A parallel tiled solver for dense symmetric indefinite systems on multicore architectures

Marc Baboulin and Dulceneia Becker and Jack Dongarra

Inria Saclay/ Université Paris-Sud Innovative Computing Laboratory, University of Tennessee

Outline

Objective

Develop a parallel solver for dense symmetric indefinite linear systems. (There is currently no parallel implementation for such systems in dense public domain libraries)

- Issues on pivoting for symmetric indefinite matrices
- Symmetric randomization - recursive butterfly transformations
- Parallel tiled LDL $^{\top}$ factorization
- Numerical and performance results

Symmetric indefinite linear systems

- Symmetric (dense) linear system $A x=b$
- A is indefinite when $x^{T} A x$ can take on both positive and negative values
- Applications: least-squares via augmented system method, Maxwell equations in electromagnetics, optimization problems...
- Factorization

$$
A=L D L^{T}
$$

where L is unit lower triangular and D is diagonal

- Solve $A x=b$ by solving successively

$$
L z=b, \quad D y=z, \quad L^{T} x=y
$$

- Not stable - to ensure stability pivoting is usually required
- Requires $n^{3} / 3$ flops (half the cost of $L U$)

Symmetric indefinite linear systems - pivoting

- Factorization

$$
P A P^{T}=L D L^{T}
$$

where
P is a permutation matrix
L is unit lower triangular
D is block-diagonal, with blocks of size 1×1 or 2×2

- Solve $A x=b$ by solving the triangular or block-diagonal systems

$$
L z=P b, \quad D w=z, \quad L^{T} y=w, \quad x=P^{T} y
$$

Pivoting

No floating-point operation in pivoting but it involves irregular data movements and between $\mathcal{O}\left(n^{2}\right)$ and $\mathcal{O}\left(n^{3}\right)$ comparisons.

Symmetric pivoting

- To maintain symmetry, columns and rows must be interchanged
- Compromises data locality
- Increases data dependence

How to avoid pivoting?

Symmetric Random Butterfly Transformation (SRBT)

- To solve $A x=b$:
(1) Compute $A_{r}=U^{\top} A U$
(2) Factorize A_{r} without pivoting (LDL ${ }^{\top}$)
(3) Solve

$$
A_{r} y=U^{T} b \quad \longrightarrow \quad L D L^{T} y=U^{T} b
$$

and then the solution is $x=U y$

- U is a Recursive Butterfly Matrix
- Requirements:
- SRBT transformation must be cheap; $\mathcal{O}\left(n^{2}\right)$ operations
- $\operatorname{LDL}^{\top}$ with no pivoting must be fast

Butterfly Matrix

A butterfly matrix is defined as any n-by- n matrix of the form:

$$
B=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}
R & S \\
R & -S
\end{array}\right)
$$

where R and S are random diagonal matrices.

$$
B=\binom{\searrow \backslash}{\searrow \searrow}
$$

Recursive Butterfly Matrix

A recursive butterfly matrix of size n and depth d is :

We consider a limited number of recursions, resulting in a so-called Partial Symmetric Random Butterfly Transformation (PSRBT).

Recursive butterfly matrix with $d=3$

$$
\mathrm{U}^{<3>}=\left[\begin{array}{l|l|l|l}
B_{4} & & & \\
\hline & B_{5} & & \\
\hline & & B_{6} & \\
\hline & & & B_{7}
\end{array}\right]\left[\begin{array}{l|l}
B_{2} & \\
\hline & B_{3}
\end{array}\right]\left[\begin{array}{l}
\\
B_{1} \\
\end{array}\right]
$$

U is $n \times n$
B_{1} is $n \times n$
B_{2} and B_{3} are $\frac{n}{2} \times \frac{n}{2}$
$B_{i}=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}R_{i} & S_{i} \\ R_{i} & -S_{i}\end{array}\right)$

Packed storage for a recursive butterfly matrix

Packed storage for a recursive butterfly matrix

$$
\Rightarrow \quad U_{p}=\underbrace{\left(\left.\begin{array}{l|}
|l| \\
\mid \\
\vdots \\
\mid \\
\mid
\end{array} \right\rvert\,\right)}_{d}
$$

Computational cost of SRBT

- The elementary operation is

$$
B^{T} \times C \times B
$$

where B is a butterfly matrix and C is a square matrix, both of size $m \times m$

- $B^{T} C B$ requires $2 m^{2}$ flops
- $A_{r}=U^{T} A U$ requires

$$
C(n, d) \approx 2 d n^{2}
$$

where U is a recursive butterfly of size n and depth d

- Maximum cost: $C\left(n, \log _{2} n+1\right) \approx 2 n^{2} \log _{2} n$
- We aim at choosing d such that $d<\log _{2} n \ll n$ In practice $d=2$ is sufficient

Condition number of the randomized matrix

- 2-norm condition number (CN): measures the degree of distortion of the unit sphere under tranformation by a matrix
- The multiplicative preconditioning has to keep the CN as "unchanged" as possible

$$
A_{r}=U^{T} A U \Rightarrow \operatorname{cond}_{2}\left(A_{r}\right) \leqslant \operatorname{cond}_{2}(U)^{2} \operatorname{cond}_{2}(A)
$$

- Choosing the random values in $\left[-e^{1 / 20}, e^{1 / 20}\right]$, we get

$$
\operatorname{cond}_{2}\left(A_{r}\right) \leqslant 1.2214^{d} \operatorname{cond}_{2}(A)
$$

- In practice, $d=2: \operatorname{cond}_{2}\left(A_{r}\right) \leqslant 1.5 \operatorname{cond}_{2}(A)$

Tiled LDL${ }^{\top}$ Factorization

Decomposing A in $n t \times n t$ tiles, where each $A_{i j}$ is a tile of size $n b \times n b$. For $n t=3$:

$$
A=\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right]
$$

Same decomposition can be applied to L and D :
$L D L^{T}=\left[\begin{array}{lll}L_{11} & & \\ L_{21} & L_{22} & \\ L_{31} & L_{32} & L_{33}\end{array}\right]\left[\begin{array}{lll}D_{11} & & \\ & D_{22} & \\ & & D_{33}\end{array}\right]\left[\begin{array}{lll}L_{11}^{T} & L_{21}^{T} & L_{31}^{T} \\ & L_{22}^{T} & L_{32}^{T} \\ & & L_{33}^{T}\end{array}\right]$

Tiled LDL${ }^{\top}$ Factorization

$\left[\begin{array}{l|l|l}L_{11} D_{11} L_{11}^{T} & L_{11} D_{11} L_{21}^{T} & L_{11} D_{11} L_{31}^{T} \\ \hline L_{21} D_{11} L_{11}^{T} & L_{21} D_{11} L_{21}^{T}+L_{22} D_{22} L_{22}^{T} & L_{21} D_{11} L_{31}^{T}+L_{22} D_{22} L_{32}^{T} \\ \hline L_{31} D_{11} L_{11}^{T} & L_{31} D_{11} L_{21}^{T}+L_{32} D_{22} L_{22}^{T} & L_{31} D_{11} L_{31}^{T}+L_{32} D_{22} L_{32}^{T}+L_{33} D_{33} L_{33}^{T}\end{array}\right]$

Tiled LDL${ }^{\top}$ Factorization

Using the same principle as the Schur complement, a series of tasks can be set to calculate each $L_{i j}$ and $D_{i i}$:

$$
\begin{aligned}
{\left[L_{11}, D_{11}\right] } & =\operatorname{LDL}^{T}\left(A_{11}\right) \\
L_{21} & =A_{21}\left(D_{11} L_{11}^{T}\right)^{-1} \\
L_{31} & =A_{31}\left(D_{11} L_{11}^{T}\right)^{-1} \\
\tilde{A}_{32} & =A_{32}-L_{31} D_{11} L_{21}^{T} \\
\tilde{A}_{22} & =A_{22}-L_{21} D_{11} L_{21}^{T} \\
{\left[L_{22}, D_{22}\right] } & =\operatorname{LDL}^{T}\left(\tilde{A}_{22}\right) \\
L_{32} & =\tilde{A}_{32}\left(D_{22} L_{22}^{T}\right)^{-1} \\
\tilde{A}_{33} & =A_{33}-L_{31} D_{11} L_{31}^{T}-L_{32} D_{22} L_{32}^{T} \\
{\left[L_{33}, D_{33}\right] } & =\operatorname{LDL}^{T}\left(\tilde{A}_{33}\right)
\end{aligned}
$$

Tiled LDL ${ }^{\top}$ factorization with pivoting

Adding pivoting to LDL^{\top} :

$$
\begin{aligned}
{\left[L_{11}, D_{11}, P_{11}\right] } & =\operatorname{LDL}^{T}\left(A_{11}\right) \\
L_{21} & =P_{22}^{T} A_{21} P_{11}\left(D_{11} L_{11}^{T}\right)^{-1} \\
L_{31} & =P_{33}^{T} A_{31} P_{11}\left(D_{11} L_{11}^{T}\right)^{-1} \\
\tilde{A}_{22} & =A_{22}-\left(P_{22} L_{21}\right) D_{11}\left(P_{22} L_{21}\right)^{T} \\
\tilde{A}_{32} & =A_{32}-\left(P_{33} L_{31}\right) D_{11}\left(P_{22} L_{21}\right)^{T} \\
{\left[L_{22}, D_{22}, P_{22}\right] } & =\operatorname{LDL}^{T}\left(\tilde{A}_{22}\right) \\
L_{32} & =P_{33}^{T} \tilde{A}_{32} P_{22}\left(D_{22} L_{22}^{T}\right)^{-1} \\
\tilde{A}_{33} & =A_{33}-\left(P_{33} L_{31}\right) D_{11}\left(P_{33} L_{31}\right)^{T}-\left(P_{33} L_{32}\right) D_{22}\left(P_{33} L_{32}\right)^{T} \\
{\left[L_{33}, D_{33}, P_{33}\right] } & =\operatorname{LDL}^{T}\left(\tilde{A}_{33}\right)
\end{aligned}
$$

Tiled LDL^{\top} Factorization with tile-wise pivoting

- The tile-wise pivoting restricts the search of pivots to the tile $A_{k k}$
- Does not guarantee the accuracy of the solution; it strongly depends on the matrix to be factorized and how the pivots are distributed.
- Guarantees numerical stability of the factorization of each tile $A_{k k}$, with appropriate pivoting used
- Pivoting is sequential, which means that the pivot search and hence the permutations are also serial

Data organization

Column-major layout

Tile layout

Tiled LDL${ }^{\top}$ Algorithm

Static and dynamic scheduling

DAG for DSYTRF ($n t=4$)

Static and dynamic scheduling

Traces of tiled LDL ${ }^{\top}$（Magnycours－48 with 8 threads）
三－1 ミ－ミ～

Tests on accuracy

- We compare 3 solvers:
- SRBT (2 recursions) + Tiled LDL ${ }^{\top}$
- LAPACK LDL ${ }^{\top}$ (Bunch-Kaufman pivoting strategy)
- SRBT + PP
- We report componentwise backward error $\omega=\max _{i} \frac{|A x-b|_{i}}{(|A| \cdot|x|+|b|)_{i}}$
- Iterative refinement is systematically added
- Test matrices from the LAPACK tester:

1	Diagonal	6	Random, $\kappa=2$
2	First column zero	7	Random, $\kappa=\sqrt{1 / \varepsilon}$
3	Last column zero	8	Random, $\kappa=1 / \varepsilon$
4	Middle column zero	9	Scaled near underflow
5	Last $n / 2$ columns zero	10	Scaled near overflow

Accuracy Comparison

Matrix Type	SRBT-LDL	LAPACK LDL	SRBT + LDL ${ }^{\top}$ PIV
1	$0.8815 \mathrm{e}-13(0)$	$0.1079 \mathrm{e}-15(0)$	$0.1975 \mathrm{e}-13(0)$
2	$0.4067 \mathrm{e}-13(1)$	$0.2830 \mathrm{e}-13(+)$	$0.4244 \mathrm{e}-13(1)$
3	$0.2395 \mathrm{e}-13(1)$	-	$0.1242 \mathrm{e}-13(1)$
4	$0.2504 \mathrm{e}-13(1)$	-	$0.3696 \mathrm{e}-13(1)$
5	$0.5466 \mathrm{e}-13(1)$	-	$0.8008 \mathrm{e}-13(1)$
6	-	-	$0.1219 \mathrm{e}-13(1)$
7	$0.3037 \mathrm{e}-13(1)$	$0.3810 \mathrm{e}-13(+)$	$0.6795 \mathrm{e}-13(1)$
8	$0.6048 \mathrm{e}-13(1)$	$0.2930 \mathrm{e}-13(+)$	$0.5195 \mathrm{e}-13(0)$
9	-	$0.5898 \mathrm{e}-13(+)$	$0.2212 \mathrm{e}-13(1)$
10	$0.3674 \mathrm{e}-13(1)$	$0.8683 \mathrm{e}-13(+)$	$0.1612 \mathrm{e}-13(1)$

Preliminary performance results

- Tiled LDL^{\top} algorithm implemented following PLASMA development guidelines, tile size $n b=250$.
- Machine: $4 \times$ 12-Core AMD Opteron 6172 Magny-Cours @ 2.1 GHz, 128GB memory, theroretical peak 403.2 Gflop/s (8.4 Gflop/s per core) in double precision.
- Comparisons against MKL library for multicore and LAPACK with multithreaded MKL BLAS
- Comparisons with other solvers (Cholesky and $L U$) from the MAGMA library.
- Scalability of $\operatorname{LDL}^{\top}$ solver up de 48 cores.

Performance of the SRBT-LDL ${ }^{\top}$ solver

Performance of SRBT-LDL ${ }^{\top}$ against MKL and LAPACK (double precision)

Tiled $\operatorname{LDL}^{\top}$ vs other solvers

Execution time of Cholesky (PLASMA), LU (PLASMA) and tiled LDL $^{\top}$, dynamic (solid line) and static (dashed line) scheduling.

Scalability of tiled LDL $^{\top}$

Parallel speed-up; dynamic (solid line) and static (dashed line) scheduling.

Tuning elements

— $\mathrm{n}=20000$ Dynamic
$\mathrm{n}=10000$ Dynamic
$\mathrm{n}=5000$ Dynamic
---- $\mathrm{n}=20000$ Static
$\mathrm{n}=10000$ Static
$\cdots-\mathrm{n}=5000$ Static

Tile-size performance of tiled LDL ${ }^{\top}$.

Summary

- Tiled LDL^{\top} factorization without pivoting, and a randomization technique (SRBT) to avoid pivoting in $\operatorname{LDL}^{\top}$
- SRBT is computationally very affordable and negligible compared to the communication overhead due to classical pivoting
- It gives accurate results on most test cases including pathological ones
- Very promising performance that makes SRBT+tiled LDL ${ }^{\top}$ very competitive compared to other solvers

What next?

Integration into the PLASMA library (next release).
Development of LDL ${ }^{\top}$ on GPU for integration into MAGMA.

Collaboration with UIUC

- Fast linear solvers for CPU/GPU architectures
- People:
- Wen-Mei Hwu (UIUC)
- Liwen Chang (UIUC)
- Marc Baboulin (Inria Saclay)
- Laura Grigori (Inria Saclay)
- Adrien Remy (Inria Saclay)
- Yushan Wang (Inria Saclay)
- Tridiagonal solver developed at UIUC (integration into MAGMA for utilization in a CFD application at INRIA)
- Randomized algorithms for GPUs
- Communication avoiding algorithms for GPUs

