
A parallel tiled solver for dense symmetric
indefinite systems on multicore architectures

Marc Baboulin and Dulceneia Becker and Jack Dongarra

Inria Saclay/ Université Paris-Sud

Innovative Computing Laboratory, University of Tennessee

Marc Baboulin (Inria) LDLT & SBRT Jointlab Inria-UIUC 11/22/2011 1 / 30

Outline

Objective

Develop a parallel solver for dense symmetric indefinite linear systems.
(There is currently no parallel implementation for such systems
in dense public domain libraries)

Issues on pivoting for symmetric indefinite matrices

Symmetric randomization – recursive butterfly transformations

Parallel tiled LDLT factorization

Numerical and performance results

Marc Baboulin (Inria) LDLT & SBRT Jointlab Inria-UIUC 11/22/2011 2 / 30

Symmetric indefinite linear systems

Symmetric (dense) linear system Ax = b

A is indefinite when xT Ax can take on both positive and negative
values

Applications: least-squares via augmented system method,
Maxwell equations in electromagnetics, optimization problems...

Factorization
A = LDLT

where L is unit lower triangular and D is diagonal

Solve Ax = b by solving successively

Lz = b, Dy = z, LT x = y

Not stable – to ensure stability pivoting is usually required

Requires n3/3 flops (half the cost of LU)

Marc Baboulin (Inria) LDLT & SBRT Jointlab Inria-UIUC 11/22/2011 3 / 30

Symmetric indefinite linear systems - pivoting

Factorization
PAPT = LDLT

where
P is a permutation matrix
L is unit lower triangular
D is block-diagonal, with blocks of size 1× 1 or 2× 2

Solve Ax = b by solving the triangular or block-diagonal systems

Lz = Pb, Dw = z, LT y = w , x = PT y

Pivoting
No floating-point operation in pivoting but it involves irregular data
movements and between O(n2) and O(n3) comparisons.

Marc Baboulin (Inria) LDLT & SBRT Jointlab Inria-UIUC 11/22/2011 4 / 30

Symmetric pivoting

To maintain symmetry, columns and rows must be interchanged

Compromises data
locality

Increases data
dependence

1

2

3

Marc Baboulin (Inria) LDLT & SBRT Jointlab Inria-UIUC 11/22/2011 5 / 30

How to avoid pivoting?

Symmetric Random Butterfly Transformation (SRBT)

To solve Ax = b :
1 Compute Ar = UT AU
2 Factorize Ar without pivoting (LDLT)
3 Solve

Ar y = UT b −→ LDLT y = UT b

and then the solution is x = Uy

U is a Recursive Butterfly Matrix

Requirements:
SRBT transformation must be cheap; O(n2) operations
LDLT with no pivoting must be fast

Marc Baboulin (Inria) LDLT & SBRT Jointlab Inria-UIUC 11/22/2011 6 / 30

Butterfly Matrix

A butterfly matrix is defined as any n-by-n matrix of the form:

B =
1√
2

(
R S
R −S

)

where R and S are random diagonal matrices.

B =

(rr
rr

)

Marc Baboulin (Inria) LDLT & SBRT Jointlab Inria-UIUC 11/22/2011 7 / 30

Recursive Butterfly Matrix

A recursive butterfly matrix of size n and depth d is :

U<n,d> =


rrrrrrrr

. rr . rrrr


︸ ︷︷ ︸

2d−1 butterfly of size n
2d−1

×...×


rrrrrrrr


︸ ︷︷ ︸

2 butterfly of size n
2

×

rrrr


︸ ︷︷ ︸
1 butterfly of size n

We consider a limited number of recursions, resulting in a so-called Partial
Symmetric Random Butterfly Transformation (PSRBT).

Marc Baboulin (Inria) LDLT & SBRT Jointlab Inria-UIUC 11/22/2011 8 / 30

Recursive butterfly matrix with d=3

U<3> =


B4

B5

B6

B7


 B2

B3


 B1



U is n × n

B1 is n × n

B2 and B3 are n
2 ×

n
2

B4 to B7 are n
4 ×

n
4

Bi =
1√
2

(
Ri Si

Ri −Si

)

Marc Baboulin (Inria) LDLT & SBRT Jointlab Inria-UIUC 11/22/2011 9 / 30

Packed storage for a recursive butterfly matrix

U<n,d> =


rrrrrrrr

. rr . rrrr


︸ ︷︷ ︸

2d−1 butterfly of size n
2d−1

×...×


rrrrrrrr


︸ ︷︷ ︸

2 butterfly of size n
2

×

rrrr


︸ ︷︷ ︸
1 butterfly of size n

⇒ Up =


...

j
j
j. . .
j
j
j
j



︸ ︷︷ ︸
d

n

Marc Baboulin (Inria) LDLT & SBRT Jointlab Inria-UIUC 11/22/2011 10 / 30

Packed storage for a recursive butterfly matrix

U<n,d> =


rrrrrrrr

. rr . rrrr


︸ ︷︷ ︸

2d−1 butterfly of size n
2d−1

×...×


rrrrrrrr


︸ ︷︷ ︸

2 butterfly of size n
2

×

rrrr


︸ ︷︷ ︸
1 butterfly of size n

⇒ Up =


...

j
j
j. . .
j
j
j
j



︸ ︷︷ ︸
d

n

Marc Baboulin (Inria) LDLT & SBRT Jointlab Inria-UIUC 11/22/2011 10 / 30

Computational cost of SRBT

The elementary operation is

BT × C × B

where B is a butterfly matrix and C is a square matrix, both of size
m ×m

BT CB requires 2m2 flops

Ar = UT AU requires
C(n, d) ≈ 2dn2

where U is a recursive butterfly of size n and depth d

Maximum cost: C(n, log2n + 1) ≈ 2n2log2n

We aim at choosing d such that d < log2n� n
In practice d = 2 is sufficient

Marc Baboulin (Inria) LDLT & SBRT Jointlab Inria-UIUC 11/22/2011 11 / 30

Condition number of the randomized matrix

2-norm condition number (CN): measures the degree of
distortion of the unit sphere under tranformation by a matrix

The multiplicative preconditioning has to keep the CN as
”unchanged” as possible

Ar = UT AU ⇒ cond2(Ar) 6 cond2(U)2cond2(A)

Choosing the random values in [−e1/20, e1/20], we get

cond2(Ar) 6 1.2214dcond2(A)

In practice, d = 2: cond2(Ar) 6 1.5 cond2(A)

Marc Baboulin (Inria) LDLT & SBRT Jointlab Inria-UIUC 11/22/2011 12 / 30

Tiled LDLT Factorization

Decomposing A in nt × nt tiles, where each Aij is a tile of size nb× nb.
For nt = 3:

A =

 A11 A12 A13

A21 A22 A23

A31 A32 A33


Same decomposition can be applied to L and D:

LDLT =

 L11

L21 L22

L31 L32 L33

  D11

D22

D33

  LT
11 LT

21 LT
31

LT
22 LT

32
LT

33



Marc Baboulin (Inria) LDLT & SBRT Jointlab Inria-UIUC 11/22/2011 13 / 30

Tiled LDLT Factorization



L11D11LT
11 L11D11LT

21 L11D11LT
31

L21D11LT
11 L21D11LT

21 + L22D22LT
22 L21D11LT

31 + L22D22LT
32

L31D11LT
11 L31D11LT

21 + L32D22LT
22 L31D11LT

31 + L32D22LT
32 + L33D33LT

33



Marc Baboulin (Inria) LDLT & SBRT Jointlab Inria-UIUC 11/22/2011 14 / 30

Tiled LDLT Factorization

Using the same principle as the Schur complement, a series of tasks
can be set to calculate each Lij and Dii :

[L11,D11] = LDLT (A11)

L21 = A21(D11LT
11)

−1

L31 = A31(D11LT
11)

−1

Ã32 = A32 − L31D11LT
21

Ã22 = A22 − L21D11LT
21

[L22,D22] = LDLT (Ã22)

L32 = Ã32(D22LT
22)

−1

Ã33 = A33 − L31D11LT
31 − L32D22LT

32

[L33,D33] = LDLT (Ã33)

Marc Baboulin (Inria) LDLT & SBRT Jointlab Inria-UIUC 11/22/2011 15 / 30

Tiled LDLT factorization with pivoting

Adding pivoting to LDLT:

[L11,D11,P11] = LDLT (A11)

L21 = PT
22A21P11(D11LT

11)
−1

L31 = PT
33A31P11(D11LT

11)
−1

Ã22 = A22 − (P22L21)D11(P22L21)
T

Ã32 = A32 − (P33L31)D11(P22L21)
T

[L22,D22,P22] = LDLT (Ã22)

L32 = PT
33Ã32P22(D22LT

22)
−1

Ã33 = A33 − (P33L31)D11(P33L31)
T − (P33L32)D22(P33L32)

T

[L33,D33,P33] = LDLT (Ã33)

Marc Baboulin (Inria) LDLT & SBRT Jointlab Inria-UIUC 11/22/2011 16 / 30

Tiled LDLT Factorization with tile-wise pivoting

The tile-wise pivoting restricts the search of pivots to the tile Akk

Does not guarantee the accuracy of the solution; it strongly
depends on the matrix to be factorized and how the pivots are
distributed.

Guarantees numerical stability
of the factorization of each tile
Akk , with appropriate pivoting
used

Pivoting is sequential, which
means that the pivot search
and hence the permutations
are also serial


A11

A22

A33



Marc Baboulin (Inria) LDLT & SBRT Jointlab Inria-UIUC 11/22/2011 17 / 30

Data organization

Column-major layout Tile layout

Marc Baboulin (Inria) LDLT & SBRT Jointlab Inria-UIUC 11/22/2011 18 / 30

Tiled LDLT Algorithm

xTRSM
k=1, i=2

xSYTRF/xSYTRF2
k=1, j=1

xTRSM
k=1, i=3

xSYDRK
k=1, i=2

xSYDRK
k=1, i=3

xGEMDM
k=1, i=3, j=2

Marc Baboulin (Inria) LDLT & SBRT Jointlab Inria-UIUC 11/22/2011 19 / 30

Static and dynamic scheduling

1:1 xSYTRF 1

xTRSM 2xTRSM 3 xTRSM 4

xSYDRK 5xSYDRK 6 xGEMDM 7 xSYDRK 8xGEMDM 9xGEMDM 10

xSYTRF 11

2:3

xSYDRK 14

xTRSM 12

xSYDRK 15

xTRSM 13

xTRMDM 21

xGEMDM 16

xSYTRF 17

3:6

4:2

xSYDRK 19

xTRMDM 22

xTRSM 18

5:2

xSYTRF 20

6:3

7:2

xTRMDM 23

8:1

9:1

10:2

DAG for DSYTRF (nt = 4)

Marc Baboulin (Inria) LDLT & SBRT Jointlab Inria-UIUC 11/22/2011 20 / 30

Static and dynamic scheduling

Traces of tiled LDLT (Magnycours-48 with 8 threads)

Marc Baboulin (Inria) LDLT & SBRT Jointlab Inria-UIUC 11/22/2011 21 / 30

Tests on accuracy

We compare 3 solvers:
SRBT (2 recursions) + Tiled LDLT

LAPACK LDLT (Bunch-Kaufman pivoting strategy)
SRBT + PP

We report componentwise backward error ω = maxi
|Ax−b|i

(|A|·|x|+|b|)i

Iterative refinement is systematically added

Test matrices from the LAPACK tester:

1 Diagonal 6 Random, κ = 2
2 First column zero 7 Random, κ =

√
1/ε

3 Last column zero 8 Random, κ = 1/ε
4 Middle column zero 9 Scaled near underflow
5 Last n/2 columns zero 10 Scaled near overflow

Marc Baboulin (Inria) LDLT & SBRT Jointlab Inria-UIUC 11/22/2011 22 / 30

Accuracy Comparison

Matrix SRBT-LDLT LAPACK LDLT SRBT + LDLT PIV
Type

1 0.8815e-13 (0) 0.1079e-15 (0) 0.1975e-13 (0)
2 0.4067e-13 (1) 0.2830e-13 (+) 0.4244e-13 (1)
3 0.2395e-13 (1) - 0.1242e-13 (1)
4 0.2504e-13 (1) - 0.3696e-13 (1)
5 0.5466e-13 (1) - 0.8008e-13 (1)
6 - - 0.1219e-13 (1)
7 0.3037e-13 (1) 0.3810e-13 (+) 0.6795e-13 (1)
8 0.6048e-13 (1) 0.2930e-13 (+) 0.5195e-13 (0)
9 - 0.5898e-13 (+) 0.2212e-13 (1)
10 0.3674e-13 (1) 0.8683e-13 (+) 0.1612e-13 (1)

Marc Baboulin (Inria) LDLT & SBRT Jointlab Inria-UIUC 11/22/2011 23 / 30

Preliminary performance results

Tiled LDLT algorithm implemented following PLASMA
development guidelines, tile size nb = 250.

Machine: 4× 12-Core AMD Opteron 6172 Magny-Cours @ 2.1
GHz, 128GB memory, theroretical peak 403.2 Gflop/s (8.4 Gflop/s
per core) in double precision.

Comparisons against MKL library for multicore and LAPACK with
multithreaded MKL BLAS

Comparisons with other solvers (Cholesky and LU) from the
MAGMA library.

Scalability of LDLT solver up de 48 cores.

Marc Baboulin (Inria) LDLT & SBRT Jointlab Inria-UIUC 11/22/2011 24 / 30

Performance of the SRBT-LDLT solver

 0

 50

 100

 150

 200

 250

 0 2 4 6 8 10 12 14 16 18 20

G
F

lo
p/

s

Matrix order [103]

Double Real (Magnycours-48)

Tile Static
Tile Dynamic
MKL
Lapack + MKL BLAS

Performance of SRBT-LDLT against MKL and LAPACK (double precision)

Marc Baboulin (Inria) LDLT & SBRT Jointlab Inria-UIUC 11/22/2011 25 / 30

Tiled LDLT vs other solvers

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12 14 16 18 20

T
im

e
[m

ill
is

ec
on

ds
]

Matrix order [103]

DGETRF, DSYTRF and DPOTRF (Magnycours-48)

DGETRF Dynamic
DGETRF Static
DSYTRF Dynamic
DSYTRF Static
DPOTRF Dynamic
DPOTRF Static

Execution time of Cholesky (PLASMA), LU (PLASMA) and tiled LDLT,

dynamic (solid line) and static (dashed line) scheduling.

Marc Baboulin (Inria) LDLT & SBRT Jointlab Inria-UIUC 11/22/2011 26 / 30

Scalability of tiled LDLT

 1

 6

 12

 18

 24

 30

 36

 42

 48

 1 6 12 18 24 36 48

T
1

/ T
th

re
ad

s

Threads

DSYTRF (Magnycours-48)

n = 5000 Dynamic
n = 5000 Static
n = 10000 Dynamic
n = 10000 Static
n = 20000 Dynamic
n = 20000 Static
Linear

Parallel speed-up; dynamic (solid line) and static (dashed line) scheduling.

Marc Baboulin (Inria) LDLT & SBRT Jointlab Inria-UIUC 11/22/2011 27 / 30

Tuning elements

 0

 50

 100

 150

 200

 250

 300

 100 200 300 400 500 600

G
flo

ps
/s

Tile Size [NB]

DSYTRF (Magnycours-48)

n = 20000 Dynamic
n = 10000 Dynamic
n = 5000 Dynamic

n = 20000 Static
n = 10000 Static
n = 5000 Static

Tile-size performance of tiled LDLT.

Marc Baboulin (Inria) LDLT & SBRT Jointlab Inria-UIUC 11/22/2011 28 / 30

Summary

Tiled LDLT factorization without pivoting, and a randomization technique
(SRBT) to avoid pivoting in LDLT

SRBT is computationally very affordable and negligible compared to the
communication overhead due to classical pivoting

It gives accurate results on most test cases including pathological ones

Very promising performance that makes SRBT+tiled LDLT very
competitive compared to other solvers

What next?
Integration into the PLASMA library (next release).
Development of LDLT on GPU for integration into MAGMA.

Marc Baboulin (Inria) LDLT & SBRT Jointlab Inria-UIUC 11/22/2011 29 / 30

Collaboration with UIUC

Fast linear solvers for CPU/GPU architectures
People:

Wen-Mei Hwu (UIUC)
Liwen Chang (UIUC)
Marc Baboulin (Inria Saclay)
Laura Grigori (Inria Saclay)
Adrien Remy (Inria Saclay)
Yushan Wang (Inria Saclay)

Tridiagonal solver developed at UIUC (integration into MAGMA for
utilization in a CFD application at INRIA)

Randomized algorithms for GPUs

Communication avoiding algorithms for GPUs

Marc Baboulin (Inria) LDLT & SBRT Jointlab Inria-UIUC 11/22/2011 30 / 30

	LDLT Factorization
	Accuracy results
	Conclusion

