# Workflow Allocations and Scheduling on IaaS Platforms, from Theory to Practice

Eddy Caron<sup>1</sup>, **Frédéric Desprez**<sup>2</sup>, Adrian Mureṣan<sup>1</sup>, Frédéric Suter<sup>3</sup>, Kate Keahey<sup>4</sup>

<sup>1</sup>Ecole Normale Supérieure de Lyon, France

<sup>2</sup> INRIA

<sup>3</sup>IN2P3 Computing Center, CNRS, IN2P3

<sup>4</sup>UChicago, Argonne National Laboratory

Joint-lab workshop











# Outline

#### Context

### Theory

Models

Proposed solution

Simulations

#### Practice

Architecture

Application

Experimentation

Conclusions and perspectives

# Workflows are a common pattern in scientific applications

- applications built on legacy code
- applications built as an aggregate
- use inherent task parallelism
- phenomenons having inherent workflow structure

Workflows are omnipresent!

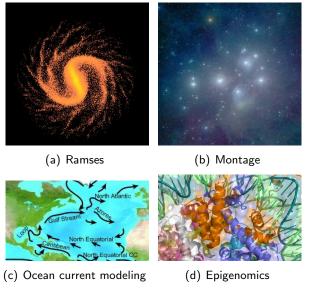


Figure Workflow application examples

# Classic model of resource provisioning

- static allocations in a grid environment
- researchers compete for resources
- researchers tend to over-provision and under-use
- workflow applications have a non-constant resource demand

This is **inefficient**, but can it be improved?

# Yes!

### How?

- on-demand resources
- automate resource provisioning
- smarter scheduling strategies

# Why on-demand resources?

- more efficient resource usage
- eliminate overbooking of resources
- can be easily automated
- unlimited resources \*

# Our goal

- consider a more general model of workflow apps
- consider on-demand resources and a budget limit
- find a good allocation strategy

### Related work

#### Functional workflows



Bahsi, E.M., Ceyhan, E., Kosar, T.: Conditional Workflow Management: A Survey and Analysis. Scientific Programming 15(4), 283–297 (2007)

### **biCPA**



Desprez, F., Suter, F.: A Bi-Criteria Algorithm for Scheduling Parallel Task Graphs on Clusters. In: Proc. of the 10th IEEE/ACM Intl. Symposium on Cluster, Cloud and Grid Computing. pp. 243–252 (2010)

### Chemical programming for workflow applications



Fernandez, H., Tedeschi, C., Priol, T.: A Chemistry Inspired Workflow Management System for Scientific Applications in Clouds. In: Proc. of the 7th Intl. Conference on E-Science. pp. 39–46 (2011)

### **Pegasus**



TMalawski, M., Juve, G., Deelman, E. and Nabrzyski, J.:: Cost- and Deadline-Constrained Provisioning for Scientific Workflow Ensembles in IaaS Clouds. 24th IEEE/ACM International Conference on Supercomputing (SC12) (2012)

# Outline

#### Context

## Theory

Models

Proposed solution

Simulations

#### Practice

Architecture

Application

Experimentation

Conclusions and perspectives

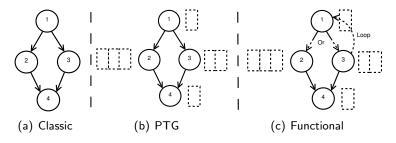


Figure Workflow types

# Application model

Non-deterministic (functional) workflows An application is a graph  $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ , where  $\mathcal{V} = \{v_i | i = 1, \dots, |V|\}$  is a set of vertices  $\mathcal{E} = \{e_{i,j} | (i,j) \in \{1,\dots,|V|\} \times \{1,\dots,|V|\}\}$  is a set of edges representing precedence and flow constraints

### **Vertices**

- ▶ a computational task [parallel, moldable]
- an OR-split [transitions described by random variables]
- an OR-join

# Example workflow

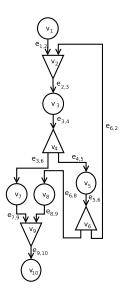


Figure Example workflow

#### Platform model

A provider of on-demand resources from a catalog:

$$C = \{vm_i = (nCPU_i, cost_i)|i \ge 1\}$$

nCPU represents the number of equivalent virtual CPUs

cost represents a monetary cost per running hour
 (Amazon-like)

communication bounded multi-port model

### Makespan

$$C = \max_i C(v_i)$$
 is the global makespan where  $C(v_i)$  is the finish time of task  $v_i \in \mathcal{V}$ 

### Cost of a schedule ${\cal S}$

$$Cost = \sum_{\forall vm_i \in \mathcal{S}} \lceil T_{end_i} - T_{start_i} \rceil \times cost_i$$

 $T_{start_i}$ ,  $T_{end_i}$  represent the start and end times of  $vm_i$  $cost_i$  is the catalog cost of virtual resource  $vm_i$ 

### Problem statement

#### Given

- $\mathcal{G}$  a workflow application
- ${\mathcal C}$  a provider of resources from the catalog
- B a budget

find a schedule  $\mathcal S$  such that

- $Cost \leq \mathcal{B}$  budget limit is not passed
  - C (makespan) is minimized

with a predefined confidence.

# Proposed approach

- 1. Decompose the non-DAG workflow into DAG sub-workflows
- 2. Distribute the budget to the sub-workflows
- 3. Determine allocations by adapting an existing allocation approach

# Step 1: Decomposing the workflow

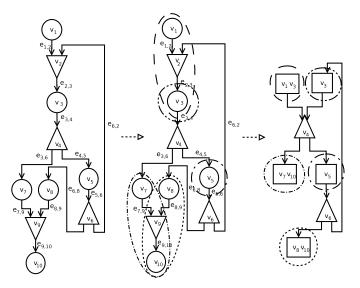


Figure Decomposing a nontrivial workflow

# Step 2: Allocating budget

- 1. Compute the number of executions of each sub-worflow
  - # of transitions of the edge connecting its parent OR-split to its start node
  - Described by a random variable according to a distinct normal distribution + confidence parameter
- 2. Give each sub-workflow a ratio of the budget proportional to its work contribution.

### Work contribution of a sub-workflow $\mathcal{G}^i$

- as the sum of the average execution times of its tasks
- lacktriangle average execution time computed over the catalog  ${\cal C}$
- task speedup model is taken into consideration
- multiple executions of a sub-workflow also considered

# Step 3: Determining allocations

Two algorithms based on the bi-CPA algorithm.

# Eager algorithm

- one allocation for each task
- good trade-off between makespan and average time-cost area
- ▶ fast algorithm
- considers allocation-time cost estimations only

# Deferred algorithm

- outputs multiple allocations for each task
- good trade-off between makespan and average time-cost area
- slower algorithm
- one allocation is chosen at scheduling time



# Algorithm parameters

meet

 $T_A^{over}$ ,  $T_A^{under}$  average work allocated to tasks  $T_{CP}$  duration of the critical path  $B^\prime$  estimation of the used budget when  $T_A$  and  $T_{CP}$ 

- ► *T<sub>A</sub>* keeps increasing as we increase the allocation of tasks and *T<sub>CP</sub>* keeps decreasing so they will eventually meet.
- ▶ When they do meet we have a trade-off between the average work in tasks and the makespan.

 $p(v_i)$  number of processing units allocated to task  $v_i$ 

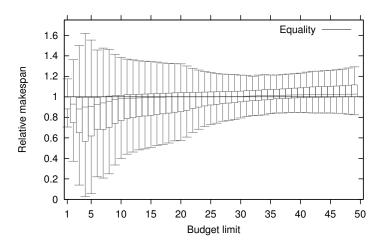
# The eager allocation algorithm

```
1: for all v \in \mathcal{V}^i do
 2: Alloc(v) \leftarrow \{\min_{vm:\in\mathcal{C}} CPU_i\}
 3: end for
 4: Compute B'
 5: while T_{CP} > T_A^{over} \cap \sum_{i=1}^{|\mathcal{V}'|} cost(v_i) \leq B^i do
        for all v_i \in \text{Critical Path } \mathbf{do}
 6:
            Determine Alloc'(v_i) such that p'(v_i) = p(v_i) + 1
 7:
            Gain(v_i) \leftarrow \frac{T(v_i,Alloc(v_i))}{p(v_i)} - \frac{T(v_i,Alloc'(v_i))}{p'(v_i)}
 8:
        end for
 9:
10: Select v such that Gain(v) is maximal
11: Alloc(v) \leftarrow Alloc'(v)
        Update T_A^{over} and T_{CP}
12:
13: end while
              Algorithm 1: Eager-allocate(\mathcal{G}^i = (\mathcal{V}^i, \mathcal{E}^i), \mathcal{B}^i)
```

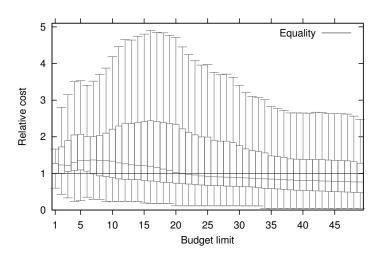
### Methodology

- Simulation using SimGrid
- Used 864 synthetic workflows for three types of applications
  - ► Fast Fourier Transform
  - Strassen matrix multiplication
  - Random workloads
- Used a virtual resource catalog inspired by Amazon EC2
- Used a classic list-scheduler for task mapping
- Measured
  - Cost and makespan after task mapping

| Name        | #VCPUs | Network performance | Cost / hour |
|-------------|--------|---------------------|-------------|
| m1.small    | 1      | moderate            | 0.09        |
| m1.med      | 2      | moderate            | 0.18        |
| m1.large    | 4      | high                | 0.36        |
| m1.xlarge   | 8      | high                | 0.72        |
| m2.xlarge   | 6.5    | moderate            | 0.506       |
| m2.2xlarge  | 13     | high                | 1.012       |
| m2.4xlarge  | 26     | high                | 2.024       |
| c1.med      | 5      | moderate            | 0.186       |
| c1.xlarge   | 20     | high                | 0.744       |
| cc1.4xlarge | 33.5   | 10 Gigabit Ethernet | 0.186       |
| cc2.8xlarge | 88     | 10 Gigabit Ethernet | 0.744       |



**Figure** Relative makespan  $(\frac{Eager}{Deferred})$  for all workflow applications



 $\textbf{Figure} \ \, \mathsf{Relative} \ \, \mathsf{cost} \ \, \big( \frac{\mathit{Eager}}{\mathit{Deferred}} \big) \ \, \mathsf{for} \ \, \mathsf{all} \ \, \mathsf{workflow} \ \, \mathsf{applications}$ 

### First conclusions

- Eager is fast but cannot guarantee budget constraint after mapping
- Deferred is slower, but guarantees budget constraint
- After a certain budget they yield to identical allocations
- for small applications and small budgets Deferred should be preferred.
- When the size of the applications increases or the budget limit approaches task parallelism saturation, using Eager is preferable.

# Outline

#### Context

### Theory

Models

Proposed solution

Simulations

#### Practice

Architecture

Application

Experimentation

Conclusions and perspectives

### Architecture

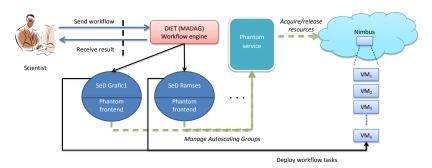


Figure System architecture

### **Nimbus**

- open-source laaS provider
- provides low-level resources (VMs)
- compatible with the Amazon EC2 interface
- used a FutureGrid install

#### Phantom

- auto-scaling and high availability provider
- high-level resource provider
- subset of the Amazon auto-scale service
- part of the Nimbus platform
- used a FutureGrid install
- still under development

### **MADag**

- workflow engine
- part of the DIET (Distributed Interactive Engineering Toolkit) software
- one service implementation per task
- each service launches its afferent task
- supports DAG, PTG and functional workflows

### Client

- describes his workflow in xml
- implements the services
- calls the workflow engine
- no explicit resource management
- selects the laaS provider to deploy on

### How does it work?

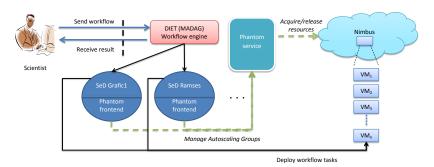
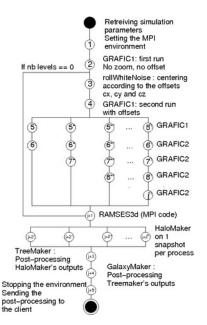


Figure System architecture

### RAMSES

- n-body simulations of dark matter interactions
- backbone of galaxy formations
- AMR workflow application
- parallel (MPI) application
- can refine at different zoom levels

### **RAMSES**



# Methodology

- used a FutureGrid Nimbus installation as a testbed
- measured running time for static and dynamic allocations
- estimated cost for each allocation
- varied maximum number of used resources

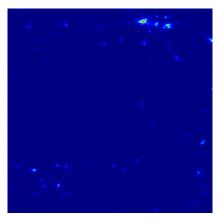
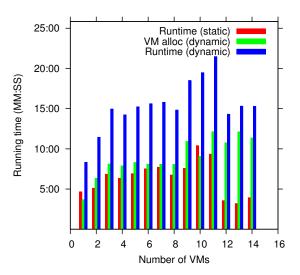


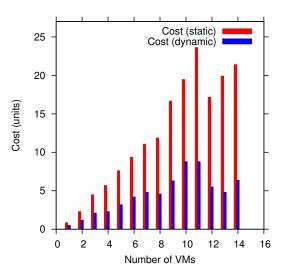
Figure Slice through a  $2^8 \times 2^8 \times 2^8$  box simulation

# Results



**Figure** Running times for a  $2^6\times 2^6\times 2^6$  box simulation

# Results



**Figure** Estimated costs for a  $2^6 \times 2^6 \times 2^6$  box simulation

# Outline

#### Context

### Theory

Models

Proposed solution

Simulations

#### Practice

Architecture

Application

Experimentation

### Conclusions and perspectives

### Conclusions

- proposed two algorithms Eager and Deferred with each their pro and cons
- on-demand resources can better model workflow usage
- on-demand resources have a VM allocation overhead
- allocation overhead decreases with number of VMs
- for RAMSES, cost is greatly reduced

### Perspectives

- preallocate VMs
- spot instances
- smarter scheduling strategy
- determine per application type which is the tipping point
- Compare our algorithms with others

### Collaborations

- Continue the collaboration with the Nimbus/FutureGrid teams
- On the algorithms themselves (currently too complicated for an actual implementation)
- Understanding (obtaining models) clouds and virtualized platforms
- going from theoretical algorithms to (accurate) simulations and actual implementation



### References



Eddy Caron, Frédéric Desprez, Adrian Muresan and Frédéric Suter. Budget Constrained Resource Allocation for Non-Deterministic Workflows on a laaS Cloud. 12th International Conference on Algorithms and Architectures for Parallel Processing. (ICA3PP-12), Fukuoka, Japan, September 04 - 07, 2012



Adrian Muresan, Kate Keahey. **Outsourcing computations for galaxy simulations**. *In eXtreme Science and Engineering Discovery Environment 2012 - XSEDE12*, Chicago, Illinois, USA, June 15 - 19 2012. **Poster session**.



Adrian Muresan. Scheduling and deployment of large-scale applications on Cloud platforms. Laboratoire de l'Informatique du Parallélisme (LIP), ENS Lyon, France, Dec. 10th, 2012 PhD thesis.