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Data driven science

CO2 Underground storage

Astrophysics: CMB data analysis

     Numerical simulations require
increasingly computing power
as data sets grow exponentially

Figures from astrophysics:
• Produce and analyze multi-frequency 2D images of

the universe when it was 5% of its current age.
• COBE (1989) collected 10 gigabytes of data, required

1 Teraflop per image analysis.
• PLANCK (2010) produced 1 terabyte of data,

requires 100 Petaflops per image analysis.
• CMBPol (2020) is estimated to collect .5 petabytes of

data, will require 100 Exaflops per image analysis.
Source: J. Borrill, LBNL, R. Stompor, Paris 7

History of the universe
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The communication wall

• Time to move data >> time per flop
• Gap steadily and exponentially growing over time

• Real performance << peak performance

• Our goal - take the communication problem higher in the computing stack
• Communication avoiding algorithms- a novel perspective for linear algebra

• Minimize volume of communication
• Minimize number of messages

• Communication avoiding implies energy reduction

Annual improvements
Time/flop Bandwidth Latency

59%
Network 26% 15%
DRAM 23% 5%
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Previous work on reducing communication

• Tuning
• Overlap communication and computation, at most a factor of 2 speedup

• Ghosting
• Store redundantly data from neighboring processors for future computations

• Scheduling
• Cache oblivious algorithms for linear
      algebra

• Gustavson 97, Toledo 97, Frens and
      Wise 03, Ahmed and Pingali 00

• Block algorithms for linear algebra
• ScaLAPACK, Blackford et al 97

Courtesy M. Jacquelin
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Communication in CMB data analysis
• Map-making problem

• Find the best map x from observations d, scanning strategy A, and noise N−1

• Solve generalized least squares problem involving sparse matrices of size 1012-by-107

• Spherical harmonic transform (SHT)
• Synthesize a sky image from its harmonic representation

• Computation over rows of a 2D object (summation of spherical harmonics)
• Communication to transpose the 2D object
• Computation over columns of the 2D object (FFTs)

Map making, with R. Stompor, M. Szydlarski
Results obtained on Hopper, Cray XE6, NERSC

SHT, with R. Stompor, M. Szydlarski
Simulation on a petascale computer
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Parallel algorithms and communication bounds

[Branescu, Demmel, LG, Gu, Xiang 11]
uses tournament pivoting, 3x flops

 ScaLAPACK
uses column pivoting

RRQR

 [Demmel, LG, Hoemmen, Langou, 08]
uses different representation of Q

ScaLAPACKQR

 [LG, Demmel, Xiang, 08]
[Khabou, Demmel, LG, Gu, 12]

uses tournament pivoting

ScaLAPACK
uses partial pivoting

LU

ScaLAPACKScaLAPACKCholesky

Minimizing
#words and #messages

Minimizing
 #words (not #messages)

Algorithm

•  Only several references shown, block algorithms (ScaLAPACK) and
   communication avoiding algorithms

•  If memory per processor = n2 / P, the lower bounds become
    #words_moved ≥ Ω ( n2 / P1/2 ),    #messages ≥ Ω ( P1/2 )
    Hong and Kung, 81, Irony et al, 04, Demmel et al, 11.
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Best performance of CALU on multicore architectures

Static scheduling

time

Static + 10% dynamic scheduling

100% dynamic scheduling

• Based on lightweight scheduling - a self-adaptive
strategy to provide
• A good trade-off between load balance, data

locality, and dequeue overhead.
• Performance consistency
• Shown to be efficient for regular mesh

computation [B. Gropp and V. Kale]
• S. Donfack, LG, B. Gropp, V. Kale, IPDPS’12

CALU task dependency graph
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Communication in Krylov subspace methods
 Iterative methods to solve Ax =b

• Find a solution xk from x0 + Kk (A, r0), where Kk (A, r0) = span {r0, A r0, …, Ak-1 r0}
such that the Petrov-Galerkin condition b - Axk ⊥ Lk is satisfied.

• For numerical stability, an orthonormal basis {q1, q2,…, qk} for Kk (A, r0) is
computed (CG, GMRES, BiCGstab,…)

• Each iteration requires
• Sparse matrix vector product
• Dot products for the orthogonalization process

• S-step Krylov subspace methods
• Unroll s iterations, orthogonalize every s steps

• Van Rosendale ‘83, Walker ‘85, Chronopoulous and Gear ‘89, Erhel ‘93, Toledo ‘95, Bai, Hu,
Reichel ‘91 (Newton basis), Joubert and Carey ‘92 (Chebyshev basis), etc.

• Recent references: G. Atenekeng, B. Philippe, E. Kamgnia (to enable multiplicative Schwarz
preconditioner), J. Demmel, M. Hoemmen, M. Mohiyuddin, K. Yellick (to minimize communication,
next slide)
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S-step Krylov subspace methods
• To avoid communication, unroll s steps, ghost necessary data,

• generate a set of vectors W for the Krylov subspace Kk (A, r0)
• orthogonalize the vectors using TSQR(W)

Example: 5 point stencil 2D grid
       partitioned on 4 processors

Domain and ghost data 
to compute Ax 
with no communication

Domain and ghost data 
to compute A2 x 
with no communication

•    A factor of O(s) less data movement in the memory hierarchy
•    A factor of O(s) less messages in parallel
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Research opportunities and limitations

Length of the basis “s” is limited by
• Size of ghost data
• Loss of precision

Preconditioners: few identified so far to work with s-step methods
• Highly decoupled preconditioners: Diagonal, Block Jacobi
• Hierarchical, semiseparable matrices (M. Hoemmen, J. Demmel)
• Incomplete LU factorizations (LG, S. Moufawad)

• Efficient preconditioners that reduce the number of iterations
remain crucial

O(s n/P)+
O(s2 (n/P)2/3)+
O(s3 (n/P)1/3)

O(s n/P)+
O(s (n/P)2/3)+
O(s2 (n/P)1/3)

CA-
GMRES

O(s n/P)O(s n/P)GMRES
FlopsMemorys-steps

Cost for a 3D regular grid, 7 pt stencil
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Compute xi = (LU)-1 A xi-1 using 3 steps:
1. Compute f = A xi-1

2. Forward substitution: solve Lz = f
3. Backward substitution: solve Uxi = z

ILU0 with nested dissection and ghosting

Let α0 be the set of equations to be solved by one processor
For j = 1 to s do

    Find δj = Adj (G(A), γj) 
    Set αj = δj
end 

Ghost data required: 
  x(δ), A(γ,δ), 
  L(γ,γ), U(β, β)Find βj = ReachableVertices (G(U), αj-1)

Find γj = ReachableVertices (G(L), βj)

5 point stencil on a 2D grid

⇒ Half of the work 
performed on one processor 
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CA-ILU0 with alternating reordering and ghosting

• Reduce volume of ghost data by reordering the vertices:
• First number the vertices at odd distance from the separators
• Then number the vertices at even distance from the separators

• CA-ILU0 computes a standard ILU0 factorization

5 point stencil on a 2D grid
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CMB data analysis
• Light left over after the ever mysterious «Big Bang»,

• overall very isotropic and uniform,
• but small - 1 part in 105 - anisotropies are hidden in there …
• even smaller - 1 part in 106 or 107 - are the goal of current experiments.

• Always in need of more data
• Data sets are growing at Moore’s rate
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CMB data analysis in an (algebraic) nutshell
• CMB DA is a juxtaposition of the same algebraic operations
• Map-making problem

• Find the best map x from observations d, scanning strategy A, and noise nt

• Assuming the noise properties are Gaussian and piece-wise stationary, the covariance
matrix is N = <nt nt

T>, and N-1 is a block diagonal symmetric Toeplitz matrix.
• The solution of the generalized least squares problem is found by solving

• Spherical harmonic transform (SHT)
• Synthesize a sky image from its harmonic representation

• What is difficult about the CMB DA then ? Well, the data is BIG !
• Our solution to this challenge: MIDAPACK (ANR MIDAS interdisciplinary project)

• Library implementing all the stages down the CMB pipeline
• Results in collaboration with M. Szydlarski, R. Stompor (SC’12)

  

! 

ATN "1Ax = ATN "1d! 

d = Ax + nt
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Challenge in the map-making problem
• Linear system to solve using PCG:

• Existing diagonal preconditioner does not scale numerically
• The convergence of iterative methods depends on the condition number of the input

matrix - low eigenvalues hamper this convergence

Scanning strategy:
• 2048 densely crossing circles
• Each circle is scanned 32 times,
leading to 106 samples
• Piece-wise stationary noise, one
Toeplitz block for each circle

! 

MdiagSx = Mdiagb,  where 
S := ATN "1A,  b := ATN "1d
Mdiag := ATdiag(N "1)A( )"1

# 
$ 
% 

Spectrum: 20 largest and 20 smallest approximated eigenvalues
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Two level preconditioner
• Combine diagonal preconditioner with a subspace correction (Tang et al, 09)

• The efficiency of the preconditioner depends on the choice of Z
• Common approaches exist in deflation or coarse grid correction in DDM
• Our choice is inspired by the physics of the CMB! 

M2lvl = Mdiag I " S(ZE "1ZT )( ) + ZE-1ZT( )
where Mdiag = ATdiag(N "1)A( )"1

 and E = ZTSZ

Spectrum: 20 largest and 20 smallest approximated eigenvalues
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Choice of coarse weighting subspace Z
• Number of columns of Z equals number of time-stationary intervals
• Each row of Z corresponds to a pixel of the sky, Z(i,j) = si

j/si, where
• si

j is the number of observations of pixel i during j-th time interval
• si is the total number of observations of pixel i.

• Example:
  

! 
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Data distribution
• Block row distribution over processors of

• Pointing matrix A, noise covariance matrix N-1,
• Observations vector d and map of the sky x

! 

ATN "1Ax = b
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Application of two-level preconditioner to a vector

The operations peformed are:

1. vtmp1 := ZT vin
• Series of dot products followed by
• MPI_AllReduce (…)                     <= the most expensive operation

2. Solve Evtmp2 := vtmp1
• Using direct solver as MKL, SuperLU

3. vout += Z vtmp2

         vtmp3 := vin - S Z vtmp2
• Series of scalar vector producs

4.   vout += Mdiag
 vtmp3

• entrywise product between two vectors

! 

Mdiag I " SZE
"1ZT( ) + ZE-1ZT( )[ ]vin = vout
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Runtime on Cray XE6, Hopper Nersc
Weak scaling, 6 cores per MPI process Strong scaling, 6 cores per MPI process
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Improvement with respect to diagonal preconditioner

Weak scaling, 6 cores per MPI process Strong scaling, 6 cores per MPI process
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Conclusions

•  Communication avoiding algorithms minimize communication
• Attain theoretical lower bounds on communication

• Are often faster than conventional algorithms in practice

• Remains a lot to do for sparse linear algebra
• Communication bounds, communication optimal algorithms

• Numerical stability of s-step methods

• Preconditioners - limited by the memory size, not flops

• In CMB data analysis
• Can we use randomized approaches ?
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