groups
v" Implementation using MPI-3 MPl_Comm_create_group()
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MPI-3 RMA Discussion

= Discuss opportunities for collaboration and involvement in
ongoing work

= MPI-3 RMA

— Performance optimization

e Shared memory optimization
e RDMA optimization
— Development of performance and correctness debugging tools

= Global-View

— Apply MPI-3 as a substrate for additional existing and new global-view
models
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Conclusions

= ARMCI-MPI:

— Complete, portable runtime system for GA and NWChem
e MPI-2 performance driver
e MPI-3 feature driver

— Mechanisms to overcome interface and semantic mismatch
— Performance is pretty good, dependent on impl. Tuning
— Available for download with MPICH
= MPI-3:
— Exciting new capabilities
— Increased flexibility
— Avaliable in MPICH 3.0

Contact: Jim Dinan <dinan@mcs.anl.gov>
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