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CIFTS Project 

 The CIFTS Project 

– Initiated  in 2007 

– Goal: To Improve End-to-End Fault 
Tolerance in Systems 

 

 Team 
– Argonne National Lab : Pete Beckman 

– Oak Ridge National Lab : Al Geist/ David 
Bernholdt 

– Lawrence Berkeley National Lab: Paul 
Hargrove 

– University of Tennessee, Knoxville: Jack 
Dongarra 

– Indiana University: Andrew Lumsdaine 

– Ohio State University:  D.K. Panda 
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Improving fault tolerance in MPI 

 MPICH (ANL) 

– Incorporated system-level checkpoint/restart using BLCR 

– Run-through fault tolerance (process fails, return error and continue) 

– Partial support for MPI 3.1 fault tolerance 

 MVAPICH (OSU) 

 Incorporated system-level check pointing/restart using BLCR 

– Pro-active Job migration 

– Automatic InfiniBand path failover 

 Open MPI (IU) 

– Transparent, coordinated checkpoint/restart infrastructure 

– Checkpoint-restart enabled process migration 

– Application-level  checkpoint Interface 

– Fault Tolerance API using MPI extensions (In development) 

 Motivated the push for MPI 3.0 Fault Tolerance standard 

 Details: http://www.mcs.anl.gov/research/cifts/publications/index.php 
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http://www.mcs.anl.gov/research/cifts/publications/index.php


Fault Tolerance in Applications 

 Improving fault tolerance in SWIM-IPS, AMBER and LAMPPS 
application (ORNL) 

 For example: AMBER, LAMPPS application 

– Built on hypothesis that certain applications can have “health 
parameters” 

– Health parameters: 

• Good indicators of overall health of the application progress 

• Can be monitored (LIVE) with little or no over-head 

• Deviations from expected behavior can be indication of fault 

– Molecular dynamics (MD): Possible heath parameters : Temperature,  
Energy (constant energy runs),  Simulation volume 

– Manage checkpoint/restart capability based on the health parameters 

 FT approach taken varies with application 
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Improvements in BLCR 

 Berkeley Checkpoint/Restart for Linux  (LBNL) 

– Single-node checkpointer which cooperates with MPI for distributed 
applications 

 Integrated with  MPIs (MPICH, Open MPI and MVAPICH), SLURM and 
TORQUE 

 Several improvements (version 0.9) 

– Coalescing of small I/O requests into larger ones 

– In-kernel compression of checkpoint data 

– Incremental checkpointing  and memory-exclusion hints 

– in-place rollback  

 Adopted on Cray Systems, and on Blue Gene systems using Linux-
derivative kernels (such as ZeptoOS) 
 

"Checkpoint/Restart-Enabled Parallel Debugging", J. Hursey and C. January and M. O'Connor and 
P. Hargrove and D. Lecomber and J. Squyres and A. Lumsdaine, Proceedings of EuroMPI, 2010 
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Improving Fault Tolerance in Math libraries 

 FT Linear Algebra: Dense linear algebra library (UTK) 

 Work done with FT-LA and ScaLAPACK 
– Design on checksum-based  fault tolerant algorithms   

• Targeted at BLAS3 kernels such as matrix-matrix multiplication and LU 
decomposition 

 

“Correlated Set Coordination in Fault Tolerant Message Logging Protocols". A. 
Bouteiller, T. Herault, G. Bosilca and J. Dongarra, Lecture Notes in Computer Science, 
Proceedings of the 2011 Euro-Par conference, 2011 

“Algorithm-based fault tolerance for dense matrix factorizations”. Peng Du, Aurelien 
Bouteiller, George Bosilca, Thomas Herault, and Jack Dongarra.. Technical Report 253, 
LAPACK Working Note, July 2011. 

“Soft error resilient QR factorization for hybrid system”, Peng Du, Piotr Luszczek, 
Stanimire Tomov, and Jack Dongarra, Technical Report 252, LAPACK Working Note, 
July 2011. 
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End to End Fault Tolerance in CIFTS 

8 

Improve fault 
tolerance 

in software 

Explore global 
coordinated 

fault tolerance 

 Open Questions in the last decade 

– Can global fault information improve detection, diagnosis and 
responsiveness to fault? 

– What are the missing fault-tolerance features in software today? 

– What additional mechanisms, tools, and technologies are needed 
for coordinated fault tolerance? 

–  What standards, outreach, and community interaction are 
needed for  easier adoption? 

 

  



CIFTS approach for coordinated fault tolerance 

 

 

 

 

 CIFTS provides a coordination framework for different 
components to exchange hardware and software fault 
information.   

– This  communication framework  is called The Fault Tolerance 
Backplane 

 Provides a standard FTB API to exchange fault information 

 Provide a reference implementation of the FTB API 

 Work with a range of widely-used software and plugs them 
into the CIFTS infrastructure 
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The FTB Client API 

 Provides a set of simple FTB routines, 
loosely based on the publish-subscribe 
principle 

– FTB_Connect() 

– FTB_Publish_event()  

• Events declared in code or via XML 
files 

– FTB_Subscribe() 

• Various filters  

• Polling vs. asynchronous  

     notification 

– FTB_Poll_for_event() 

– FTB_Unsubscribe() 

– FTB_Disconnect() 

 

 



The FTB Software Architecture 

 The FTB software is a reference 
implementation of the FTB API 

 

 It is a distributed, self-healing and a 
highly-scalable framework, capable of 
handling large number of events and 
dealing with event storms 
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implementation, we have another 
proof-of-concept implementation of 
FTB API with AMQP (using Apache 
QPID) 
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RAVEN: RAS Data Analysis Through Visually 

Enhanced Navigation 

 FTB-enabled RAS component bridges CRAY RAS event stream to FTB 

 User explores event correlations on a physical system map  

 Use detailed offline RAS log database to aid fault analysis 
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“Dynamic Meta-Learning for Failure Prediction in Large-scale Systems: A Case Study", J. Gu, Z. Zheng, Z. Land, J. White, E. Hocks and B-H 
Park, Proceedings of the International Conference on Parallel Processing (ICPP), 2008. 



FTB-IPMI (1) 

 Intelligent Platform Management Interface (IPMI)  defines a set of common interfaces 
to a computer system which can be used to monitor system health 

 FTB-IMPI software is based on FreeIPMI, based on IPMI v1.5/2.0 specification 
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FTB IPMI (2) 
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* "Monitoring and Predicting Hardware Failures in HPC Clusters with FTB-IPMI", R. 
Rajachandrasekar, X. Besseron and D. K. Panda, Proceedings of the International Workshop on System 
Management Techniques, Processes, and Services (SMTPS), in conjunction with International Parallel 
and Distributed Processing Symposium (IPDPS), 2012 
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Application Example:  End-to-End Application Fault 

Response with Molecular Dynamic application 
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"Realization of User-Level Fault Tolerance Policy Management through a Holistic Approach for Fault  Correlation", B-H. Park, T. 
Naughton, P. Agarwal, D. Bernholdt, A. Geist and J. Tippens, IEEE International Symposium on Policies for Distributed Systems and Networks 
(POLICY), June 2011 
"Application Self-health Monitoring for Extreme-scale Resiliency using Cooperative Fault Management", Pratul Agarwal, Thomas 
Naughton, S. Alam, B-H Park, David Bernholdt, Josh Hursey and Al. Geist, Concurrency and Computation: Practice and Experience (2012). 
Submitted. 
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Application Example:  End-to-End Application Fault 

Response with Molecular Dynamic application 

 Integrity of MD application can be measured by: 

– Wall clock time each simulation step 

• For ex: if wall clock time > 2*statistical average  suspicion that something is wrong 

– MD outputs 

• Temperature, energy, velocity  

 Data is sent via application monitor 
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The MD application user policy 



Application Example:  Proactive Fault tolerance with 

Molecular Dynamic application 

 MD application: proxy-code simulating Argon particles interaction 
– Fault predictor to predict faults  (via failure trends on the FTB) 

– Transparent process migration using MPI in event of a node failure  

– Simplified Video: http://www.mcs.anl.gov/research/cifts/talks/index.php 

http://www.mcs.anl.gov/research/cifts/talks/index.php
http://www.mcs.anl.gov/research/cifts/talks/index.php
http://www.mcs.anl.gov/research/cifts/talks/index.php


Overview of some more FTB-enabled tools (1) 

 FTB-enabled RAS Monitoring tool 

– Software that polls on RAS database on service node, converts admin-specified RAS 
events to FTB events and publishes them to FTB 

 FTB-enabled Blue Gene Administrative tool 

– Gets RAS information from the FTB-enabled RAS monitoring tool 

– Carries out administrative-directed action (email, diagnosis) 

 FTB-enabled Failure Prediction tool 

– Gets RAS information from the FTB-enabled RAS monitoring tool 

– Uses our failure-prediction research on Blue Gene/P to predict failures (RAS events, job 
logs) * 

– Prediction : lead time + location of failures** 

– Uses FTB to publish this information 
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* “Co-Analysis of RAS Log and Job Log on Blue Gene/P", Z. Zheng, L. Yu, W. Tang, Z. Land, R. Gupta, N. Desai, S. 
Coghlan, and D. Buettner, 25th IEEE International Parallel and Distributed Processing Symposium (IPDPS' 11), May 
2011 
*  “System log Pre-processing to Improve Failure Prediction”, Z. Zheng, Z. Land, B-H Park, and A. Geist, Proceedings 
of the 39th IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), 2009. 
** “A Practical Failure Prediction with Location and Lead Time for Blue Gene/P", Z. Zheng, Z. Land, R. Gupta, S. 
Coghlan, and P. Beckman, Proceedings of the 1st Workshop on Fault-Tolerance for HPC at Extreme Scale (FTXS), in 
conjunction with DSN'10, 2010 

 



Overview of some FTB-enabled tools (2) 

 FTB Syslog 

– Converts syslog messages into FTB events 

 FTB-enabled generic tools 

– FTB Watchdog 

– FTB Publisher,  

– FTB Subscriber, 

– FTB Pingpong,  

– FTB All-to-All 

– FTB Loggers (synchronous, asynchronous) 

 FTB-InfiniBand Monitoring tool 

– Used for monitoring InfiniBand network 

– Integrated with MVAPICH (MPI can react based on monitored information) 

 FTB-IPMI 

– Tool publishes IPMI information to FTB 
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* "Monitoring and Predicting Hardware Failures in HPC Clusters with FTB-IPMI", R. Rajachandrasekar, X. Besseron and D. K. Panda, 
Proceedings of the International Workshop on System Management Techniques, Processes, and Services (SMTPS), in conjunction with 
International Parallel and Distributed Processing Symposium (IPDPS), 2012 



Accomplishments (Software, Specs and Tools) 

 Fault Tolerance Backplane (FTB) API specification (version 0.5) 
 

 FTB software (latest version 0.6) 

– For IBM BG/L and BG/P (ZeptoOS), CRAY and Linux machines 
 

 FTB MPI standardized events (MPICH, MVAPICH, Open MPI) 
 

 FTB-integrated software  : MPICH, MVAPICH, Open MPI, BLCR, FT-LA, 
SWIM-IPS/MD applications 
 

 FTB-enabled tools and libraries  for fault logging, fault monitoring, fault 
analysis and prediction for CRAY, Blue Gene and Linux systems 

– FTB-InfiniBand for monitoring, FTB-syslog, RAVEN (monitoring for CRAY 
systems) for logging and publishing faults 
 

 For downloads, publications, demos and more information: 
www.mcs.anl.gov/research/cifts 

 

 

 

 

 

 

 

http://www.mcs.anl.gov/research/cifts


Fault Coordination frameworks:  

Challenges (Future Research) 
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Event Storms 

 Single symptom storms 

– Relatively easy, if emerging from a single source 

– Identify duplicate events based on source and event attributes 
in a time interval 

– Throttle events at the source 

– Supported in FTB 

 Different symptom storms 

– Different events from different sources  

– Very tough; require root cause analysis (big research area) 

– Can reduce gravity by throttling of single symptom events 
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FTB Event Standardization Effort 

 FTB-enabled software can publish any fault events they wish  

– Need to have well-defined semantics  

– Many expected to be package/software-specific 

– Even better to standardize across many packages within a 
category  sister standards 

 

 Standardization of events is a community-wide effort  

– ftb.* portion of namespace reserved for standardized events 

– MPI events have been standardized for  MPICH, MVAPICH, and 
Open MPI teams 

– However, events need to be standardized across other domains 
(job schedulers: relatively easy, applications: difficult) 

 



Policy Management and Response Negotiation 
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 Who can take an action for a received 
event and in what priority? 

 

 Current approach : Policy manager is 
independent from FTB, with new API 

 Current prototype is 
limited 

– Global policy (specify 
priority of every 
component for an event) 

– Increased latency 

 Starting point for defining 
scenarios that work 



Policy Management and Response Negotiation 
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 Policy management in challenging 

– Who determines the response priority? 

• Administrator (global view)  vs. user (local view) 

• Is this going to be job-based and user-based? 

• Is this going to be process stack-based? 

 Software dynamically joins and leaves the system.  You 
cannot predict which software might join and what it might 
throw 

 Software that has priority is responding might exit before 
responding 

 Needs to be reliable, distributed and scalable 
 

 



Group Aggregators and Query Interfaces 

 Independent software that aggregate information and 
analyze system-wide information 

 Why are they needed? 

– Job Scope:  Get events published by my job  

– Service Scope: Get all nodes which are running PVFS daemons 

– Get all jobs that are running on a node and determine their job 
id 

– What all software are FTB-enabled and running on the system? 

– Who can react to event Foo ?  
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Bridging the semantic gap 

 Semantic gaps exists between different layers of a software 

 Scenario: 

– Network publishes “network communication error with IB 
adapter = X” 

– Application expects “node hostname has failed ” 
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Security / Authentication 

 Can be a major concern for big production environments 

 Sharing fault information with users is not always a good idea 

– With naïve users: Increased support calls (app killed, FTB reported 
system error, user wants refund of reservation time) 

– With savvy users: how do you deal with policies and still give 
application control? 

 Solutions need research 

– Authentication and security needed 

– Tie authentication levels to “fault events”? to users? Who does 
this? Is it practical? 

– Limiting consumers to receive only “events within the same job” 
is not sufficient. Consumers exist beyond jobs! 
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2 

CIFTS Open Community Model 

For more information: 

– Web Page: http://www.mcs.anl.gov/research/cifts 

– Open SVN Repository: https://svn.mcs.anl.gov/repos/cifts 

– Wiki: http://wiki.mcs.anl.gov/cifts/index.php 

– TRAC: http://trac.mcs.anl.gov/projects/cifts/wiki 

– Mailing lists: cifts_discuss@googlegroups.com 

http://www.mcs.anl.gov/research/cifts
http://www.mcs.anl.gov/research/cifts
https://svn.mcs.anl.gov/repos/cifts
https://svn.mcs.anl.gov/repos/cifts
http://wiki.mcs.anl.gov/cifts/index.php
http://wiki.mcs.anl.gov/cifts/index.php
http://trac.mcs.anl.gov/projects/cifts/wiki
http://trac.mcs.anl.gov/projects/cifts/wiki
mailto:cifts_discuss@googlegroups.com
mailto:cifts_discuss@googlegroups.com
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