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Touchpoints for collaboration

" Programming model: implicitly parallel functional dataflow
— Simplify scientific, engineering, and analytic programming
by abstracting parallelism, location, and failure
— Focus on helping people that want to run code, not write it
=" A worker agent model that enables the model to run on diverse
platforms
— Multicores, clusters, grids, clouds, and supercomputers

" Flexible implementation with intermediate languages
— Swift/K uses Karajan
— Swift/T used ANTLR -> IR -> Turbine Intermediate Code (Tcl)
= A fully parallel evaluation model for extreme scaling
— Leaf functions can be POSIX apps (fork/exec) or library functions
— Data objects can be files or in-memory objects
» Multiple language bindings for the model
— Native (C-like), Python (“PyDFlow”), R (Swift-R)
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A collaboration of many people

= Coreteam
— Justin Wozniak, MCS (lead researcher)
— David Kelly (full time), Mihael Hategan (part time) — development and user engagement
— Tim Armstrong, Zhao Zhang (students)

= Plsinvolved

— lan Foster, Rusty Lusk, Dan Katz, Matei Ripeanu, Todd Munson: co-Pls and senior staff
on DOE X-Stack “ExM”

— lanis using Swift in NSF RDCEP and CIM-EARTH projects (J. Elliott)

— Dan (now at NSF) was UChicago PI for NSF “EXTENCI”, using Swift

— Rob Jacob, Pl of DOE ParVis (climate) using Swift (ALCF & NCAR)

— Tobin Sosnick, Karl Freed (UChicago) Jinbo Xu (TTI) — protein science

— Greg Voth — using Swift in Center for Multiscale Theory and Simulation (NSF CCl)

= Close collaborators
— Mark Hereld, Tom Uram, Mike Papka: GPSI portal
— Kate Keahey, Ravi Madduri, Raj Kettimuthu, Borja Sotamajor
— Ketan Maheshwari, MCS Postdoc (EXTENCI and Beagle) — going to Cornell
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When do you need Swift?

Typical application: protein-ligand docking for drug screening
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Multiscale subsurface
flow modeling
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Modeling of power grid "
for OE applications

A-E have published science
results obtained using Swift
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Language-driven: Swift parallel scripting 1018

‘ Data server <::>
A

-

Open Science Grid

CHICAGO

Swift ,
script -

\/- %]
Application

Programs

@bmlt host (login node, laptop, Linux server)

Swift runs parallel scripts on a broad range
of parallel computing resources.
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Example - MODIS satellite image processing

= |nput: tiles of earth land cover (forest, ice, water, urban, etc)

e OQOuput: regions with maximal specific land types
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N
Goal: Run MODIS processing pipeline in cloud

FRiemelE analyzelLandUse i markMap

llllllllll X 3 1 7
& colorMODIS
,assemble

MODIS script is automatically run
in para”el: v LT

getLandUse

x 317 colorMODIS

SEGEENNENEE00NENEDNNNED e

Each loop level analyzeLandUse |

can process tens
to thousands of
image files.

assemble
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MODIS script in Swift: main data flow

foreach g,i in geos {
land[1] = (g,1);
}
(topSelected, selectedTiles) =
(land, landType, nSelect);

foreach g, i in geos {
colorMODIS(g);

colorImage[i]

}
gridMap = markMap (topSelected);

montage =
assemble (selectedTiles,colorImage,webDir);
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Parallel distributed scripting for clouds

‘ Data server <::>
A

-

Open Science Grid

Nimbus,
Phantom

Swift Clouds:
script — Amazon EC2,
— A

J

@bmit host (login node, laptop, Linux server/ ~~

Swift runs parallel scripts on cloud resources
provisioned by Nimbus’s Phantom service.
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Example of Cloud programming:
Nimbus-Phantom-Swift on FutureGrid

= User provisions 5 nodes with Phantom

— Phantom starts 5 VMs

— Swift worker agents in VMs contact Swift coaster service to request work
= Start Swift application script “MODIS”

— Swift places application jobs on free workers

— Workers pull input data, run app, push output data
= 3 nodes fail and shut down

— Jobs in progress fail, Swift retries
= User can add more nodes with phantom

— User asks Phantom to increase node allocation to 12

— Swift worker agents register, pick up new workers, runs more in parallel
=  Workload completes

— Science results are available on output data server

— Worker infrastructure is available for new workloads

11
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Programming model:
all execution driven by parallel data flow

(int r) myproc (int 1)

{
J = £(1);
k = g(i);
r = ] + k;
}

= f() and g() are computed in parallel
= myproc() returns r when they are done

= This parallelism is automatic

= Works recursively throughout the program’s call graph

Www.ci.uchicago.edu/swift www.mcs.anl.gov/exm
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Encapsulation enables distributed
parallelism

Application program

Files expected
or produced
by application program

Encapsulation is the key to transparent distribution, parallelization, and automatic
provenance capture

o\\=A 13
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app( ) functions specify cmd line argument passing

To run:
i psim -s 1ubq.fas -pdb p -t 100.0 -d 25.0 >log

100.0 3 25.0 In Swift code:

app (PDB pg, File log) predict (Protein seq,
Float t, Float dt)
{
psim "-c" "-s" @pseq.fasta "-pdb" @pg
Il_tll temp Il_dll dt;

PSim application }

Protein p <ext; exec="Pmap", id="1ubq">;
PDB structure;
File log;

(structure, log) = predict(p, 100., 25.);

AN www.ci.uchicago.edu/swift www.mcs.anl.gov/exm



Large scale parallelization with simple loops

1000 2 a a2 | =
AR A’

' AN BB
Runs of the X ARANYAIALS
“predict” bt | b bl | i
application

T1af7-50-500

Y
Analyze() .-s‘-:,.‘*?:’ 3
of:‘:::-.”j.';O.. :: ®
‘.?0' e o ... e, ...
foreach sim in [1:1000] { L

(structure[sim], log[sim]) = predict(p, 100., 25.);
}

“result = analyze(structure)
o, 15
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Nested parallel prediction loops in Swift

Sweep( )

{
int nSim = 1000;

int maxRounds = 3;
Protein pSet[ | <ext; exec="Protein.map">;
float startTemp[ ] =[ 100.0, 200.0 |;
floatdelT[]=[1.0, 1.5, 2.0, 5.0, 10.0 |;
foreach p, pnin pSet {
foreach t in startTemp {
foreach d in delT {
ItFix(p, nSim, maxRounds, t, d);

10 proteins x 1000 simulations x

} 3 rounds x 2 temps x 5 deltas
Sweep(); = 300K tasks

16
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Spatial normalization of functional run

ataset-level workflow
A

alignlinear

I /

reslice

softmean

alignlinear

combine_warp DY S\

reslice_warp <’<‘<‘<‘§§§ >\ s
strictmean |\§\§‘ Aéii
binarize !
e N

Expanded (10 volume) workflow
17
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Complex scripts can be well-structured

programming in the large: fMRI spatial normalization script example

(Run or) reorientRun ( Run ir, string direction)
(Run snr) functional ( Run r, NormAnat a, { L
foreach Volume iv, i inir.v {
Air shrink ') or.v[i] = reorient(iv, direction);
{ RunyroRun = reorientRun(r,"y" )< }
Run roRun = reorientRun( yroRu "x" ;| ¥

Volume std = roRun[0];

Run rndr = random_select( roRun, 0.1 );

AirVector rndAirVec = align_linearRun( rndr, std, 12, 1000, 1000, "81 3 3" );
Run reslicedRndr = resliceRun( rndr, rndAirVec, "o", "k" );

Volume meanRand = softmean( reslicedRndr, "y", "null" );

Air mmQAAIr = alignlinear( a.nHires, meanRand, 6, 1000, 4, "81 3 3" );
Warp boldNormWarp = combinewarp( shrink, a.aWarp, mnQAAir );

Run nr = reslice_warp_run( boldNormWarp, roRun );

Volume meanAll = strictmean( nr, "y", "null" )

Volume boldMask = binarize( meanAll, "y" );

snr = gsmoothRun( nr, boldMask, "6 6 6" );
}‘) 18
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Dataset mapping example: fMRI datasets

On-Disk
Data
Layout

—

=

‘2 DBIC
E] “F Study
- =88 Group
B ﬂ Subject
P L n Anat
B h RN
B volume
----- ~ B volume

- =EyRUN
=8 Subject
. =8 Subject
o) &F SUde
#-45 Study

or script

type Study {
Group g[ |;
}
type Group {
Subject s[ ];
}
type Subject {
Volume anat;
Run run[ J;
}
type Run {
Volume v[ |;
}

type Volume {
Image img;
Header hdr;

}
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Swift can send work to multiple sites

-

GRAM

J

Remote campus cluster /

\
Qny remote
. GRAM
\ A
\_ J
Data server
(GridFTP, scp, ...) \Remote campus cluster /

Simple campus Swift usage: running locally on a cluster login host
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Flexible worker-node agents for execution and
data transport

= Main role is to efficiently run Swift tasks on allocated
compute nodes, local and remote

= Handles short tasks efficiently

= Runs over Grid infrastructure: Condor, GRAM

= Also runs with few infrastructure dependencies
= Can optionally perform data staging

" Provisioning can be automatic or external (manually
launched or externally scripted)

21
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. ~
Coaster architecture handles diverse environments

Swift file a = compute (b, c);

I compilation

<execute task="compute”> ...

I API

Coaster Client

I socket

Coaster Service

i1 1 Il

Worker Worker Worker Worker

Submit
site

Karajan

site

Compute Remote
sites

22
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Coasters deployment can be automatic or manual

/4-; GRAM \
/ P \\ or(SSH N

Compute
Remote nodes
Host
Swift
script
— ]
Qny remote host \ / Cluste
uster
\ [Scheduler
—< _J

>
Data server Centralized campus
cluster environment /

Swift can deploy coasters automatically, or user can deploy manually or
with a script. Swift provides scripts for clouds, ad-hoc clusters, etc.

6 23
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Swift efficiency on Cray XE6 t

Efficiency
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3 waves of tasks per core, up to 384 cores.
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Swift task rates on Cray XE6 test system “hera”

Task rate
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XE6 “Hera” 32 cores/node, 588 nodes.
8 waves of tasks per core, up to 18,816 cores and 150K tasks.
Times include PBS job queue and launch delay, in idle queue.
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Performance study for DSSAT joB pro?ile

Active jobs
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Synthetic test of DSSAT application workload, 48,000 200 sec tasks, 16,000 cores of Cray XK6
Hera, 32 cores/node (2x IL-16) . 26
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Swift efficiency on Cray XE6 test system “hera”

100 second tasks —&— 400 seconds =——t—
200 second tasks

Efficiency
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3 waves of tasks per core, measured to 16,000 cores (500nodes).

Times include PBS job queue and launch delay, in idle queue.
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Number of Processors
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Centralized evaluation can be a bottleneck

prog
Have this: Want this:
prog _
= ¢
+ [ eval ]
[ eval J A prog
X 1,000

task task
500 500

task| task/ task task| task/ task
* 500 task/sec * sec sec
Centralized evaluation f 500,000 tasks/sec f

Distributed evaluation

28
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EXM: extreme-scaling for many-task computing

i~ Many-task
application

Task graph
executor

Compute node

Extreme-scale

computing complex |
\

Ultra-fast task

/ Graph executor Ntion

Graph executor

Graph executor

Global persistent

Implicitly-parallel functional
dataflow programming for
upper-level application logic

Drivers: inverse problems,
branch-and-bound, stochastic
programming, UQ, ensembles

Enablers: scalable parallel
evaluation, dynamic load
balancing, in-RAM datasets

Benefits: programmability,
fault-recovery;
possibly, power savings

Results: new scalable Swift

implementation, 25K tasks/sec,
128K-core parallel loop scaling;
datastore and MTC publications

29
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Goal: programmability for extreme scale

=  Focus is “many-task” computing: higher-level applications composed of
many run-to-completion tasks (input-process-output vs. message passing)

= Why is it relevant to DOE extreme-scale computing?

— Programmability

e Increasing number of applications have this natural structure: material by design,
inverse problems, stochastic programming, branch-and-bound problems, UQ.

e Coupling extreme-scale applications to preprocessing, analysis, and visualization
— Resilience

e The functional programming model provides a modular hierarchy for re-execution
of failing units of an application

— Power management

e Yet to prove: Graph structure of application upper levels may enable functional
units to be quiesced.

= Challenges
— Data locality and load balancing!

30
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int X =

Fully parallel evaluation of complex scripts

int A[][];
int B[];

foreach x in [0:X-1] {
foreach y in [0:Y¥-1] {
if (check(x, y)) {
g(f(x),

}

}

B[x] =

Alx][y]
} else {

Alx][y]
}

100, Y

0]

100;

°
4

sum(A[x]);

£(y)):
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What are the challenges in applying the
many-task model at extreme scale?

=  Dealing with high task dispatch rates: depends on task granularity but is
commonly an obstacle

— Load balancing

— Global and scoped access to script variables: increasing locality
= Handling tasks that are themselves parallel programs

— We focus on OpenMP, MPI, and Global Arrays

= Data management for intermediate results
— Object based abstractions
— POSIX-based abstractions

— Interaction between data management and task placement

33
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Swift-ExM efficiency - to 128K cores

Efficiency
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14000C

Prototype Swift-ExM on BG/P Intrepid, 32,768 nodes, 131,072 cores.
100 second tasks (processes = #cores)
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Swift/T: Scaling performance

102.5 4

= Swift/T synthetic 100.0

app: simple task loop el 64K cores

92.51
90.0 -
87.51
85.0 -
82.51
80.0 128K cores
77.5 1
75.0 4
72.5 1
70.0 -

— Scales to capacity of
ADLB

utilization (%)

200 1000 110000 © 100000
cores

= SciSolSim: collaboration graph modeling .
— ~400 lines Swift % o5
— C++ graph model; simulated annealing f 9.0 —/\/_fg
— Scales well to 4K cores in initial tests 7 s

(further tests awaiting app debugging) B T 500

processes

35
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Swift/T: performance optimizations

= Variable-sized tasks produce trailing tasks:
addressed by exposing task priorities at language level

30

Bt B
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load (processes)
=
L

Ln

D. T Y
1,400 1,425 1,450 1,475 1,500 1,525 1,550 1,575 1,600

time (seconds)

— Load without priorities -# Load with priorities

36
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Related work

=  Runtime systems
— ParalleX
— Swarm
= Libraries
— DAGuUE, FLAME
— TBB, CnC
— Map-Reduce
= Languages
— Cilk, Dryad
— Habanero languages
=  QOther load balancers
— Sciotto, TASCEL
= Early foundational work

— Futures (LISP), Strand, PCN, J Machine, Linda (coordination language), Sisal
(early dataflow language), Fresh Breeze
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Plans and opportunities

= Mosastore-Swift/T integration at large scale

= |ntegration of AME heuristics into Swift/T and Mosastore

= Fault tolerance design and evaluation

= Structured datasets in RAM: HDF5, NetCDT

= Vendors: Support Cray customers’ evaluation of Swift

= Unified Swift implementation based on Swift/T (multi-HPC, cloud)
= Large-scale evaluation of MosaStore/Swift integration

=  Power awareness and optimization: locality of computation; tail tuning;
data locality improvement

www.ci.uchicago.edu/swift www.mcs.anl.gov/exm
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Vision and next steps

Broad, community-wide adoption and support
Refine into a highly usable, well documented package

Promote through multiple channels: web, collaborations,
endorsements

Language bindings to increase user adoption
Unified simpler implementation through ExM deliverables
Integration into GO and other portals (Galaxy, GPSI, ...)

DPI — a universal interface for file-based and memory-based data
passing?
Make the community self-sustaining

Shift more focus to the computer science and deeper (and perhaps
larger) engagements

39
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Computer science topics and challenges

" Programming model: implicitly parallel functional dataflow

— Hybrid programming models: Swift over MPIl, OpenMP, PGAS

— Applicability to Big Data processing models: MapReduce, Dremel, Sawzall, ...
= Diverse language bindings for the programming model

— Libraries, reflection, and source-to-source translation (e.qg., ROSE)

" Performance and scaling

— Load balancing — working with ADLB

— Targeting Mira, Blue Waters, beyond

= Data management and scheduling

— Accurate models and intelligent routing/placement of jobs and data

» Data transport: high performance parallel streams and wide pipes
— within and between large-scale systems

= Data models

— Fresh Breeze concept: new memory model, massive multithreading (XMT)
" FEnergy and resilience

— The Swift programming model offers a wealth of opportunities for research in
these fields.

"  Provenance — expression, representation, query and usability

= User interface design for parallel distributed programming
environments

.\ 40
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Swift is a parallel scripting system for grids, clouds and clusters

— for loosely-coupled applications - application and utility programs linked by
exchanging files

Swift is easy to write: simple high-level C-like functional language
— Small Swift scripts can do large-scale work

Swift is easy to run: contains all services for running Grid workflow - in one
Java application

— Untar and run — acts as a self-contained Grid client
Swift is fast: uses efficient, scalable and flexible “Karajan” execution
engine.

— Scaling close to 1M tasks —.5M in live science work, and growing
Swift usage is growing:

— applications in neuroscience, proteomics, molecular dynamics, biochemistry,

economics, statistics, and more.

Try Swift! www.ci.uchicago.edu/swift and www.mcs.anl.gov/exm

41

Www.ci.uchicago.edu/swift www.mcs.anl.gov/exm



Parallel Computing 37 (2011) 633-652

Contents lists available at ScienceDirect

PARALLEL
COMPUTING

Parallel Computing

journal homepage: www.elsevier.com/locate/parco

Swift: A language for distributed parallel scripting
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ARTICLE INFO ABSTRACT

Article history: Scientists, engineers, and statisticians must execute domain-specific application programs

Available online 12 July 2011 many times on large collections of file-based data. This activity requires complex orches-
tration and data management as data is passed to, from, and among application invoca-

Keywords: tions. Distributed and parallel computing resources can accelerate such processing, but

Swift

their use further increases programming complexity. The Swift parallel scripting language

gargllgl programming reduces these complexities by making file system structures accessible via language con-
Dcartlfftlgl\,% structs and by allowing ordinary application programs to be composed into powerful par-

allel scripts that can efficiently utilize parallel and distributed resources. We present
Swift’s implicitly parallel and deterministic programming model, which applies external
applications to file collections using a functional style that abstracts and simplifies distrib-
uted parallel execution.

Parallel Computing, Sep 2011
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