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Workflows are a common pattern in scientific applications

I applications built on legacy code

I applications built as an aggregate

I use inherent task parallelism

I phenomenons having inherent workflow structure

Workflows are omnipresent!



(a) Ramses (b) Montage

(c) Ocean current modeling (d) Epigenomics

Figure Workflow application examples



Classic model of resource provisioning

I static allocations in a grid environment

I researchers compete for resources

I researchers tend to over-provision and under-use

I workflow applications have a non-constant resource demand

This is inefficient, but can it be improved?
Yes!
How?

I on-demand resources

I automate resource provisioning

I smarter scheduling strategies



Why on-demand resources?

I more efficient resource usage

I eliminate overbooking of resources

I can be easily automated

I unlimited resources ∗

Our goal

I consider a more general model of workflow apps

I consider on-demand resources and a budget limit

I find a good allocation strategy
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Application model

Non-deterministic (functional) workflows

An application is a graph G = (V, E), where

V = {vi |i = 1, . . . , |V |} is a set of vertices

E = {ei ,j |(i , j) ∈ {1, . . . , |V |} × {1, . . . , |V |}} is a set of edges
representing precedence and flow constraints

Vertices

I a computational task [parallel, moldable]

I an OR-split [transitions described by random variables]

I an OR-join



Example workflow

Figure Example workflow



Platform model
A provider of on-demand resources from a catalog:
C = {vmi = (nCPUi , costi )|i ≥ 1}

nCPU represents the number of equivalent virtual CPUs

cost represents a monetary cost per running hour
(Amazon-like)

communication bounded multi-port model

Makespan

C = maxi C (vi ) is the global makespan where

C (vi ) is the finish time of task vi ∈ V

Cost of a schedule S
Cost =

∑
∀vmi∈SdTendi

− Tstarti e × costi

Tstarti ,Tendi
represent the start and end times of vmi

costi is the catalog cost of virtual resource vmi



Problem statement
Given

G a workflow application

C a provider of resources from the catalog

B a budget

find a schedule S such that

Cost ≤ B budget limit is not passed

C (makespan) is minimized

with a predefined confidence.



Proposed approach

1. Decompose the non-DAG workflow into DAG sub-workflows

2. Distribute the budget to the sub-workflows

3. Determine allocations by adapting an existing allocation
approach



Step 1: Decomposing the workflow

Figure Decomposing a nontrivial workflow



Step 2: Allocating budget

1. Compute the number of executions of each sub-worflow

I # of transitions of the edge connecting its parent OR-split to
its start node

I Described by a random variable according to a distinct normal
distribution + confidence parameter

2. Give each sub-workflow a ratio of the budget proportional to its
work contribution.

Work contribution of a sub-workflow G i

I as the sum of the average execution times of its tasks

I average execution time computed over the catalog C
I task speedup model is taken into consideration

I multiple executions of a sub-workflow also considered



Step 3: Determining allocations

Two algorithms based on the bi-CPA algorithm.

Eager algorithm

I one allocation for each task

I good trade-off between makespan and average time-cost area

I fast algorithm

I considers allocation-time cost estimations only

Deferred algorithm

I outputs multiple allocations for each task

I good trade-off between makespan and average time-cost area

I slower algorithm

I one allocation is chosen at scheduling time



Algorithm parameters

T over
A , T under

A average work allocated to tasks

TCP duration of the critical path

B ′ estimation of the used budget when TA and TCP

meet

I TA keeps increasing as we increase the
allocation of tasks and TCP keeps decreasing so
they will eventually meet.

I When they do meet we have a trade-off between
the average work in tasks and the makespan.

p(vi ) number of processing units allocated to task vi



The eager allocation algorithm

1: for all v ∈ V i do
2: Alloc(v)← {minvmi∈C CPUi}
3: end for
4: Compute B ′

5: while TCP > T over
A ∩

∑|V i |
j=1 cost(vj ) ≤ B i do

6: for all vi ∈ Critical Path do
7: Determine Alloc ′(vi ) such that p′(vi ) = p(vi ) + 1

8: Gain(vi )← T (vi ,Alloc(vi ))
p(vi )

− T (vi ,Alloc ′(vi ))
p′(vi )

9: end for
10: Select v such that Gain(v) is maximal
11: Alloc(v)← Alloc ′(v)
12: Update T over

A and TCP

13: end while
Algorithm 1: Eager-allocate(G i = (V i , E i ),B i )



Methodology

I Simulation using SimGrid
I Used 864 synthetic workflows for three types of applications

I Fast Fourier Transform
I Strassen matrix multiplication
I Random workloads

I Used a virtual resource catalog inspired by Amazon EC2

I Used a classic list-scheduler for task mapping
I Measured

I Cost and makespan after task mapping

Name #VCPUs Network performance Cost / hour
m1.small 1 moderate 0.09
m1.med 2 moderate 0.18
m1.large 4 high 0.36
m1.xlarge 8 high 0.72
m2.xlarge 6.5 moderate 0.506

m2.2xlarge 13 high 1.012
m2.4xlarge 26 high 2.024

c1.med 5 moderate 0.186
c1.xlarge 20 high 0.744

cc1.4xlarge 33.5 10 Gigabit Ethernet 0.186
cc2.8xlarge 88 10 Gigabit Ethernet 0.744
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First conclusions

I Eager is fast but cannot guarantee budget constraint after
mapping

I Deferred is slower, but guarantees budget constraint

I After a certain budget they yield to identical allocations

I for small applications and small budgets Deferred should be
preferred.

I When the size of the applications increases or the budget limit
approaches task parallelism saturation, using Eager is
preferable.
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Architecture
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Figure System architecture



Main components

Nimbus

I open-source IaaS provider

I provides low-level resources (VMs)

I compatible with the Amazon EC2 interface

I used a FutureGrid install



Main components

Phantom

I auto-scaling and high availability provider

I high-level resource provider

I subset of the Amazon auto-scale service

I part of the Nimbus platform

I used a FutureGrid install

I still under development



Main components

MADag

I workflow engine

I part of the DIET (Distributed Interactive Engineering Toolkit)
software

I one service implementation per task

I each service launches its afferent task

I supports DAG, PTG and functional workflows



Main components

Client

I describes his workflow in xml

I implements the services

I calls the workflow engine

I no explicit resource management

I selects the IaaS provider to deploy on



How does it work?
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RAMSES

I n-body simulations of dark matter interactions

I backbone of galaxy formations

I AMR workflow application

I parallel (MPI) application

I can refine at different zoom levels



RAMSES

Figure The RAMSES workflow



Methodology

I used a FutureGrid Nimbus installation as a testbed

I measured running time for static and dynamic allocations

I estimated cost for each allocation

I varied maximum number of used resources



Figure Slice through a 28 × 28 × 28 box simulation



Results
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Conclusions

I proposed two algorithms – Eager and Deferred with each their
pro and cons

I on-demand resources can better model workflow usage

I on-demand resources have a VM allocation overhead

I allocation overhead decreases with number of VMs

I for RAMSES, cost is greatly reduced



Perspectives

I preallocate VMs

I spot instances

I smarter scheduling strategy

I determine per application type which is the tipping point

I Compare our algorithms with others

Collaborations

I Continue the collaboration with the Nimbus/FutureGrid teams

I On the algorithms themselves (currently too complicated for
an actual implementation)

I Understanding (obtaining models) clouds and virtualized
platforms

I going from theoretical algorithms to (accurate) simulations
and actual implementation
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