

Coupling failure prediction, proactive and preventive checkpoint for current production HPC systems.

<u>Ana Gainaru</u>, Leonardo Bautista-Gomez, Franck Cappello

Motivation

- Prediction is feasible
 - ELSA: Signal analysis with data mining
 - 90% precision and 45% recall
 - At least 10 seconds delay
- Fast checkpointing strategies exist
 - FTI (Fault Tolerance Interface)
 - Capable of taking a checkpoint in ~5s for 1GB memory
 - Multi-level checkpoint with 8% overhead
- Plan

Laboratory

Petascale Computation

– Merging FTI with ELSA

Table of contents

- Possible merging methodologies
- Modifications to FTI and ELSA
- Experiments test cases
- Results
- Conclusions
- Future directions

Let's remember FTI

Let's remember FTI

oint Laboratory for Petascale Computation

INRIA/ANL/UIUC Joint Lab – Nov'12

Blue Waters

Blue Waters

Table of contents

- Possible merging methodologies
- Modifications to FTI and ELSA
- Experiments test cases
- Results
- Conclusions
- Future directions

Plan

• Solution:

- Include ELSA in the Head process
- Every x seconds the Head checks predictions
- The Head requests a checkpoint from the app processes
- 3 possible methodologies:
 - Fixed checkpoint interval:
 - Set w/o considering prediction
 - Resets after each prediction
 - Established by the recall value
 - Additional checkpoints for each prediction

- Checkpoint interval:
 - Given by the MTBF and the checkpoint time
- Prediction:
 - Recall gives the MTB false negative F
 - Depending on the distribution of the failures after prediction

Possible model

- Depending on the moment of the prediction
 - Decide to take or not a checkpoint
 - Analytical model for 2 cases:
 - Decide to take an extra checkpoint due to the prediction
 - Do not take a checkpoint and just leave the failure to occur without doing any action

- First case: Prediction is correct
 - Do not checkpoint
 - Waste = Tp + Tx + Tr
 - Take a checkpoint
 - Waste = Tx + Tr

oint Laboratory

for Petascale Computation

- First case: Prediction is wrong
 - Do not checkpoint
 - Waste = 0
 - Take a checkpoint
 - Waste = Tc

oint Laboratory 🥢

or Petascale Computation

oint Laboratory 🦉

for Petascale Computation

Table of contents

- Possible merging methodologies
- Modifications to FTI and ELSA
- Experiments test cases
- Results
- Conclusions
- Future directions

- 2 main contributions:
 - Communication between the Head and application processes
 - Checking predictions regularly

- 2 main contributions:
 - Communication between the Head and application processes
 - Checking predictions regularly
- Communication
 - On prediction the Head must force the app processes to checkpoint

oint Laboratory for Petascale Computation

INRIA/ANL/UIUC Joint Lab – Nov'12

- 2 main contributions:
 - Communication between the Head and application processes
 - Checking predictions regularly
- Predictions
 - Every 10s
 - App processes ask every x no of iterations
 - Adapt x dynamically to correspond to 10s

oint Laboratory for Petascale Computation

INRIA/ANL/UIUC Joint Lab – Nov'12

oint Laboratory for Petascale Computation

INRIA/ANL/UIUC Joint Lab – Nov'12

Modifications to ELSA

- As daemon:
 - Monitor the logs at all time
 - Adapt the correlation set
 - Reacts to the incoming stream of events
- Running distributed application based
 - Looses multi-node errors
 - Save current predictions: Active chains
 - In case the prediction was wrong (FP) adapts correlations
 - For true positives: positive precursors
 - Reads the log file bottom-up for 10s
 - More general view: Accurate anomaly detection

Modifications to ELSA

- Filtering the prediction send to the Head
 - According to the analytical model
 - Too early cases
 - Predictions that don't leave enough time to take a checkpoint
 - Predictions with low confidence
 - Are added in the suspicious list and are monitored
 - In case a suspicious list is confirmed
 - Adapt true positives cases
 - Predictions with high time lags
 - To decrease the waste trigger the prediction later

Table of contents

- Possible merging methodologies
- Modifications to FTI and ELSA
- Experiments test cases
- Results
- Conclusions
- Future directions

Experiments

- On Tsubame 2.0
- Logs:
 - Tsubame2 logs with synthetic / Tsubame2 correlations
- Different nodes, threads/node
 - 6 executions for each test case mean
- Overheads include:
 - The preventive and proactive checkpoint waste
 - Protocol specific overheads
 - For example due to the communication between FTI and the application processes
 - Overhead of dedicating 1 extra thread per node for FTI

Test cases

- Failure free execution
 - Measure overheads
 - FTI over no checkpoint
 - ELSA+FTI over initial version of FTI
 - ELSA+FTI over no checkpoint
- False positives

aboratory

etascale Computation

- Triggers un-necessary checkpoints
- Measure the overhead

• Gadget2

int Laboratory

- Code for cosmological N-body simulations on massively parallel computers
- Uses MPI
- The same code can be used for
 - studies of isolated systems, for simulations of the cosmological expansion of space
- Was used for the Millennium Run
 - One of the largest N-body simulation used to investigate how matter in the universe evolved over time
- We use 3 different tests based on Gadget2

• Test cases

Laboratory

- Blob test: A spherical cloud of gas is placed in a wind-tunnel with periodic boundary conditions.
 - 100MB checkpoint size
- Kelvin-Helmholtz test: Two fluids in pressure equilibrium with opposing velocities. The interface between the fluids is perturbed. Records the evolution of mixing the fluids.
 - 100MB checkpoint size

• Test cases

Laboratory

Petascale Computation

- LCM The galaxy
 formation process
- We only ran it for a small number of particles
- Small example:
- 10 MB checkpoint size
- Communication overhead

Table of contents

- Possible merging methodologies
- Modifications to FTI and ELSA
- Experiments test cases
- Results
- Conclusions
- Future directions

- Changing
 - Number of threads in each node
 - Number of nodes the application executes on

Blob test

• Changing

oint Laboratory

for Petascale Computation

- Number of threads in each node
- Number of nodes the application executes on

• Changing

for Petascale Computation

- Number of threads in each node
- Number of nodes the application executes on

- Changing
 - Number of threads in each node
 - Number of nodes the application executes on

• Changing

for Petascale Computation

- Number of threads in each node
- Number of nodes the application executes on

- Changing
 - Number of threads in each node

Blob test

- Overhead for different checkpoint intervals
 - Same number of total processes

- Different correlation and template set
 - If the analysis of the correlation is <10s
 - No extra overhead
 - For the Tsubame2 correlations the analysis time is ~2s
 - Stress test:
 - 10 times more correlations 1.3% overhead to ELSA+FTI
- Impact of the checking interval on the number of usable predictions
 - Results for ELSA daemon as baseline
 - Compared with FTI+ELSA with 10s check intervals
 - Recall difference of <1%
 - For check values > 30s the recall value drops
 - Depends on the system

Table of contents

- Possible merging methodologies
- Modifications to FTI and ELSA
- Experiments test cases
- Results
- Conclusions
- Future directions

Conclusion

- FTI + ELSA
 - Shows ~12% overhead
 - Compared with no-chekpoint
 - With just 2-6% more than FTI alone
 - Mostly because the increase in intra-node communication
 - Baseline of ~5% overhead
 - Small extra overhead due to false positives (~1-2%)
- ELSA
 - Looses multi-node failures Recall of 40%
 - Looses predictions with small lead time
 - Recall of 32%

Future work

- Fault distribution after prediction
- Include multi-node predictions
 - Without increasing inter-node communication
- Include statistic metrics into the prediction process
 - Precursor detectors for the prediction
 - System degradation prediction
- Predict the un-error periods
 - Decrease the waste due to taking unnecessary checkpoints

Collaboration directions

- 1) Mathematical models for computing the benefits
 - Collaboration with INRIA / UIUC
- 2) Combining prediction with other solutions
 - 2.1) Live migration

Laboratory

- Collaboration with ANL / INRIA (also IBM)
- 2.2) Charm++ fault tolerance
 - Collaboration with UIUC
- 3) Using ELSA for root cause analysis
 - Collaboration with UIUC / ANL (also Sandia)
- 4) Understanding failures in HPC: precursor detectors
 - Collaboration with UIUC / ANL

Additional Q&A

Thank you

Ana Gainaru

Coupling failure prediction, proactive and preventive checkpoint for current production HPC systems

Blob test

Kelvin-Helmholtz test

Joint Laboratory for Petascale Computation

INRIA/ANL/UIUC Joint Lab – Nov'12