
CIFTS: A Coordinated Infrastructure for

Fault Tolerant Systems : Experiences and

Challenges

Rinku Gupta

Mathematics and Computer Science Division

Argonne National Laboratory

CIFTS Project

 The CIFTS Project

– Initiated in 2007

– Goal: To Improve End-to-End Fault
Tolerance in Systems

 Team
– Argonne National Lab : Pete Beckman

– Oak Ridge National Lab : Al Geist/ David
Bernholdt

– Lawrence Berkeley National Lab: Paul
Hargrove

– University of Tennessee, Knoxville: Jack
Dongarra

– Indiana University: Andrew Lumsdaine

– Ohio State University: D.K. Panda

Team

End to End Fault Tolerance

3

Improve fault tolerance
in software

MPICH

Open
MPI

MVAPICH

BLCR

FT-
Linear

Algebra Molecular
Dynamics

applications

SWIM-IPS
application

Cray, Blue
Gene, Linux

Improving fault tolerance in MPI

 MPICH (ANL)

– Incorporated system-level checkpoint/restart using BLCR

– Run-through fault tolerance (process fails, return error and continue)

– Partial support for MPI 3.1 fault tolerance

 MVAPICH (OSU)

 Incorporated system-level check pointing/restart using BLCR

– Pro-active Job migration

– Automatic InfiniBand path failover

 Open MPI (IU)

– Transparent, coordinated checkpoint/restart infrastructure

– Checkpoint-restart enabled process migration

– Application-level checkpoint Interface

– Fault Tolerance API using MPI extensions (In development)

 Motivated the push for MPI 3.0 Fault Tolerance standard

 Details: http://www.mcs.anl.gov/research/cifts/publications/index.php

4

http://www.mcs.anl.gov/research/cifts/publications/index.php

Fault Tolerance in Applications

 Improving fault tolerance in SWIM-IPS, AMBER and LAMPPS
application (ORNL)

 For example: AMBER, LAMPPS application

– Built on hypothesis that certain applications can have “health
parameters”

– Health parameters:

• Good indicators of overall health of the application progress

• Can be monitored (LIVE) with little or no over-head

• Deviations from expected behavior can be indication of fault

– Molecular dynamics (MD): Possible heath parameters : Temperature,
Energy (constant energy runs), Simulation volume

– Manage checkpoint/restart capability based on the health parameters

 FT approach taken varies with application

5

Improvements in BLCR

 Berkeley Checkpoint/Restart for Linux (LBNL)

– Single-node checkpointer which cooperates with MPI for distributed
applications

 Integrated with MPIs (MPICH, Open MPI and MVAPICH), SLURM and
TORQUE

 Several improvements (version 0.9)

– Coalescing of small I/O requests into larger ones

– In-kernel compression of checkpoint data

– Incremental checkpointing and memory-exclusion hints

– in-place rollback

 Adopted on Cray Systems, and on Blue Gene systems using Linux-
derivative kernels (such as ZeptoOS)

"Checkpoint/Restart-Enabled Parallel Debugging", J. Hursey and C. January and M. O'Connor and
P. Hargrove and D. Lecomber and J. Squyres and A. Lumsdaine, Proceedings of EuroMPI, 2010

6

Improving Fault Tolerance in Math libraries

 FT Linear Algebra: Dense linear algebra library (UTK)

 Work done with FT-LA and ScaLAPACK
– Design on checksum-based fault tolerant algorithms

• Targeted at BLAS3 kernels such as matrix-matrix multiplication and LU
decomposition

“Correlated Set Coordination in Fault Tolerant Message Logging Protocols". A.
Bouteiller, T. Herault, G. Bosilca and J. Dongarra, Lecture Notes in Computer Science,
Proceedings of the 2011 Euro-Par conference, 2011

“Algorithm-based fault tolerance for dense matrix factorizations”. Peng Du, Aurelien
Bouteiller, George Bosilca, Thomas Herault, and Jack Dongarra.. Technical Report 253,
LAPACK Working Note, July 2011.

“Soft error resilient QR factorization for hybrid system”, Peng Du, Piotr Luszczek,
Stanimire Tomov, and Jack Dongarra, Technical Report 252, LAPACK Working Note,
July 2011.

7

End to End Fault Tolerance in CIFTS

8

Improve fault
tolerance

in software

Explore global
coordinated

fault tolerance

 Open Questions in the last decade

– Can global fault information improve detection, diagnosis and
responsiveness to fault?

– What are the missing fault-tolerance features in software today?

– What additional mechanisms, tools, and technologies are needed
for coordinated fault tolerance?

– What standards, outreach, and community interaction are
needed for easier adoption?

CIFTS approach for coordinated fault tolerance

 CIFTS provides a coordination framework for different
components to exchange hardware and software fault
information.

– This communication framework is called The Fault Tolerance
Backplane

 Provides a standard FTB API to exchange fault information

 Provide a reference implementation of the FTB API

 Work with a range of widely-used software and plugs them
into the CIFTS infrastructure

Fault Tolerance Framework

Fault

Tolerance

Backplane

Linear
Algebra
Libraries

HPC
Middleware

Universal
Logger

Automatic

Actions

Diagnostics
Tools

Event
Analysis

Job
Scheduler/
Resource
manager

File
Systems

Checkpointing
Software

Advanced
Networks

&
Networking

libraries

System
Monitoring

software

System
Management

hardware

Operating
System Applications

Advanced
Systems

(Crays, BGs)

FTB API

Scenario Using Coordination

IO node failure.
File system down

Parallel FS

File System shares
 this information

FT-Job Scheduler

Launch jobs with
NFS file system

MPI-IO
Prints a coherent

error message

Checkpoints to a diff FS

FT-Application

Checkpoints to a diff FS

FT-Application

Migrates existing

jobs

The FTB Client API

 Provides a set of simple FTB routines,
loosely based on the publish-subscribe
principle

– FTB_Connect()

– FTB_Publish_event()

• Events declared in code or via XML
files

– FTB_Subscribe()

• Various filters

• Polling vs. asynchronous

 notification

– FTB_Poll_for_event()

– FTB_Unsubscribe()

– FTB_Disconnect()

The FTB Software Architecture

 The FTB software is a reference
implementation of the FTB API

 It is a distributed, self-healing and a
highly-scalable framework, capable of
handling large number of events and
dealing with event storms

FTB

Manager

API

FTB Agent

FTB Agent

FTB Agent

FTB Agent

FTB Agent
FTB Agent

FTB Agent

FTB_Connect
FTB_Connect

Software1

FTB_Subscribe

to a set of

events

Software2

Software3

FTB_Connect

FTB_Publish event

FTB_Publish

Manager Library

Network

Client Library

Software

Network

Module1

FTB

Agent

Software

Linux BG CRAY

Network

Module2

Manager Library

Network

FTB

Client API

FTB Agent Software stack Component Software stack

Network

Module1

Network

Module2

 NOTE: In addition to this
implementation, we have another
proof-of-concept implementation of
FTB API with AMQP (using Apache
QPID)

Guaranteed

Delivery

BLCR
FT-LA

SWIM

IPS

PBS/Pro

Open MPI

Lustre

PVFS

Global
Arrays ARMCI

MPICH2

GPFS

IBRIX

MVAPICH2

SGE

MAUI

Condor

LSF

Cobalt

Intel MKL

SLURM

LAMPPS

ZeptoOS

Linux

Eclipse

BLAST

Star-CD

Fluent

CRAY

InfiniBand

Monitoring

Myri-10G

Linux

Clusters
IBM BGs

FTB-enabled

Other
Components

Other
Components

Other
Components

Guaranteed

Delivery Aggregators/

Engines

Fault

Tolerance

Backplane

Security/

Authentication

Policy

Management

&

Response

Prioritization

Current State of FTB-enabled software

RAVEN: RAS Data Analysis Through Visually

Enhanced Navigation

 FTB-enabled RAS component bridges CRAY RAS event stream to FTB

 User explores event correlations on a physical system map

 Use detailed offline RAS log database to aid fault analysis

15

“Dynamic Meta-Learning for Failure Prediction in Large-scale Systems: A Case Study", J. Gu, Z. Zheng, Z. Land, J. White, E. Hocks and B-H
Park, Proceedings of the International Conference on Parallel Processing (ICPP), 2008.

FTB-IPMI (1)

 Intelligent Platform Management Interface (IPMI) defines a set of common interfaces
to a computer system which can be used to monitor system health

 FTB-IMPI software is based on FreeIPMI, based on IPMI v1.5/2.0 specification

16

IPMI
Data from a single node

FTB IPMI (2)

17

Application

MPI

Application

MPI

Process launcher

Job Scheduler

FTB-IPMI
process

IPMI Network

Frontend Node Compute Node Compute Node

FTB

1

3

2

4

2

5

6

1. Gather sensor data
on IPMI network

2. FTB-IPMI applies
rules and

3. Publishes FTB event

4. Deliver FTB event to
subscribers

5. MVAPICH uses
prediction engine
and

6. Publishes predicted
event (like
node_failure)

7. Launcher carries out
migration

* "Monitoring and Predicting Hardware Failures in HPC Clusters with FTB-IPMI", R.
Rajachandrasekar, X. Besseron and D. K. Panda, Proceedings of the International Workshop on System
Management Techniques, Processes, and Services (SMTPS), in conjunction with International Parallel
and Distributed Processing Symposium (IPDPS), 2012

7

Application Example: End-to-End Application Fault

Response with Molecular Dynamic application

SEC

Task
Launcher

Policies

Ganglia

Real Time

RAS Data/

Job Info

Publish Task Failure

MPI-based MD simulation

Advise Actions based

on Policies

Publish

Node Failures

FTB

Determine best restart option for failed user application based on system state
and user preferences

"Realization of User-Level Fault Tolerance Policy Management through a Holistic Approach for Fault Correlation", B-H. Park, T.
Naughton, P. Agarwal, D. Bernholdt, A. Geist and J. Tippens, IEEE International Symposium on Policies for Distributed Systems and Networks
(POLICY), June 2011
"Application Self-health Monitoring for Extreme-scale Resiliency using Cooperative Fault Management", Pratul Agarwal, Thomas
Naughton, S. Alam, B-H Park, David Bernholdt, Josh Hursey and Al. Geist, Concurrency and Computation: Practice and Experience (2012).
Submitted.

RAS events

Application
monitor

Application Example: End-to-End Application Fault

Response with Molecular Dynamic application

 Integrity of MD application can be measured by:

– Wall clock time each simulation step

• For ex: if wall clock time > 2*statistical average  suspicion that something is wrong

– MD outputs

• Temperature, energy, velocity

 Data is sent via application monitor

19

The MD application user policy

Application Example: Proactive Fault tolerance with

Molecular Dynamic application

 MD application: proxy-code simulating Argon particles interaction
– Fault predictor to predict faults (via failure trends on the FTB)

– Transparent process migration using MPI in event of a node failure

– Simplified Video: http://www.mcs.anl.gov/research/cifts/talks/index.php

http://www.mcs.anl.gov/research/cifts/talks/index.php
http://www.mcs.anl.gov/research/cifts/talks/index.php
http://www.mcs.anl.gov/research/cifts/talks/index.php

Overview of some more FTB-enabled tools (1)

 FTB-enabled RAS Monitoring tool

– Software that polls on RAS database on service node, converts admin-specified RAS
events to FTB events and publishes them to FTB

 FTB-enabled Blue Gene Administrative tool

– Gets RAS information from the FTB-enabled RAS monitoring tool

– Carries out administrative-directed action (email, diagnosis)

 FTB-enabled Failure Prediction tool

– Gets RAS information from the FTB-enabled RAS monitoring tool

– Uses our failure-prediction research on Blue Gene/P to predict failures (RAS events, job
logs) *

– Prediction : lead time + location of failures**

– Uses FTB to publish this information

21

* “Co-Analysis of RAS Log and Job Log on Blue Gene/P", Z. Zheng, L. Yu, W. Tang, Z. Land, R. Gupta, N. Desai, S.
Coghlan, and D. Buettner, 25th IEEE International Parallel and Distributed Processing Symposium (IPDPS' 11), May
2011
* “System log Pre-processing to Improve Failure Prediction”, Z. Zheng, Z. Land, B-H Park, and A. Geist, Proceedings
of the 39th IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), 2009.
** “A Practical Failure Prediction with Location and Lead Time for Blue Gene/P", Z. Zheng, Z. Land, R. Gupta, S.
Coghlan, and P. Beckman, Proceedings of the 1st Workshop on Fault-Tolerance for HPC at Extreme Scale (FTXS), in
conjunction with DSN'10, 2010

Overview of some FTB-enabled tools (2)

 FTB Syslog

– Converts syslog messages into FTB events

 FTB-enabled generic tools

– FTB Watchdog

– FTB Publisher,

– FTB Subscriber,

– FTB Pingpong,

– FTB All-to-All

– FTB Loggers (synchronous, asynchronous)

 FTB-InfiniBand Monitoring tool

– Used for monitoring InfiniBand network

– Integrated with MVAPICH (MPI can react based on monitored information)

 FTB-IPMI

– Tool publishes IPMI information to FTB

22

* "Monitoring and Predicting Hardware Failures in HPC Clusters with FTB-IPMI", R. Rajachandrasekar, X. Besseron and D. K. Panda,
Proceedings of the International Workshop on System Management Techniques, Processes, and Services (SMTPS), in conjunction with
International Parallel and Distributed Processing Symposium (IPDPS), 2012

Accomplishments (Software, Specs and Tools)

 Fault Tolerance Backplane (FTB) API specification (version 0.5)

 FTB software (latest version 0.6)

– For IBM BG/L and BG/P (ZeptoOS), CRAY and Linux machines

 FTB MPI standardized events (MPICH, MVAPICH, Open MPI)

 FTB-integrated software : MPICH, MVAPICH, Open MPI, BLCR, FT-LA,
SWIM-IPS/MD applications

 FTB-enabled tools and libraries for fault logging, fault monitoring, fault
analysis and prediction for CRAY, Blue Gene and Linux systems

– FTB-InfiniBand for monitoring, FTB-syslog, RAVEN (monitoring for CRAY
systems) for logging and publishing faults

 For downloads, publications, demos and more information:
www.mcs.anl.gov/research/cifts

http://www.mcs.anl.gov/research/cifts

Fault Coordination frameworks:

Challenges (Future Research)

24

Event Storms

 Single symptom storms

– Relatively easy, if emerging from a single source

– Identify duplicate events based on source and event attributes
in a time interval

– Throttle events at the source

– Supported in FTB

 Different symptom storms

– Different events from different sources

– Very tough; require root cause analysis (big research area)

– Can reduce gravity by throttling of single symptom events

25

FTB Event Standardization Effort

 FTB-enabled software can publish any fault events they wish

– Need to have well-defined semantics

– Many expected to be package/software-specific

– Even better to standardize across many packages within a
category  sister standards

 Standardization of events is a community-wide effort

– ftb.* portion of namespace reserved for standardized events

– MPI events have been standardized for MPICH, MVAPICH, and
Open MPI teams

– However, events need to be standardized across other domains
(job schedulers: relatively easy, applications: difficult)

Policy Management and Response Negotiation

27

 Who can take an action for a received
event and in what priority?

 Current approach : Policy manager is
independent from FTB, with new API

 Current prototype is
limited

– Global policy (specify
priority of every
component for an event)

– Increased latency

 Starting point for defining
scenarios that work

Policy Management and Response Negotiation

28

 Policy management in challenging

– Who determines the response priority?

• Administrator (global view) vs. user (local view)

• Is this going to be job-based and user-based?

• Is this going to be process stack-based?

 Software dynamically joins and leaves the system. You
cannot predict which software might join and what it might
throw

 Software that has priority is responding might exit before
responding

 Needs to be reliable, distributed and scalable

Group Aggregators and Query Interfaces

 Independent software that aggregate information and
analyze system-wide information

 Why are they needed?

– Job Scope: Get events published by my job

– Service Scope: Get all nodes which are running PVFS daemons

– Get all jobs that are running on a node and determine their job
id

– What all software are FTB-enabled and running on the system?

– Who can react to event Foo ?

29

Bridging the semantic gap

 Semantic gaps exists between different layers of a software

 Scenario:

– Network publishes “network communication error with IB
adapter = X”

– Application expects “node hostname has failed ”

30

Security / Authentication

 Can be a major concern for big production environments

 Sharing fault information with users is not always a good idea

– With naïve users: Increased support calls (app killed, FTB reported
system error, user wants refund of reservation time)

– With savvy users: how do you deal with policies and still give
application control?

 Solutions need research

– Authentication and security needed

– Tie authentication levels to “fault events”? to users? Who does
this? Is it practical?

– Limiting consumers to receive only “events within the same job”
is not sufficient. Consumers exist beyond jobs!

 31

3

2

CIFTS Open Community Model

For more information:

– Web Page: http://www.mcs.anl.gov/research/cifts

– Open SVN Repository: https://svn.mcs.anl.gov/repos/cifts

– Wiki: http://wiki.mcs.anl.gov/cifts/index.php

– TRAC: http://trac.mcs.anl.gov/projects/cifts/wiki

– Mailing lists: cifts_discuss@googlegroups.com

http://www.mcs.anl.gov/research/cifts
http://www.mcs.anl.gov/research/cifts
https://svn.mcs.anl.gov/repos/cifts
https://svn.mcs.anl.gov/repos/cifts
http://wiki.mcs.anl.gov/cifts/index.php
http://wiki.mcs.anl.gov/cifts/index.php
http://trac.mcs.anl.gov/projects/cifts/wiki
http://trac.mcs.anl.gov/projects/cifts/wiki
mailto:cifts_discuss@googlegroups.com
mailto:cifts_discuss@googlegroups.com

Backup

Go to ”Insert (View) | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"

33

