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FT: a complex tradeoff
!   Transparency

!   MPI API + ABFT: MPI returns errors, the 
application corrects its state online

!   Application ckpt: application stores 
intermediate results, complete restart when 
failure hits

!   Automatic: runtime detects and fix errors
!   Checkpoint coordination

!   Coordinated: all processes are synchronized, 
network is flushed before ckpt; all processes 
rollback to the snapshot

!   uncoordinated: each process checkpoints 
independently; only impacted processes rollback
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Coordinated C/R
!   A complete checkpoint is taken 

at specified time intervals
!   In case of a failure all processes 

rollback to the last valid 
checkpoint

!   The time to checkpoint strongly 
depends on the checkpoint 
support (I/O bandwidth)



Coordinated C/R
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Uncoordinated C/R
!  A single checkpoint is taken at 

specified time intervals
!  In case of a failure one process 

rollback to the last valid 
checkpoint

!  The time to checkpoint barely 
depends on the checkpoint 
support (I/O bandwidth)
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Message Logging
!   Grey: past messages
!   Dashed: Recovery line
!   Pink: in-transit 

messages
!   Green: orphan 

messages
!  Non-deterministic outcomes (ordering 

e3,e4 and e5) are stored (stable storage): 
Event Logging

!   The payload of every message is stored 
(volatile memory): Sender-Based Logging



Message Logging
!   Grey: past messages
!   Dashed: Recovery line
!   Pink: in-transit 

messages
!   Green: orphan 

messages
!  Special issues

!  Orphan Messages
!  In-transit messages



Orphan Messages
!   Grey: past messages
!   Dashed: Recovery line
!   Pink: in-transit 

messages
!   Green: orphan 

messages

!  Orphan message carry dependencies from the 
future to the past, impact of non-deterministic 
events

!  C20 needs to be discarded! Useless checkpoints, 
possible domino effect

!  Hence, to form a complete recovery set, the 
recovery line must adjunct the outcome of 
non-deterministic events 



In-transit Messages
!   Grey: past messages
!   Dashed: Recovery line
!   Pink: in-transit 

messages
!   Green: orphan 

messages
!  In-transit messages are sent in the past
!  If P0 does not rollback, recovery of P1 is 

impossible (missing m3)
!  Hence to form a complete recovery set, 

the recovery line must include all in-
transit messages



Uncoordinated C/R
!  Logging the messages requires 

memory
!  Potential for decreasing the 

available memory (direct 
impact on performance).

!  Bounding the logging memory will 
increase the checkpoint frequency

!  It is critical to reduce the amount 
of logged data



Reducing memory for logging
•  Correlated sets (or similar)

•  No message logging between 
peers in the same set

•  Coordinated C/R on a 
correlated set, uncoordinated 
otherwise 



Reducing memory for logging
•  Correlated sets

•  No message logging between 
peers in the same set

•  Coordinated C/R on a 
correlated set, uncoordinated 
otherwise 
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Is the any viable alternative?
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Algorithmic base fault tolerance
•  Deal with the fault deep inside  

the algorithm
•  Win: only save the minimum required  

data, and only when necessary



AMEND THE MPI STANDARD TO HANDLE FAULTS



Amend the MPI standard: FT-
MPI
•  Define the behavior of MPI in case an error occurs
•  Give the application the possibility to recover from process-failures
•  A regular, non fault-tolerant MPI program runs using a FT MPI
•  Stick to the MPI-1 and MPI-2 specification as closely as possible (e.g. 

no unnecessary function calls)
•  What FT-MPI does not do:

•  Recover user data (e.g. automatic checkpointing)
•  Provide transparent fault-tolerance



The FT-MPI specification
•  General steps when dealing with fault tolerance:

•  Failure detection
•  Notification
•  Recovery procedure

•  Questions for the recovery procedure:
•  How to start recovery procedure?
•  What is the status of MPI objects after recovery ?
•  What is the status of ongoing messages after recovery ?



ALGORITHM BASED FAULT-TOLERANCE 
    QR / LU / CHOLESKY



Dense one-sided factorizations
•  Scalapack data distribution over PxQ 

processes (2 x 3)
•  When a process dies several pieces of 

data are lost
•  Recovering the dead process means 

recovering all the lost data



Dense one-sided factorizations
•  Such approach can 

be used for 
multiple purposes 
such as hard and 
soft errors

Panel section: 
No change after 
factored

Trailing section:
Being modified repeatedly 
by each step of trailing 
matrix update



Panel section
•  The usual suspect: checkpoint the useful data

C =α1C1 +α2C2 ++αn−1Cn−1 +αnCn
α2C2 =C − (α1C1 +α3C3 ++αn−1Cn−1 +αnCn )

•  Requirements: 
•  Low performance impact to host algorithm
•  Global vertical checkpointing is NOT scalable



Panel section
•  Checkpoint every Q 

panels to cope with 
data distribution

•  Store the checkpointed 
data reversly, to 
minimize the GEMM 
cost.



Recovery Algorithm
•  Recover the MPI process by the 

[FT MPI approaches]
•  Reverse the checkpointing 

process to retrieve the data back
•  Panel section uses local copy to 

roll back and redo up to the last 
panel factorization



Performance (Hard error) - LU



Performance (Hard error) - QR
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Figure 10. Weak scalability of FT-QR: run time overhead on
Kraken when failures strike

recovery procedure in both cases adds a small overhead that also
decreases when scaled to large problem size and process grid. At
the large end, a 2-3 percent of time is required to recover the lost
data and put the matrix back in state to resume factorization.

6.4 Extension to Other factorization
The algorithm proposed in this work can be applied to a wide range
of dense matrix factorizations other than LU. As a demonstration
we extend the fault tolerance functions to the QR factorization from
ScaLAPACK in double precision. Since QR uses block algorithm
similar to LU (and similar to Cholesky), the integration of fault tol-
erance functions is effortless. The largest change is using QR panel
factorization in the ”failure within Q panels” case. Figure 10 shows
the performance of QR with and without recovery. The overhead
drops as problem and grid size increase, although it remains higher
than that of LU at the same problem size. Since QR has higher com-
plexity than LU ( 43N

3 v.s. 2
3N

3), the ABFT approach incurs extra
computation when carrying checksum along in the QR factoriza-
tion. Similar to the LU result, recovery adds an extra 2% overhead.
At size 160,000 it takes about 5.7% of the run time to recover from
the failure. This overhead is becoming lower when scaled to larger
problem or processor grid sizes.

7. Conclusion
In this paper, by assuming a failure model in which fail-stop fail-
ures can occur anytime on any process during the execution, a gen-
eral scheme of ABFT algorithms for protecting matrix factoriza-
tions is proposed. This scheme can be applied to a wide range
of dense matrix factorizations, including Cholesky, LU and QR.
A significant property of the proposed algorithms is that both left
and right factorization results are protected. ABFT is used to pro-
tect the right factor with checksum generated before, and carried
along during the factorizations. A highly scalable checkpointing
method is proposed to protect the left factor. This method cooper-
atively utilizes the memory space originally designed only for the
ABFT checksum, and has minimal overhead by strategically ar-
ranging the checksum layout. In addition, special treatment is pro-
vided for the impact of pivoting on LU factorization and the pro-
tection for checksum itself in the event of failure with no reliable
resource. Large scale experimental results validate the design of
the proposed fault tolerance method by highlighting scalable per-
formance and decreasing overhead from both LU and QR. In the

future this work will be extended to support multiple simultaneous
failures.
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Weak scalability on FT-QR: overhead with failures



Performance (Soft error)
•  Same approach can 

be used to solve the 
soft errors issues

•  With no additional 
cost



Are we there yet?
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Algorithmic base fault tolerance requires 
drastic modification of the applications as
well as of the MPI standard.

Scale back the MPI requirements and merge
several approaches together



28

MPI and Error handling
•  MPI_ERRORS_ARE_FATAL (Default mode): 

•  Abort the application on the first error

•  MPI_ERRORS_RETURN:
•  Return error-code to user
•  State of MPI undefined
•  “…does not necessarily allow the user to continue to use MPI after an error is detected. The 

purpose of these error handler is to allow a user to issue user-defined error messages and 
take actions unrelated to MPI…An MPI implementation is free to allow MPI to continue after 
an error…”( MPI-1.1, page 195)

•  “Advice to implementors: A good quality implementation will, to the greatest possible extent, 
circumvent the impact of an error, so that normal processing can continue after an error 
handler was invoked.”



[Coordinated] C/R
!   A complete checkpoint is taken 

at specified time intervals
!   In case of a failure all processes 

rollback to the last valid 
checkpoint

!   The time to checkpoint strongly 
depends on the checkpoint 
support (I/O bandwidth)

!  A complete checkpoint is 
taken only when required
!  we have the optimum 

checkpoint interval



[Coordinated] C/R
!   A complete checkpoint is taken 

at specified time intervals
!   In case of a failure all processes 

rollback to the last valid 
checkpoint

!   The time to checkpoint strongly 
depends on the checkpoint 
support (I/O bandwidth)

!  All except the deal processes




[Coordinated] C/R
!   A complete checkpoint is taken 

at specified time intervals
!   In case of a failure all processes 

rollback to the last valid 
checkpoint

!   The time to checkpoint strongly 
depends on the checkpoint 
support (I/O bandwidth)

!  The checkpoint can happen 
locally as long as the next 
allocation cover the same 
resources.



On-demand C/R
•  Checkpoint all remaining processes 

when a fault is detected
•  Minimal fault-free overhead (identical 

to ABFT)
•  Checkpoint can happen locally, as long 

as the next allocation cover the same 
resources.



On-demand C/R
Dancer (16x8) Kraken (24x24)
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Figure 6. Performance on Dancer (16⇥ 8 grid)

W  V TA2. The performance of the non-fault tolerant
ScaLAPACK QR is also presented to serve as a reference.

The difference with the ScaLAPACK QR is caused by
the parallel-Q checksum and the Algorithmic Based Fault
Tolerance algorithm. This overhead has been shown in [16]
to scale down with larger number of processes and matrices.
In the case of a run with an error, the following overheads
adds up: the times to store the checkpoint to disk, re-launch
an application, re-establish the position of all processes by
dry running in the application until the failing point, loading
checkpoint from disk and perform the Algorithmic Based
Fault Tolerance recovery using the checksum found in the
checkpoint of the previously living processes.

On Dancer, the performance of QR with on-demand
checkpointing and recovery follows closely with the “no
failure” performance. Figure 7 shows that as the matrix size
increases, the recovery overhead falls below 5% more than
the “no failure” overhead. By breaking down the run-time
of each recovery elements, Figure 8 shows that checkpoint
saving and loading only take a small percentage of the total
run-time. On a problem of this size, the additional overheads
are dominated by the time it takes to terminate the failing
MPI application and relaunch a new one. Other than the
fast solid state drive disks, the fast checkpointing can also
be attributed to the disk cache provided by the OS. Since
loading is performed immediately after saving, high disk
cache hits can largely speed up the process. After matrix
size 44,000 the memory usage on each node came close to
limit and since no swap space is available on the Dancer
cluster, disk cache support started to decrease and cause
slight increase in disk access time, which however does not
affect the overhead percentage from performing recovery.

Figure 9 presents the performance on Kraken with a
larger grid and a different filesystem to store the checkpoint
images. A similar effect of a small checkpointing saving
and loading time is observed. The performance of the “with
failure” case shows the same trend of closely following the
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Figure 7. Overhead over ScaLAPACK QR on Dancer (16⇥ 8 grid)

“no failure” case performance. At size matrix 100,000 for
instance, FT-QR successfully recovered from the failure and
achieved 2.86 Tflop/s, which is 90% of the performance
of the ScaLAPACK QR. This verified that the On-Demand
Checkpointing QR also performs well at larger scales.

VII. CONCLUDING REMARKS

In this paper, we presented an original scheme to deal with
failures using the current MPI standard, and still avoiding
periodical checkpointing. Periodical checkpointing is subject
to a critical parameter that is particularly hard to assess: the
ideal period of checkpoint. A period too short will loose time
and resources, doing unnecessary Input/Output. A period too
long will also loose time and resources, by increasing the
amount of the execution that must be re-done, if a failure hits
the system a long time after the last successful checkpoint.

On-Demand Checkpointing takes checkpoint images at
optimal times by design: only after a failure has been
detected. It relies on Algorithmic Based Fault Tolerance
techniques to complement this checkpoint with redundant
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Figure 9. Performance on Kraken (24⇥ 24 grid)

information and enable recovering the whole application
data at restart time. This simple scheme is easily integrable
with high quality MPI implementations, as long as they let
the application survive (even with MPI non-functionning)
when a failure is detected and reported. We proposed
performance models to evaluate and compare the benefits
and limitations of On-Demand Checkpointing and periodical
Checkpoint. These models highlight another feature of On-
Demande Checkpointing: since the checkpoint images of the
processes that were not subject to failure is needed to recover
the state, local disks can be used, providing a much higher
bandwidth than the remote storage needed by periodical
Checkpointing. Last, but not least of the advantages of
On-Demand Checkpointing, the restart does not trigger a
rollback recovery, since the recovery procedure is able
to reconstruct the data at the moment of the crash. The
performance evaluation, based on the Algorithmic Based
Fault Tolerance version of the QR factorization show that
the disk Input/Output required by the method after a fault
occured does not prevent to obtain excellent performance,
and that a high quality MPI implementation can be obtained
without decreasing its efficiency.
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Conclusions
•  There are ways to recover even for difficult algorithms 

without hindering performance or scalability
•  Hybrid solutions seems to provide simpler systems (with 

decent performance penalties)
•  How to efficiently compose fault tolerant approaches 

(deeper than just at the runtime level)


