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Objective

Develop a parallel solver for dense symmetric indefinite linear systems.
(There is currently no parallel implementation for such systems
in dense public domain libraries)

@ Issues on pivoting for symmetric indefinite matrices

@ Symmetric randomization — recursive butterfly transformations
@ Parallel tiled LDL factorization

@ Numerical and performance results
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Symmetric indefinite linear systems

@ Symmetric (dense) linear system Ax = b

@ Ais indefinite when x” Ax can take on both positive and negative
values

@ Applications: least-squares via augmented system method,
Maxwell equations in electromagnetics, optimization problems...

@ Factorization
A=LDL"

where L is unit lower triangular and D is diagonal
@ Solve Ax = b by solving successively

Lz=b, Dy=z, L'x=y

@ Not stable — to ensure stability pivoting is usually required
@ Requires n®/3 flops (half the cost of LU) P
bria
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Symmetric indefinite linear systems - pivoting

@ Factorization
PAPT = LDLT

where

P is a permutation matrix
L is unit lower triangular
D is block-diagonal, with blocks of size 1 x 1 or2 x 2

@ Solve Ax = b by solving the triangular or block-diagonal systems

Lz=Pb, Dw=2z L'y=w, x=PTy

No floating-point operation in pivoting but it involves irregular data
movements and between O(n?) and O(n®) comparisons.
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Symmetric pivoting

@ To maintain symmetry, columns and rows must be interchanged

@ Compromises data

locality )
@ Increases data
dependence
X
X X)
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How to avoid pivoting?

Symmetric Random Butterfly Transformation (SRBT)

@ Tosolve Ax =b:
@ Compute A, = UTAU
@ Factorize A, without pivoting (LDLT)
@ Solve
Ay=Ub — LDLTy=U"b

and then the solution is x = Uy
@ U is a Recursive Butterfly Matrix

@ Requirements:

e SRBT transformation must be cheap; O(n?) operations
e LDLT with no pivoting must be fast
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Butterfly Matrix

A butterfly matrix is defined as any n-by-n matrix of the form:
B 1 (R S
vV2\ R =S

where R and S are random diagonal matrices.
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Recursive Butterfly Matrix

A recursive butterfly matrix of size nand depth d is :

N
AN
U<n,d> _ \§§ \ % \ \

X... X \ \
NN NN\
—_—
2d—1 putterfly of size 2d1 7 2 butterfly of size § 1 butterfly of size n

We consider a limited number of recursions, resulting in a so-called Partial
Symmetric Random Butterfly Transformation (PSRBT).
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Recursive butterfly matrix with d=3

B
4 B,
U<s> — Bs B
Bs 5 ‘
B, °
Uisnxn
Byisnxn 1 R S
B; and Bz are § x J B":\@<R, —S,-)
Bisto Brare 7 x §
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Packed storage for a recursive butterfly matrix

AN
< \ \ \
NN
y=nd> = NN X X N X
NN
NN \ \
—_—
2d—1 butterfly of size F’% 2 butterfly of size § 1 butterfly of size n
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Packed storage for a recursive butterfly matrix

AN
< \ \ \
NN
u=re> = NN X X N X
NN
N NN
—_—
2d—1 butterfly of size F’% 2 butterfly of size § 1 butterfly of size n
= U, = n
%/_/ ”
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Computational cost of SRBT

@ The elementary operation is
BT xCxB

where B is a butterfly matrix and C is a square matrix, both of size
mx m

@ BT CB requires 2n7 flops
e A, = UTAU requires
C(n, d) =~ 2dn®
where U is a recursive butterfly of size n and depth d
@ Maximum cost: C(n, logan+ 1) =~ 2n?logan

@ We aim at choosing d such that d < logon < n
In practice d = 2 is sufficient
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Condition number of the randomized matrix

@ 2-norm condition number (CN): measures the degree of
distortion of the unit sphere under tranformation by a matrix

@ The multiplicative preconditioning has to keep the CN as
"unchanged” as possible

A, = UTAU = conds(A;) < conds(U)?conds(A)

@ Choosing the random values in [—e'/20, e'/20] we get
condx(A;) < 1.2214%conds(A)

@ In practice, d = 2: condx(A,;) < 1.5 conds(A)
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Tiled LDLT Factorization

Decomposing Ain nt x nt tiles, where each Aj is a tile of size nb x nb.
For nt = 3:

Ai1 Az Ags
A= | A1 Ax Ax
A31 Az A3z

Same decomposition can be applied to L and D:

L1 Dx Ly Ly L
LDLT = | Loy Lo Do Ly, L
L3y Lao Lss Ds3 L
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Tiled LDLT Factorization

L11D11L1T1 L11D11L2T1 LMDHL3T1

Loy Dyi LYy | Lot DyiLdy + LooDool ], | Lot Dyi L + Lo Do Ll

LatDyi L]y | Lot Dyl + LaoDooll, | LatDigLly + LapDoo L], + Lag DLy
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Tiled LDLT Factorization

Using the same principle as the Schur complement, a series of tasks
can be set to calculate each L; and Dj;:
[L11, Dy1] = LDLT (Ayy)
Lot = Apt(Dy1L]) ™"
La1 = Agt(Dy1L{;)""
Ago = Ao — L1 Dy1 L3,
Aoy = Ap> — Loy Dy L,
Lo, Dop] = LDL (An)
Lsz = Asz(Dz2Lg,) "
Asz = Agz — Lg1 Di1L; — LaoDaoLl,
[Las, Das] = LDL (Agg) .
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Tiled LDLT factorization with pivoting

Adding pivoting to LDL:

[L11, D11, P11] = LDL" (A1)
Lot = P3yAz1Py1(DyqL{;) "
Ls1 = Pd3As1Py1(DiqL{;) "
Az = Ago — (P22L21)Di1(Paalor)”
Asz = Asz — (Pa3lat)Di1(Paalzr)”
[Loa, Daa, Poo] = LDLT (Az,)
Lso = Pd3As2Paz(Daolly)
Ags = Ass — (P33La1)Di1(Paslat) " — (Psslaz) Daz(Psslsz)”

(L33, Dag, P33] = LDL (Ag3)
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Tiled LDLT Factorization with tile-wise pivoting

@ The tile-wise pivoting restricts the search of pivots to the tile Axk

@ Does not guarantee the accuracy of the solution; it strongly
depends on the matrix to be factorized and how the pivots are
distributed.

@ Guarantees numerical stability
of the factorization of each tile At
Axk, with appropriate pivoting
used

@ Pivoting is sequential, which Assz
means that the pivot search
and hence the permutations
are also serial
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Data organization

Column-major layout Tile layout
: ,;t;u..; s #” mathematics
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Tiled LDLT Algorithm
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Static and dynamic scheduling
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Static and dynamic scheduling

”

Traces of tiled LDLT (Magnycours-48 with 8 threads) ﬁ 7 ,Z/i
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Tests on accuracy

@ We compare 3 solvers:
e SRBT (2 recursions) + Tiled LDL"
e LAPACK LDL" (Bunch-Kaufman pivoting strategy)
o SRBT + PP

@ We report componentwise backward error w = max; %
@ lterative refinement is systematically added
@ Test matrices from the LAPACK tester:
1 Diagonal 6 Random, kx =2
2 First column zero 7 Random, k = /1/¢
3 Last column zero 8 Random,k =1/¢
4 Middle column zero 9 Scaled near underflow
5 Last n/2 columns zero 10 Scaled near overflow
‘mfu;un;,mulh:mums
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Accuracy Comparison

Matrix ~ SRBT-LDLT  LAPACK LDLT SRBT + LDLT PIV
Type

1 0.8815e-13 (0) 0.1079e-15(0)  0.1975e-13 (0)
2 0.4067e-13 (1) 0.2830e-13 (+)  0.4244e-13 (1)
3 0.2395e-13 (1) - 0.1242e-13 (1)
4 0.2504e-13 (1) - 0.3696e-13 (1)
5 0.5466e-13 (1) - 0.8008e-13 (1)
6 - - 0.1219e-13 (1)
7 0.3037e-13 (1) 0.3810e-13 (+)  0.6795e-13 (1)
8 0.6048e-13 (1) 0.2930e-13 (+)  0.5195e-13 (0)
9 - 0.5898e-13 (+)  0.2212e-13 (1)
10 0.3674e-13 (1) 0.8683e-13 (+)  0.1612e-13 (1)
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Preliminary performance results

@ Tiled LDLT algorithm implemented following PLASMA
development guidelines, tile size nb = 250.

@ Machine: 4x 12-Core AMD Opteron 6172 Magny-Cours @ 2.1
GHz, 128GB memory, theroretical peak 403.2 Gflop/s (8.4 Gflop/s
per core) in double precision.

@ Comparisons against MKL library for multicore and LAPACK with
multithreaded MKL BLAS

@ Comparisons with other solvers (Cholesky and LU) from the
MAGMA library.

@ Scalability of LDLT solver up de 48 cores.
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Performance of the SRBT-LDLT solver

Double Real (Magnycours-48)
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Performance of SRBT-LDLT against MKL and LAPACK (double precision)
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Tiled LDLT vs other solvers

DGETRF, DSYTRF and DPOTRF (Magnycours-48)
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Execution time of Cholesky (PLASMA), LU (PLASMA) and tiled LDL,
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Scalability of tiled LDLT

DSYTRF (Magnycours-48)
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Tuning elements

DSYTRF (Magnycours-48)
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@ Tiled LDLT factorization without pivoting, and a randomization technique
(SRBT) to avoid pivoting in LDLT

@ SRBT is computationally very affordable and negligible compared to the
communication overhead due to classical pivoting

@ It gives accurate results on most test cases including pathological ones

@ Very promising performance that makes SRBT+tiled LDLT very
competitive compared to other solvers

Integration into the PLASMA library (next release).
Development of LDLT on GPU for integration into MAGMA.
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Collaboration with UIUC

@ Fast linear solvers for CPU/GPU architectures
@ People:
e Wen-Mei Hwu (UIUC)
Liwen Chang (UIUC)
Marc Baboulin (Inria Saclay)
Laura Grigori (Inria Saclay)
Adrien Remy (Inria Saclay)
Yushan Wang (Inria Saclay)

@ Tridiagonal solver developed at UIUC (integration into MAGMA for
utilization in a CFD application at INRIA)

@ Randomized algorithms for GPUs
@ Communication avoiding algorithms for GPUs
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