
Workflow Allocations and Scheduling on IaaS
Platforms, from Theory to Practice

Eddy Caron1, Frédéric Desprez2, Adrian Mures, an1, Frédéric
Suter3, Kate Keahey4

1Ecole Normale Supérieure de Lyon, France

2 INRIA

3IN2P3 Computing Center, CNRS, IN2P3

4UChicago, Argonne National Laboratory

Joint-lab workshop

Outline

Context

Theory
Models
Proposed solution
Simulations

Practice
Architecture
Application
Experimentation

Conclusions and perspectives

Workflows are a common pattern in scientific applications

I applications built on legacy code

I applications built as an aggregate

I use inherent task parallelism

I phenomenons having inherent workflow structure

Workflows are omnipresent!

(a) Ramses (b) Montage

(c) Ocean current modeling (d) Epigenomics

Figure Workflow application examples

Classic model of resource provisioning

I static allocations in a grid environment

I researchers compete for resources

I researchers tend to over-provision and under-use

I workflow applications have a non-constant resource demand

This is inefficient, but can it be improved?
Yes!
How?

I on-demand resources

I automate resource provisioning

I smarter scheduling strategies

Why on-demand resources?

I more efficient resource usage

I eliminate overbooking of resources

I can be easily automated

I unlimited resources ∗

Our goal

I consider a more general model of workflow apps

I consider on-demand resources and a budget limit

I find a good allocation strategy

Related work

Functional workflows
Bahsi, E.M., Ceyhan, E., Kosar, T.: Conditional Workflow Management: A Survey and Analysis. Scientific

Programming 15(4), 283–297 (2007)

biCPA
Desprez, F., Suter, F.: A Bi-Criteria Algorithm for Scheduling Parallel Task Graphs on Clusters. In: Proc.

of the 10th IEEE/ACM Intl. Symposium on Cluster, Cloud and Grid Computing. pp. 243–252 (2010)

Chemical programming for workflow applications
Fernandez, H., Tedeschi, C., Priol, T.: A Chemistry Inspired Workflow Management System for Scientific

Applications in Clouds. In: Proc. of the 7th Intl. Conference on E-Science. pp. 39–46 (2011)

Pegasus
TMalawski, M., Juve, G., Deelman, E. and Nabrzyski, J..: Cost- and Deadline-Constrained Provisioning

for Scientific Workflow Ensembles in IaaS Clouds. 24th IEEE/ACM International Conference on
Supercomputing (SC12) (2012)

Outline

Context

Theory
Models
Proposed solution
Simulations

Practice
Architecture
Application
Experimentation

Conclusions and perspectives

1

3

4

2

(a) Classic

1

3

4

2

(b) PTG

1

3

4

2

Loop

Or

(c) Functional

Figure Workflow types

Application model

Non-deterministic (functional) workflows

An application is a graph G = (V, E), where

V = {vi |i = 1, . . . , |V |} is a set of vertices

E = {ei ,j |(i , j) ∈ {1, . . . , |V |} × {1, . . . , |V |}} is a set of edges
representing precedence and flow constraints

Vertices

I a computational task [parallel, moldable]

I an OR-split [transitions described by random variables]

I an OR-join

Example workflow

Figure Example workflow

Platform model
A provider of on-demand resources from a catalog:
C = {vmi = (nCPUi , costi)|i ≥ 1}

nCPU represents the number of equivalent virtual CPUs

cost represents a monetary cost per running hour
(Amazon-like)

communication bounded multi-port model

Makespan

C = maxi C (vi) is the global makespan where

C (vi) is the finish time of task vi ∈ V

Cost of a schedule S
Cost =

∑
∀vmi∈SdTendi

− Tstarti e × costi

Tstarti ,Tendi
represent the start and end times of vmi

costi is the catalog cost of virtual resource vmi

Problem statement
Given

G a workflow application

C a provider of resources from the catalog

B a budget

find a schedule S such that

Cost ≤ B budget limit is not passed

C (makespan) is minimized

with a predefined confidence.

Proposed approach

1. Decompose the non-DAG workflow into DAG sub-workflows

2. Distribute the budget to the sub-workflows

3. Determine allocations by adapting an existing allocation
approach

Step 1: Decomposing the workflow

Figure Decomposing a nontrivial workflow

Step 2: Allocating budget

1. Compute the number of executions of each sub-worflow

I # of transitions of the edge connecting its parent OR-split to
its start node

I Described by a random variable according to a distinct normal
distribution + confidence parameter

2. Give each sub-workflow a ratio of the budget proportional to its
work contribution.

Work contribution of a sub-workflow G i

I as the sum of the average execution times of its tasks

I average execution time computed over the catalog C
I task speedup model is taken into consideration

I multiple executions of a sub-workflow also considered

Step 3: Determining allocations

Two algorithms based on the bi-CPA algorithm.

Eager algorithm

I one allocation for each task

I good trade-off between makespan and average time-cost area

I fast algorithm

I considers allocation-time cost estimations only

Deferred algorithm

I outputs multiple allocations for each task

I good trade-off between makespan and average time-cost area

I slower algorithm

I one allocation is chosen at scheduling time

Algorithm parameters

T over
A , T under

A average work allocated to tasks

TCP duration of the critical path

B ′ estimation of the used budget when TA and TCP

meet

I TA keeps increasing as we increase the
allocation of tasks and TCP keeps decreasing so
they will eventually meet.

I When they do meet we have a trade-off between
the average work in tasks and the makespan.

p(vi) number of processing units allocated to task vi

The eager allocation algorithm

1: for all v ∈ V i do
2: Alloc(v)← {minvmi∈C CPUi}
3: end for
4: Compute B ′

5: while TCP > T over
A ∩

∑|V i |
j=1 cost(vj) ≤ B i do

6: for all vi ∈ Critical Path do
7: Determine Alloc ′(vi) such that p′(vi) = p(vi) + 1

8: Gain(vi)← T (vi ,Alloc(vi))
p(vi)

− T (vi ,Alloc ′(vi))
p′(vi)

9: end for
10: Select v such that Gain(v) is maximal
11: Alloc(v)← Alloc ′(v)
12: Update T over

A and TCP

13: end while
Algorithm 1: Eager-allocate(G i = (V i , E i),B i)

Methodology

I Simulation using SimGrid
I Used 864 synthetic workflows for three types of applications

I Fast Fourier Transform
I Strassen matrix multiplication
I Random workloads

I Used a virtual resource catalog inspired by Amazon EC2

I Used a classic list-scheduler for task mapping
I Measured

I Cost and makespan after task mapping

Name #VCPUs Network performance Cost / hour
m1.small 1 moderate 0.09
m1.med 2 moderate 0.18
m1.large 4 high 0.36
m1.xlarge 8 high 0.72
m2.xlarge 6.5 moderate 0.506

m2.2xlarge 13 high 1.012
m2.4xlarge 26 high 2.024

c1.med 5 moderate 0.186
c1.xlarge 20 high 0.744

cc1.4xlarge 33.5 10 Gigabit Ethernet 0.186
cc2.8xlarge 88 10 Gigabit Ethernet 0.744

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1 5 10 15 20 25 30 35 40 45 50

R
e

la
ti
v
e

 m
a

k
e

s
p

a
n

Budget limit

Equality

Figure Relative makespan (Eager
Deferred) for all workflow applications

 0

 1

 2

 3

 4

 5

1 5 10 15 20 25 30 35 40 45

R
e

la
ti
v
e

 c
o

s
t

Budget limit

Equality

Figure Relative cost (Eager
Deferred) for all workflow applications

First conclusions

I Eager is fast but cannot guarantee budget constraint after
mapping

I Deferred is slower, but guarantees budget constraint

I After a certain budget they yield to identical allocations

I for small applications and small budgets Deferred should be
preferred.

I When the size of the applications increases or the budget limit
approaches task parallelism saturation, using Eager is
preferable.

Outline

Context

Theory
Models
Proposed solution
Simulations

Practice
Architecture
Application
Experimentation

Conclusions and perspectives

Architecture

DIET (MADAG)
Workflow engine

Nimbus

VM1

VM2

VM3

VMn

Acquire/release
resources

Send workflow

Receive result

Deploy workflow tasks

Scientist

SeD Ramses

Phantom
frontend

SeD Grafic1

Phantom
frontend

Phantom

service

. . .

Manage Autoscaling Groups

Figure System architecture

Main components

Nimbus

I open-source IaaS provider

I provides low-level resources (VMs)

I compatible with the Amazon EC2 interface

I used a FutureGrid install

Main components

Phantom

I auto-scaling and high availability provider

I high-level resource provider

I subset of the Amazon auto-scale service

I part of the Nimbus platform

I used a FutureGrid install

I still under development

Main components

MADag

I workflow engine

I part of the DIET (Distributed Interactive Engineering Toolkit)
software

I one service implementation per task

I each service launches its afferent task

I supports DAG, PTG and functional workflows

Main components

Client

I describes his workflow in xml

I implements the services

I calls the workflow engine

I no explicit resource management

I selects the IaaS provider to deploy on

How does it work?

DIET (MADAG)
Workflow engine

Nimbus

VM1

VM2

VM3

VMn

Acquire/release
resources

Send workflow

Receive result

Deploy workflow tasks

Scientist

SeD Ramses

Phantom
frontend

SeD Grafic1

Phantom
frontend

Phantom

service

. . .

Manage Autoscaling Groups

Figure System architecture

RAMSES

I n-body simulations of dark matter interactions

I backbone of galaxy formations

I AMR workflow application

I parallel (MPI) application

I can refine at different zoom levels

RAMSES

Figure The RAMSES workflow

Methodology

I used a FutureGrid Nimbus installation as a testbed

I measured running time for static and dynamic allocations

I estimated cost for each allocation

I varied maximum number of used resources

Figure Slice through a 28 × 28 × 28 box simulation

Results

5:00

10:00

15:00

20:00

25:00

 0 2 4 6 8 10 12 14 16

R
u

n
n

in
g

 t
im

e
 (

M
M

:S
S

)

Number of VMs

Runtime (static)
VM alloc (dynamic)
Runtime (dynamic)

Figure Running times for a 26 × 26 × 26 box simulation

Results

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12 14 16

C
o

s
t

(u
n

it
s
)

Number of VMs

Cost (static)
Cost (dynamic)

Figure Estimated costs for a 26 × 26 × 26 box simulation

Outline

Context

Theory
Models
Proposed solution
Simulations

Practice
Architecture
Application
Experimentation

Conclusions and perspectives

Conclusions

I proposed two algorithms – Eager and Deferred with each their
pro and cons

I on-demand resources can better model workflow usage

I on-demand resources have a VM allocation overhead

I allocation overhead decreases with number of VMs

I for RAMSES, cost is greatly reduced

Perspectives

I preallocate VMs

I spot instances

I smarter scheduling strategy

I determine per application type which is the tipping point

I Compare our algorithms with others

Collaborations

I Continue the collaboration with the Nimbus/FutureGrid teams

I On the algorithms themselves (currently too complicated for
an actual implementation)

I Understanding (obtaining models) clouds and virtualized
platforms

I going from theoretical algorithms to (accurate) simulations
and actual implementation

References

Eddy Caron, Frédéric Desprez, Adrian Muresan and Frédéric Suter.
Budget Constrained Resource Allocation for Non-Deterministic
Workflows on a IaaS Cloud. 12th International Conference on
Algorithms and Architectures for Parallel Processing. (ICA3PP-12),
Fukuoka, Japan, September 04 - 07, 2012

Adrian Muresan, Kate Keahey. Outsourcing computations for galaxy
simulations. In eXtreme Science and Engineering Discovery Environment
2012 - XSEDE12, Chicago, Illinois, USA, June 15 - 19 2012. Poster
session.

Adrian Muresan. Scheduling and deployment of large-scale applications
on Cloud platforms. Laboratoire de l’Informatique du Parallélisme (LIP),
ENS Lyon, France, Dec. 10th, 2012 PhD thesis.

	Context
	Theory
	Models
	Proposed solution
	Simulations

	Practice
	Architecture
	Application
	Experimentation

	Conclusions and perspectives

