Enabling Software Fault
Tolerance with(out) MPI
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FT: a complex tradeoff
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Coordinated C/R

===

A complete checkpoint is taken
at specified time intervals

In case of a failure all processes
rollback to the last valid
checkpoint

. The time to checkpoint strongly

-

depends on the checkpoint
support (I/0 bandwidth)
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Coordinated C/R
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Uncoordinated C/R
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. A single checkpoint is taken at

specified time intervals

. In case of a failure one process

rollback to the last valid
checkpoint

. The time to checkpoint barely

depends on the checkpoint
support (I/O bandwidth)
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Message Logging
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. Non-deterministic outcomes (ordering _

e3,e4 and es) are stored (stable storage): . Green: orphan

Event Logging messages

. The payload of every message is stored
volatile memory): Sender-Based Logging
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Message Logging

2
=] ob co

. Grey: past messages
. . Recovery line

. - in—-transit
2 messages

. Special issues . Green: orphan
. Orphan Messages messages

. In-transit messages

icLLour



Orphan Messages

ol

'8
. Orphan mezssage carry dependencies from the

future to the past, impact of non-deterministic
events

. C%0 needs to be discarded! Useless checkpoints,
possible domino effect

ence, to form a complete recovery set, the

covery line must adjunct the outcome of
terministic events

. Grey: past messages

. : Recovery line
. . In—-transit
messages

. Green: orphan
messages
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In-transit Messages

. Grey: past messages

. : Recovery line
. . In—-transit
messages

. In-transit messages are sent in the past
_ . Green: orphan
. If Po does not rollback, recovery of P1 is messages

impossible (missing m3)

Hence to form a complete recovery set,
e recovery line must include all in- ICL ,(\_ Ir
it messages '




Uncoordinated C/R

. Logging the messages requires

memory

. Potential for decreasing the
available memory (direct
impact on performance).

. Bounding the logging memory will

increase the checkpoint frequency

. It is critical to reduce the amount

of logged data
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Reducing memory for logging

. Correlated sets (or similar)

. No message logging between
peers in the same set

. Coordinated C/R on a
correlated set, uncoordinated
otherwise
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Reducing memory for logging

. Correlated sets

. No message logging between

peers in the same set

. Coordinated C/R on a

correlated set, uncoordinated

otherwise
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Is the any viable alternative?

S
)
speedup = s-;p
s+P/,

Algorithmic base fault tolerance
« Deal with the fault deep inside
the algorithm
* Win: only save the minimum required
data, and only when necessary




AMEND THE MPI STANDARD TO HANDLE FAULTS
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Amend the MPI standard: FT-
MPI

. Define the behavior of MPI in case an error occurs
. Give the application the possibility to recover from process-failures
. A regular, non fault-tolerant MPI program runs using a FT MPI

. Stick to the MPI-1 and MPI-2 specification as closely as possible (e.g.
no unnecessary function calls)

. What FT-MPI does not do:

. Recover user data (e.g. automatic checkpointing)

. Provide transparent fault-tolerance .
icLLour



The FT-MPI specification

. General steps when dealing with fault tolerance:
. Failure detection
. Notification
. Recovery procedure

. Questions for the recovery procedure:

. How to start recovery procedure?

. What is the status of MPI objects after recovery ?

. What is the status of ongoing messages after recovery ?
icLor



ALGORITHM BASED FAULT-TOLERANCE
QR / LU / CHOLESKY
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Dense one-sided factorizations

. Scalapack data distribution over PxQ
processes (2 x 3)

. When a process dies several pieces of
data are lost

. Recovering the dead process means
recovering all the lost data




Dense one-sided factorizations

. Such approach can
be used for
multiple purposes
such as hard and
soft errors

Trailing section:

Panel section: Being modified repeatedly
No change after by each step of trailing
factored matrix update
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Panel section

. The usual suspect: checkpoint the useful data
C=aC +a,C +--+a C +aC
n-1"—"n-1 no n
alC =C-(aC +alC +--+a C +aC)
. Requirements:

. Low performance impact to host algorithm

. Global vertical checkpointing is NOT scalable
‘ icLor



Panel section

. Checkpoint every Q
panels to cope with
data distribution

| W1REDUCE in P process rows in paralle]

———

. Store the checkpointed
data reversly, to
minimize the GEMM

cost.




Recovery Algorithm

. Recover the MPI process by the .7
[FT MPI approaches] |

. Reverse the checkpointing .
process to retrieve the data back -

. Panel section uses local copy to .| = |
roll back and redo up to the last -
panel factorization




Performance (Hard error) - LU
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Performance (Hard error) - QR
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Performance (Soft error)

. Same approach can
be used to solve the
soft errors issues

. With no additional
cost
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Fig. 13: PDGESV performance with and without soft error
resilience on 24576 cores of Cray XT3.



Are we there yet?

S
)
speedup = s-;p
s+P/,

Algorithmic base fault tolerance requires e
drastic modification of the applications as , L. S
well as of the MPI standard. T

b AR SR

FIOURE * Spe00up onder Amdan's Law

le back the MPI requirements and merge .
approaches together 'CL"e’U"




MPI and Error handling

MPI_ERRORS_ARE_FATAL (Default mode):
. Abort the application on the first error
MPI_ERRORS_RETURN:

Return error-code to user
State of MPI undefined

“...does not necessarily allow the user to continue to use MPI after an error is detected. The
purpose of these error handler is to allow a user to issue user-defined error messages and
take actions unrelated to MPI...An MPI implementation is free to allow MPI to continue after
an error...”( MPI-1.1, page 195)

“Advice to implementors: A good quality implementation will, to the greatest possible extent,
circumvent the impact of an error, so that normal processing can continue after an error
handler was invoked.” ICL: ‘ Sur



[Coordinated] C/R

. A complete checkpoint is taken
E E E at specified time intervals

. A complete checkpoint is
taken only when required
. we have the optimum
checkpoint interval
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[Coordinated] C/R

===

. In case of a failure all processes

. All except the deal processes rollback to the last valid
checkpoint
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[Coordinated] C/R

===

. The checkpoint can happen
locally as long as the next
allocation cover the same
resources.

. The time to checkpoint strongly
depends on the checkpoint
support (I/0 bandwidth)
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On-demand

===

C/R

Checkpoint all remaining processes
when a fault is detected

Minimal fault-free overhead (identical
to ABFT)

. Checkpoint can happen locally, as long

e

as the next allocation cover the same
resources.
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On-demand C/R
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Conclusions

. There are ways to recover even for difficult algorithms
without hindering performance or scalability

. Hybrid solutions seems to provide simpler systems (with
decent performance penalties)

. How to efficiently compose fault tolerant approaches
(deeper than just at the runtime level)
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