Iterative methods, preconditioning, and their application to CMB data analysis

Laura Grigori INRIA Saclay

Plan

Motivation

- Communication avoiding for numerical linear algebra
 - Novel algorithms that minimize communication
 - Often not in ScaLAPACK or LAPACK (YET!)
 - Iterative methods and preconditioning
- Application to CMB data analysis in astrophysics
- Conclusions

Data driven science

Numerical simulations require increasingly computing power as data sets grow exponentially

History of the universe

Figures from astrophysics:

- Produce and analyze multi-frequency 2D images of the universe when it was 5% of its current age.
- COBE (1989) collected 10 gigabytes of data, required 1 Teraflop per image analysis.
- PLANCK (2010) produced 1 terabyte of data, requires 100 Petaflops per image analysis.
- CMBPol (2020) is estimated to collect .5 petabytes of data, will require 100 Exaflops per image analysis.

Source: J. Borrill, LBNL, R. Stompor, Paris 7

Astrophysics: CMB data analysis

The communication wall

- Time to move data >> time per flop
 - Gap steadily and exponentially growing over time

Annual improvements				
Time/flop		Bandwidth	Latency	
59%	Network	26%	15%	
	DRAM	23%	5%	

- Real performance << peak performance
- Our goal take the communication problem higher in the computing stack
- · Communication avoiding algorithms- a novel perspective for linear algebra
 - Minimize volume of communication
 - Minimize number of messages
- Communication avoiding implies energy reduction

Previous work on reducing communication

Tuning

Overlap communication and computation, at most a factor of 2 speedup

Ghosting

Store redundantly data from neighboring processors for future computations

Scheduling

- Cache oblivious algorithms for linear algebra
 - Gustavson 97, Toledo 97, Frens and Wise 03, Ahmed and Pingali 00
- Block algorithms for linear algebra
 - ScaLAPACK, Blackford et al 97

Communication in CMB data analysis

- Map-making problem
 - Find the best map x from observations d, scanning strategy A, and noise N^{-1}
 - Solve generalized least squares problem involving sparse matrices of size 10¹²-by-10⁷
- Spherical harmonic transform (SHT)
 - Synthesize a sky image from its harmonic representation
 - Computation over rows of a 2D object (summation of spherical harmonics)
 - Communication to transpose the 2D object
 - Computation over columns of the 2D object (FFTs)

Map making, with R. Stompor, M. Szydlarski Results obtained on Hopper, Cray XE6, NERSC

Parallel algorithms and communication bounds

• If memory per processor = n^2 / P, the lower bounds become #words_moved $\geq \Omega$ (n^2 / $P^{1/2}$), #messages $\geq \Omega$ ($P^{1/2}$) Hong and Kung, 81, Irony et al, 04, Demmel et al, 11.

Algorithm	Minimizing	Minimizing
	#words (not #messages)	#words and #messages
Cholesky	ScaLAPACK	ScaLAPACK
LU	ScaLAPACK uses partial pivoting	[LG, Demmel, Xiang, 08] [Khabou, Demmel, LG, Gu, 12] uses tournament pivoting
QR	ScaLAPACK	[Demmel, LG, Hoemmen, Langou, 08] uses different representation of Q
RRQR	ScaLAPACK uses column pivoting	[Branescu, Demmel, LG, Gu, Xiang 11] uses tournament pivoting, 3x flops

 Only several references shown, block algorithms (ScaLAPACK) and communication avoiding algorithms

Best performance of CALU on multicore architectures

- Based on lightweight scheduling a self-adaptive strategy to provide
 - A good trade-off between load balance, data locality, and dequeue overhead.
 - Performance consistency
 - Shown to be efficient for regular mesh computation [B. Gropp and V. Kale]
 - S. Donfack, LG, B. Gropp, V. Kale, IPDPS'12

Communication in Krylov subspace methods

Iterative methods to solve Ax = b

- Find a solution x_k from $x_0 + K_k$ (A, r_0) , where K_k $(A, r_0) = span \{r_0, A r_0, ..., A^{k-1} r_0\}$ such that the Petrov-Galerkin condition $b Ax_k \perp L_k$ is satisfied.
- For numerical stability, an orthonormal basis $\{q_1, q_2, ..., q_k\}$ for K_k (A, r_0) is computed (CG, GMRES, BiCGstab,...)
- Each iteration requires
 - Sparse matrix vector product
 - Dot products for the orthogonalization process
- S-step Krylov subspace methods
 - Unroll s iterations, orthogonalize every s steps
- Van Rosendale '83, Walker '85, Chronopoulous and Gear '89, Erhel '93, Toledo '95, Bai, Hu, Reichel '91 (Newton basis), Joubert and Carey '92 (Chebyshev basis), etc.
- Recent references: G. Atenekeng, B. Philippe, E. Kamgnia (to enable multiplicative Schwarz preconditioner), J. Demmel, M. Hoemmen, M. Mohiyuddin, K. Yellick (to minimize communication, next slide)

S-step Krylov subspace methods

- To avoid communication, unroll s steps, ghost necessary data,
 - generate a set of vectors W for the Krylov subspace K_k (A, r_0)
 - orthogonalize the vectors using TSQR(W)

Example: 5 point stencil 2D grid partitioned on 4 processors

- A factor of O(s) less data movement in the memory hierarchy
- A factor of O(s) less messages in parallel

Research opportunities and limitations

Length of the basis "s" is limited by

- Size of ghost data
- Loss of precision

Cost for a 3D regular grid, 7 pt stencil

s-steps	Memory	Flops
GMRES	O(s n/P)	O(s n/P)
CA-	O(s n/P)+	O(s n/P)+
GMRES	$O(s (n/P)^{2/3})+$	$O(s^2 (n/P)^{2/3})+$
	$O(s^2 (n/P)^{1/3})$	$O(s^3 (n/P)^{1/3})$

Preconditioners: few identified so far to work with s-step methods

- Highly decoupled preconditioners: Diagonal, Block Jacobi
- Hierarchical, semiseparable matrices (M. Hoemmen, J. Demmel)
- Incomplete LU factorizations (LG, S. Moufawad)
- Efficient preconditioners that reduce the number of iterations remain crucial

ILU0 with nested dissection and ghosting

```
Let \alpha_0 be the set of equations to be solved by one processor For j=1 to s do

Find \beta_j=ReachableVertices (G(U), \alpha_{j-1})

Find \gamma_j=ReachableVertices (G(L), \beta_j)

Find \delta_j=Adj (G(A), \gamma_j)

Set \alpha_j=\delta_j
end

Ghost data required:

x(\delta), A(\gamma, \delta), L(\gamma, \gamma), U(\beta, \beta)

Half of the work

performed on one processor
```


CA-ILU0 with alternating reordering and ghosting

- Reduce volume of ghost data by reordering the vertices:
 - First number the vertices at odd distance from the separators
 - Then number the vertices at even distance from the separators
- CA-ILU0 computes a standard ILU0 factorization

Plan

Motivation

- Communication avoiding for numerical linear algebra
 - Novel algorithms that minimize communication
 - Often not in ScaLAPACK or LAPACK (YET!)
 - Iterative methods and preconditioning
- Application to CMB data analysis in astrophysics
- Conclusions

CMB data analysis

- Light left over after the ever mysterious «Big Bang»,
 - overall very isotropic and uniform,
 - but small 1 part in 10⁵ anisotropies are hidden in there ...
 - even smaller 1 part in 10⁶ or 10⁷ are the goal of current experiments.

- Always in need of more data
- Data sets are growing at Moore's rate

CMB data analysis in an (algebraic) nutshell

- CMB DA is a juxtaposition of the same algebraic operations
- Map-making problem
 - Find the best map x from observations d, scanning strategy A, and noise n_t

$$d = Ax + n_t$$

- Assuming the noise properties are Gaussian and piece-wise stationary, the covariance matrix is $N = \langle n_t n_t^T \rangle$, and N^{-1} is a block diagonal symmetric Toeplitz matrix.
- The solution of the generalized least squares problem is found by solving

$$A^{T}N^{-1}Ax = A^{T}N^{-1}d$$

- Spherical harmonic transform (SHT)
 - Synthesize a sky image from its harmonic representation

- What is difficult about the CMB DA then ? Well, the data is BIG!
- Our solution to this challenge: MIDAPACK (ANR MIDAS interdisciplinary project)
 - Library implementing all the stages down the CMB pipeline
 - Results in collaboration with M. Szydlarski, R. Stompor (SC'12)

Challenge in the map-making problem

Linear system to solve using PCG:

$$M_{diag}Sx = M_{diag}b$$
, where
$$\begin{cases} S := A^{T}N^{-1}A, b := A^{T}N^{-1}d \\ M_{diag} := (A^{T}diag(N^{-1})A)^{-1} \end{cases}$$

- Existing diagonal preconditioner does not scale numerically
- The convergence of iterative methods depends on the condition number of the input matrix - low eigenvalues hamper this convergence

1000

Spectrum: 20 largest and 20 smallest approximated eigenvalues

Scanning strategy:

- 2048 densely crossing circles
- Each circle is scanned 32 times, leading to 10⁶ samples
- Piece-wise stationary noise, one Toeplitz block for each circle

Two level preconditioner

Combine diagonal preconditioner with a subspace correction (Tang et al, 09)

$$M_{2lvl} = M_{diag} \left(I - S(ZE^{-1}Z^T) \right) + \left(ZE^{-1}Z^T \right)$$
where $M_{diag} = \left(A^T diag(N^{-1})A \right)^{-1}$ and $E = Z^T SZ$

- The efficiency of the preconditioner depends on the choice of Z
 - Common approaches exist in deflation or coarse grid correction in DDM
 - Our choice is inspired by the physics of the CMB

Spectrum: 20 largest and 20 smallest approximated eigenvalues

Choice of coarse weighting subspace Z

- Number of columns of Z equals number of time-stationary intervals
- Each row of Z corresponds to a pixel of the sky, $Z(i,j) = s/s_i$, where
 - s_i^j is the number of observations of pixel i during j-th time interval
 - s_i is the total number of observations of pixel i.

$$Z = \begin{pmatrix} \frac{S_0^0}{S_0} & \frac{S_0^1}{S_0} & \cdots & \frac{S_0^k}{S_0} \\ \frac{S_0^0}{S_0} & \frac{S_0^1}{S_0} & \cdots & \frac{S_0^k}{S_0} \\ \frac{S_1^0}{S_1} & \frac{S_1^1}{S_1} & \cdots & \frac{S_1^k}{S_1} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{S_p^0}{S_p} & \frac{S_p^1}{S_p} & \cdots & \frac{S_p^k}{S_p} \end{pmatrix}$$

Example:

$$\widetilde{x} = \begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \\ p_5 \end{bmatrix}, A^T = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, Z = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 1 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 \end{bmatrix}$$

Data distribution

- Block row distribution over processors of
 - Pointing matrix A, noise covariance matrix N⁻¹,
 - Observations vector d and map of the sky x

Application of two-level preconditioner to a vector

$$\left[M_{diag}\left(I - SZE^{-1}Z^{T}\right) + \left(ZE^{-1}Z^{T}\right)\right]v_{in} = v_{out}$$

The operations peformed are:

- 1. $V_{tmp1} := Z^T V_{in}$
 - Series of dot products followed by
 - MPI_AllReduce (...)
 <= the most expensive operation
- 2. Solve $Ev_{tmp2} := v_{tmp1}$
 - Using direct solver as MKL, SuperLU
- 3. $v_{out} += Z v_{tmp2}$ $v_{tmp3} := v_{in} - S Z v_{tmp2}$
 - Series of scalar vector producs
- 4. $V_{out} += M_{diag} V_{tmp3}$
 - entrywise product between two vectors

Runtime on Cray XE6, Hopper Nersc

Improvement with respect to diagonal preconditioner

Strong scaling, 6 cores per MPI process

Conclusions

- Communication avoiding algorithms minimize communication
 - Attain theoretical lower bounds on communication.
 - Are often faster than conventional algorithms in practice

- Remains a lot to do for sparse linear algebra
 - Communication bounds, communication optimal algorithms
 - Numerical stability of s-step methods
 - Preconditioners limited by the memory size, not flops
- In CMB data analysis
 - Can we use randomized approaches?

Collaborators, funding

Collaborators:

- INRIA: A. Branescu, S. Donfack, A. Khabou, M. Jacquelin, S. Moufawad, H. Xiang, M. Szydlarski, M. Shariffy
- J. Demmel, UC Berkeley, B. Gropp, UIUC, M. Gu, UC Berkeley, M. Hoemmen, UC Berkeley, J. Langou, CU Denver, V. Kale, UIUC, R. Stompor, Paris 7

Funding: ANR Petal and Petalh projects, ANR Midas, Digiteo Xscale NL, COALA INRIA funding

Further information:

http://www-rocq.inria.fr/who/Laura.Grigori/

References

Results presented from:

- P. Cargemel, L. Grigori, R. Stompor, Study of communication patterns of CMB data analysis, in preparation.
- J. Demmel, L. Grigori, M. F. Hoemmen, and J. Langou, *Communication-optimal parallel and sequential QR and LU factorizations*, UCB-EECS-2008-89, 2008, published in SIAM journal on Scientific Computing, Vol. 34, No 1, 2012.
- L. Grigori, J. Demmel, and H. Xiang, *Communication avoiding Gaussian elimination*, Proceedings of the IEEE/ACM SuperComputing SC08 Conference, November 2008.
- L. Grigori, J. Demmel, and H. Xiang, *CALU: a communication optimal LU factorization algorithm*, SIAM. J. Matrix Anal. & Appl., 32, pp. 1317-1350, 2011.
- L. Grigori, R. Stompor, and M. Szydlarski, A two-level preconditioner for Cosmic Microwave Background map-making, SuperComputing 2012.
- S. Donfack, L. Grigori, and A. Kumar Gupta, *Adapting communication-avoiding LU and QR factorizations to multicore architectures*, Proceedings of IEEE International Parallel & Distributed Processing Symposium IPDPS, April 2010.
- S. Donfack, L. Grigori, W. Gropp, and V. Kale, Hybrid static/dynamic scheduling for already optimized dense matrix factorization, Proceedings of IEEE International Parallel & Distributed Processing Symposium IPDPS, 2012.
- L. Grigori, S. Moufawad, *Communication avoiding incomplete LU preconditioner*, in preparation, 2012