BLUE WATERS SUSTAINED PETASCALE COMPUTING

Algorithm and Software Needs at Extreme Scale

William Gropp

GREAT LAKES CONSORTIUM

		NCSA	LLNL
System Attribute	Blue	Waters	Sequoia (#1)
Vendor(s) Processors	•	/ID/NVIDIA gos/Kepler	IBM PowerPC A2
Total Peak Performance (PF) Total Peak Performance (CPU/C	GPU)	11.9 7.6/4.3	20.1 20.1/0.0
Number of CPU Chips (8, 16 cores/chip) Number of GPU Chips		48,576 3,072	98,304 0
Amount of CPU Memory (TB)		1,510	1,572
Interconnect		3-D Torus	5-D Torus
Amount of On-line Disk Storage (PB) Sustained Disk Transfer (TB/sec)		26 >1	50(?) 0.5-1.0
Amount of Archival Storage Sustained Tape Transfer (GB/sec)		300 100	?

Scaling and Performance Issues

- We believe that future systems will have many features in common with Blue Waters:
 - Heterogeneous processing elements
 - In BW, these are NVIDIA GPUs and AMD CPUs
 - In future systems, expect these to be more tightly integrated
 - Can also view vector instructions and AMD core/ core module as a heterogeneous architecture
 - Need algorithms and software that can fully exploit complex processing elements

Scaling and Performance Issues

- Multilevel communication topology
 - While flatter communication networks are planned/ likely in the next generation of systems, issues of intra/inter node remain
 - Avoiding hotspots and communication contention important now and in the future, though details will depend on network topology
 - Need
 - Algorithms that can adapt to topology
 - System software to discover/exploit it

Scaling and Performance Issues

- Performance irregularity in SMPs requires more adaptive algorithms and software
 - Need to restructure algorithms to be more adaptive, not assume performance regularity
 - Need software and programming support to make it easier to
 - Program
 - Diagnose/repair performance issues

Data and Big Data

- Definition of Big Data: Does not fit into memory
 - For us, that is > 1.5PB
- Looking for applications that can and must use this (nearly) unique capability
 - Not typical MapReduce problems
 - E.g., need random access to entire data set, not stream access to organized subsets.
- Once we have some compelling applications, usual issues: Algorithms and Programming

Illinois Vision of Collaboration

- Bring Complementary Strengths to bear on problems of extreme scale
- Exploit availability of Blue Waters (now in acceptance test phase)
 - More details on Blue Waters tomorrow...