A One-Sided View of HPC: Global-View

Models and Portable Runtime Systems

James Dinan

James Wallace Gives Postdoctoral Fellow
Argonne National Laboratory

Why Global-View?
Proc, Proc, Proc,

4 Shared
S o

T O

T ©

5 2

=] Private
O

= Mechanism for dealing with large datasets

— Similar convenience as shared memory
e Don’t operate on data in-place
* No coherence across data copies

= Mechanism for coping with sparse, unbalanced computations
— Work distribution decoupled from data distribution
— More flexible load balancing
= Computational chemistry apps exhibit both of these characteristics

= Specifically Investigate: NWChem and Global Arrays

o\—fh’g‘

Why One-Sided?

NG

R

= Explicit message exchange couples two operations:

1. Synchronization of processes
e Operation completes when sender calls send and receiver calls receive

2. Data movement
®" One-sided decouples these operations

— Enables asynchronous data movement
— Efficient support through RDMA-capable networks

Global Arrays and ARMCI
The Aggregate Remote Memory Copy Interface

Global Arrays (GA)

— Distributed, shared arrays

ARMCI

— GA’s runtime system

— Manages array data

— Provides portability
Async., one-sided comm.

— Get, put, accumulate, ...

— Noncontiguous operations
Mutexes, atomics, collectives,
processor groups, ...
Consistency model

— Remote: Location consistent

— Local: Direct load/store allowed

GA_Put({x,y}L{x’y’'})

> ARMCI_PutS(rank, addr, ...)

The GA/ARMCI Software Stack

— Natively implemented NWChaam NWEheam
Global Arrays Global Arrays
— Sparse vendor support ARMCI —>| ARMCI .
— Implementations lag systems MPI | | MPI
Native Native

= MPI is ubiquitous

— Support one-sided for 15 years

" Goal: Use MPI RMA to implement ARMCI

Portable one-sided communication for NWChem users
MPI-2: drive implementation performance, one-sided tools
MPI-3: motivate features

i

Interoperability: Increase resources available to application
e ARMCI/MPI share progress, buffer pinning, network and host resources

" Challenge: Mismatch between MPI-RMA and ARMCI

MPI Remote Memory Access Interface

= Active and Passive target Modes Rank 0 Rank 1
— Active: target participates
— Passive: target does not participate

* Window: Expose memory for RMA

— Logical public and private copies

— Conservative data consistency model

Private
= Accesses must occur within an epoch Copy

— Lock(window, rank) ... Unlock(window, rank)

— Access mode can be exclusive or shared

— Operations are not ordered within an epoch

MPI-2 RMA “Separate” Memory Model

Concurrent, conflicting accesses are erroneous

- Same source
Same epoch Diff. Sources

LN N \ AW

Public) \Z) \Z \ =
Copy B B
A

: H H A A
| | | X X
v \4 \ 4 \4 \4
Private
—
Copy A
v
load store

= Conservative, but extremely portable
= Compatible with non-coherent memory systems

Translation: Global Memory Regions

Absolute Process Id

= Translate between ARMCI
and MPI shared data

0 Ox6b7 O0x7af 0x0c1
segment representations 1 0x9d9 OxO0 0x0
— ARMCI: Array of base pointers 2 0x611 Ox38b 0x659
* Translate between MPland
ARMCI comm. parameters
— MPI: <win., win. rank, disp.> :
Allocation Metadata
— ARMCI: <abs. rank, address> o
MPI_Win window;
" Preserve MPI RMA semantics int size[nproc];
ARMCI_Group grp;
— Manage access epochs ARMCI Mutex rmw:

— Avoid conflicting accesses

— Protect shared buffers

GMR: Preserving MPI local access semantics

Absolute Process Id
ARMCI_Put(src = 0x9e0, dst = 0x39b,

size = 8 bytes, rank =1);

0 Ox6b7 Ox7af 0x0c1
= Problem: Local buffer is also shared 1 0x9d91 0x0 0x0
— Can’t access without epoch - —_
_ Canwe lock it? ‘2) Ox611 [0x38b 0x659
e Same window: not allowed 3 Oxab3 0x3f8 0x0
e Diff window: can deadlock
= Solution: Copy to private buffer
src_copy = Lock; memcpy; Unlock Allocation Metadata
window = win;
xrank = GMR _Translate(comm, rank) Size ={1024, ..};
Grp = comm;

Lock(win, Xxrank)
Put(src_cpy, dst, size, xrank)
Unlock(win, Xrank)

ARMCI Noncontiguous Operations: 1/0 Vector

" Generalized noncontiguous transfer
with uniform segment size:

typedef struct {

void **src_ptr_array; // Source addresses

void **dst_ptr_array; // Dest. Addresses

int bytes; // Length of all seg.

int ptr_array_len; // Number of segments
}armci_giov_t;

lARMCI_GetV(...)

= Three methods to support in MPI
1. Conservative (one epoch): Lock, Put/Get/Acc, Unlock, ...
2. Batched (multiple epochs): Lock, Put/Get/Acc, ..., Unlock

3. Direct: Generate MPI indexed datatype for source and destination
e Single operation/epoch: Lock, Put/Get/Acc, Unlock
e Handoff processing to MPI

10

Avoiding concurrent, conflicting accesses

Contiguous operations 0x917 — 0xb10
— Don’t know what other nodes do

— Worap each call in an exclusive epoch

= Noncontiguous operations 0x3f0 — 0x517

— 1/0 Vector segments may overlap
— MPI Error!
= Must detect errors and fall back to Ox1a6 —0x200 | | Ox8bb — 0xa02

conservative mode if needed
— MPI Errors can be fatal

m Generate a conflict tree
— Sorted, self-balancing AVL tree 0x518 — 0x812 Oxf37 — Oxf47

1. Search the tree for a match
2. If (match found): Conflict!
3. Else: Insert into the tree

= Merge search/insert steps into a single traversal

11

Experimental Setup

IBM BG/P (Intrepid) 40,960 1x4 2 GB

Cray XE6 (Hopper) 6,392 2x12 32 GB

= Communicaton Benchmarks
— Contiguous bandwidth
— Noncontiguous Bandwidth

= NWChem performance evaluation
— CCSD(T) calculation on water pentamer

= |B, XT5: Native much better than
ARMCI-MPI (needs tuning/MPI-3)

3D Torus

Gemini

IBM MPI

Cray MPI

12

Bandwidth (GB/Sec)

e
Contiguous Communication Bandwidth (BG/P & XE6)

Blue Gene/P Cray XE
10° 10°
@ g
<
M 4n-1
/ o 10
©) .
z 10 Get (MPl) ——
= Put (MPI) -----
n .3 Acc (MPI) ---x---
10° p g;ﬂ o Get (Nat.) ~a-- .
Put (Nat.) —-=—
4 Acc (Nat.) -~ = -
0 5 10 15 20 25 10 0 5 10 5 20 25
2 2 2 2 2 2 2 2 2 2 2 2
Transfer Size (Bytes) Transfer Size (Bytes)

= BG/P: Native is better for small to medium size messages

— Bandwidth regime: get/put are same and acc is ~15% less BW

= XE: ARMCI-MPI is 2x better for get/put

— Double precision accumulate, 2x better small, same large xfers

13

Strided Communication Bandwidth (BG/P)

Nati 035 req T

ative I

Direct 0.30 t “.""' RETISUN,
IOV-Direct = === 025 } ' ST T

IOV-Batched = o sl)
IOV-Consrv 0.20 ”

0.15 ¢ o/

= Segment size 1 kB o SO i

0.00

0.35
0.30
0.25
0.20 | :
0.15 [oo

0.10 |
0.05 £
0.00

Acc

= Batched is best

= Other methods always pack

— Packing in host CPU slower
than injecting into network

Bandwidth (GB/Sec)

— MPI implementation should
select this automatically

0.35
0.30 |
025 /.
0.20 | /="

= Performance is close to g}g /

native 0.05 |
0.00

Number of Contiguous Segments

Strided Communication Benchmark (XE6)

1.6
Native 1.4 el _Gem S e
Direct 1.2 | T - L SR R 1
IOV-Direct - =+- - 1.0 e g Il m,
IOV-Batched - =-- S . =]
IOV-Consrv 0.8 g ‘,7/ i
0.6 I ¢";"/
= Segment size 1 kB e
Y
0.0
.) 16 Acc
= Batched is best for Acc g 1
foa) ' R i ."".‘
" Not clear for others S ool e N
< U S
2 064,z -
© 04 p—
o g 02 [
= Significant performance 0.0
advantage over current AT
native implementation 12 .____'_‘,J-nrr—-.—-ﬂ-....., e
1.0 2T .
— Under active development 0.8 | ,A;// AN
0.6} 2" S
0.4 r"‘//
0.2 | _—
0.0 :

Number of Contiguous Segments

NWChem Performance (BG/P)

CCSD Time (min)

35
30

25 |
20
15 |
10 |

Blue Gene/P

A ARMCI-Native CCSD ====-

ARMCI-MP| CCSD ==

0 256 512 /68 1024

Number of Nodes

16

NWChem Performance (XE6)

Cray XE6
18 - - - - 30
ARMCI-MP| CCSD =t
ARMCI-Native CCSD ==#==-
15 F\- ARMCI-MP] (T) 4 25
= | ARMCI-Native (T) ==-==-
E 12 Boo N { 20 ”é\
© S
E G { 15 -Gé
D ---------------- LT T g .-: I_
8 ... _-mmm o= | 10 E
@) —
... {5
0

— 0
744 1488 2232 2976 3720 4464 5208 5952

Number of Cores

17

e
ARMCI on MPI-2 Implementation Checklist

1. One-sided

v" Translation provided by GMR

— Effort needed to avoid concurrent, conflicting accesses
2. Collectives

v" Implemented as MPI user-defined collectives

3. Mutexes
— MPI-2 RMA does not support atomic RMW operations
e Read, modify, write is forbidden within an epoch
— Queueing mutex implementation (Latham, Ross, & Thakur [IJHPCA ‘07])
X O(P) space
4. One-sided atomic swap, fetch-and-add (atomic w.r.t. other atomics)

X Attach an RMW mutex to each GMR
e Mutex_lock, get, modify, put, Mutex_unlock
¢ Slow, best we can do in MPI-2

5. Non-blocking operations
X Implemented as blocking

6. Non-collective processor groups

— Recursive intercomm. merging algorithm (Dinan, et al. [EuroMPI '11])
X O(log? P) communication cost

18

New Capabilities and Features in MPI-3 RMA

= “Unified” memory model
— Take advantage of coherent hardware

— Relaxed synchronization will yield
better performance

= Conflicting accesses

— Localized to locations accessed -

— Relaxed to undefined

Private

— Load/store does not “corrupt” Copy

= Atomic CAS, and Fetch-and-Add, Ucr‘:;id
and new accumulate operations S—
— Mutex space overhead MPI-3: O(1)

= Request-based non-blocking ops
= Shared memory (IPC) windows

19

Implementation of MPI-3 RMA in MPICH

= Extensive remodeling of CH3
RMA implementation

— New window types

— New communication operations
— New synchronization operations/modes
— Passive target at multiple targets

" Created new infrastructure to enable performance research
— Tracking of operations, window synchronization state
— More flexible passive target sync. and completion of operations

= MPI-3 RMA is available in MPICH 3.0rc1

— Released: Nov. 13, 2012
— Please try it out!

20

ARMCI on MPI-3 Implementation (ongoing work)

1. One-sided
v" Translation provided by GMR
v" No need to avoid concurrent, conflicting accesses (undefined results)

2. Collectives
v" Implemented as MPI user-defined collectives

3. Mutexes
v" Space-scalable, using distributed MCS lock

4. One-sided atomic swap, fetch-and-add (atomic w.r.t. other
atomics)

v" Implementation using MPI-3 RMW operations
5. Non-blocking operations
v" Implementation using MPI-3 request-generating operations

6. Non-collective processor groups
v" Implementation using MPI-3 MPl_Comm_create_group()

21

MPI-3 RMA Discussion

= Discuss opportunities for collaboration and involvement in
ongoing work

= MPI-3 RMA

— Performance optimization

e Shared memory optimization
e RDMA optimization
— Development of performance and correctness debugging tools

= Global-View

— Apply MPI-3 as a substrate for additional existing and new global-view
models

22

Conclusions

= ARMCI-MPI:

— Complete, portable runtime system for GA and NWChem
e MPI-2 performance driver
e MPI-3 feature driver

— Mechanisms to overcome interface and semantic mismatch
— Performance is pretty good, dependent on impl. Tuning
— Available for download with MPICH
= MPI-3:
— Exciting new capabilities
— Increased flexibility
— Avaliable in MPICH 3.0

Contact: Jim Dinan <dinan@mcs.anl.gov>

23

