
Process placement for unbalanced
architectures
Joint work with: Guillaume Mercier, François Tessier,
Charm++ team, Torsten Hoefler

Emmanuel Jeannot
Runtime Team
Inria Bordeaux Sud-Ouest November 21st, 2012

MPI (Process-based runtime systems)

November 21st, 2012

Performance of MPI programs depends on many
factors that can be handled when you change the
machine:
• Implementation of the standard (e.g. collective com.)
• Parallel algorithm(s)
• Implementation of the algorithm
• Underlying libraries (e.g. BLAS)
• Hardware (processors, cache, network)
• etc.

But…

Process Placement

November 21st, 2012

The MPI model makes little (no?) assumption on the
way processes are mapped to resources

It is often assume that the network topology is flat
and hence the process mapping has little impact on
the performance

CPU CPU CPU CPU

Mem Mem Mem Mem

Interconection network

The Topology is not Flat

November 21st, 2012

Due to multicore processors current and future parallel
machines are hierarchical

Communication speed depends on:
• Receptor and emitter
• Cache hierarchy
• Memory bus
• Interconnection network

etc.

Almost nothing in the MPI standard help to handle
these factors

Example on a Parallel Machine

November 21st, 2012

The higher we have to go into the hierarchy the costly the
data exchange

Core 1 Core 2 Core 4Core 3

L1/L2 L1/L2 L1/L2 L1/L2

L3

Mem. Controler

Local RAM

Bus

Example on a Parallel Machine

November 21st, 2012

The higher we have to go into the hierarchy the costly the
data exchange

Core 1 Core 2 Core 4Core 3

L1/L2 L1/L2 L1/L2 L1/L2

L3

Mem. Controler

Local RAM

Bus

Example on a Parallel Machine

November 21st, 2012

The higher we have to go into the hierarchy the costly the
data exchange

Core 1 Core 2 Core 4Core 3

L1/L2 L1/L2 L1/L2 L1/L2

L3

Mem. Controler

Local RAM

Bus

...

Mem. Controler

Core Core

L1/L2 L1/L2

L3

Local RAM

...

Mem. Controler

Core Core

L1/L2 L1/L2

L3

Local RAM

Interconect

Example on a Parallel Machine

November 21st, 2012

The higher we have to go into the hierarchy the costly the
data exchange

Core 1 Core 2 Core 4Core 3

L1/L2 L1/L2 L1/L2 L1/L2

L3

Mem. Controler

Local RAM

Bus

...

Mem. Controler

Core Core

L1/L2 L1/L2

L3

Local RAM

...

Mem. Controler

Core Core

L1/L2 L1/L2

L3

Local RAM

Interconect

Example on a Parallel Machine

November 21st, 2012

The higher we have to go into the hierarchy the costly the
data exchange

Core 1 Core 2 Core 4Core 3

L1/L2 L1/L2 L1/L2 L1/L2

L3

Mem. Controler

Local RAM

Bus

...

Mem. Controler

Core Core

L1/L2 L1/L2

L3

Local RAM

...

Mem. Controler

Core Core

L1/L2 L1/L2

L3

Local RAM

Interconect

Example on a Parallel Machine

November 21st, 2012

The higher we have to go into the hierarchy the costly the
data exchange

Node

Local RAM

Mem. Controler

Node

Local RAM

Mem. Controler

Node

Local RAM

Mem. Controler

Node

Local RAM

Mem. Controler

NIC NIC

Network

Core 1 Core 2 Core 4Core 3

L1/L2 L1/L2 L1/L2 L1/L2

L3

Mem. Controler

Local RAM

Bus

...

Mem. Controler

Core Core

L1/L2 L1/L2

L3

Local RAM

...

Mem. Controler

Core Core

L1/L2 L1/L2

L3

Local RAM

Interconect

Example on a Parallel Machine

November 21st, 2012

The higher we have to go into the hierarchy the costly the
data exchange

Node

Local RAM

Mem. Controler

Node

Local RAM

Mem. Controler

Node

Local RAM

Mem. Controler

Node

Local RAM

Mem. Controler

NIC NIC

Network

Core 1 Core 2 Core 4Core 3

L1/L2 L1/L2 L1/L2 L1/L2

L3

Mem. Controler

Local RAM

Bus

...

Mem. Controler

Core Core

L1/L2 L1/L2

L3

Local RAM

...

Mem. Controler

Core Core

L1/L2 L1/L2

L3

Local RAM

Interconect

Example on a Parallel Machine

November 21st, 2012

The higher we have to go into the hierarchy the costly the
data exchange

Node

Local RAM

Mem. Controler

Node

Local RAM

Mem. Controler

Node

Local RAM

Mem. Controler

Node

Local RAM

Mem. Controler

NIC NIC

Network
The network can

also be
hierarchical!

Rationale

November 21st, 2012

Not all the processes exchange
the same amount of data

The speed of the communications,
and hence performance of the
application depends on the way
processes are mapped to
resources.

Do we Really Care: to Bind or not to Bind?

November 21st, 2012

After all, the system scheduler is able to move processes
when needed.

Yes, but only for shared memory system. Migration is
possible but it is not in the MPI standard (see charm++)

Moreover binding provides better execution runtime
stability.

Do we Really Care: to Bind or not to Bind?

November 21st, 2012

After all, the system scheduler is able to move processes
when needed.

Yes, but only for shared memory system. Migration is
possible but it is not in the MPI standard (see charm++)

Moreover binding provides better execution runtime
stability.

Zeus MHD Blast. 64 Processes/Cores. Mvapich2 1.8. + ICC

Process Placement Problem

November 21st, 2012

Given :

• Parallel machine topology
• Process affinity (communication pattern)

Map processes to resources (cores) to reduce
communication cost: a nice algorithmic problem:
• Graph partitionning (Scotch, Metis)
• Application tuning [Aktulga et al. Euro-Par 12]
• Topology-to-pattern matching (TreeMatch)

Reduce Communication Cost?

November 21st, 2012

But wait, my application is compute-bound!

Well, but this might not be still true in the future: strong
scaling might not always be a solution.

Reduce Communication Cost?

November 21st, 2012

But wait, my application is compute-bound!

Well, but this might not be still true in the future: strong
scaling might not always be a solution.

Taken from one of J. Dongarra’s Talk.

Obtaining the Topology (Shared Memory)

November 21st, 2012

HWLOC (portable hardware locality):
• Runtime and OpenMPI team
• Portable abstraction (across OS, versions,
architectures, ...)
• Hierarchical topology
• Modern architecture (NUMA, cores, caches, etc.)
• ID of the cores
• C library to play with
• Etc

HWLOC

November 21st, 2012

http://www.open-mpi.org/projects/hwloc/

Obtaining the Topology (Distributed
Memory)

November 21st, 2012

Not always easy (research issue)

MPI core has some routine to get that

Sometime requires to build a file that specifies node
adjacency

Getting the Communication Pattern

November 21st, 2012

No automatic way so far…

Can be done through application
monitoring:
• During execution
• With a « blank execution »

State of the Art

November 21st, 2012

Process placement fairly well studied problem:
• [Träff 02]: placement through graph embedding
and graph partitioning
• MPIPP [Chen et al. 2006]: placement through
local exchange of processes until no gain is
achievable
• [Clet-Ortega & Mercier 09]: placement through
graph renumbering (Scotch)
• LibTopoMap [Hoefler & Snir 11]: placement
through network model + graph partitioning
(ParMetis)

Problems with quantitative knowledge

November 21st, 2012

It is generaly faster to use cache or to stay within a socket
But the acceleration ratio depends on message size:

• It is not linear (not affine either)
• Contention makes things even harder

Netpipe on a 2 sockets, 8 cores each NUMA node

Dealing with Qualitative Knowledge

November 21st, 2012

Abstract the topology with a tree
Assume communication always cost more when you need

to reach higher levels

The structure is sufficient. No need to deal with latency or
bandwidth.

0 4 1 5 2 6 3 7

Dealing with Qualitative Knowledge

November 21st, 2012

Abstract the topology with a tree
Assume communication always cost more when you need

to reach higher levels

The structure is sufficient. No need to deal with latency or
bandwidth.

0 4 1 5 2 6 3 7

TreeMatch Algorithm

November 21st, 2012

0 4 1 5 2 6 3 7

0 1000 10 1 100 1 1 1

1000 0 1000 1 1 100 1 1

10 1000 0 1000 1 1 100 1

1 1 1000 0 1 1 1 100

100 1 1 1 0 1000 10 1

1 100 1 1 1000 0 1000 1

1 1 100 1 10 1000 0 1000

1 1 1 100 1 1 1000 0

C: communication matrix

0 1 2 3 4 5 6 7

0 101
2

202 4

101
2

0 4 202

202 4 0 101
24 202 101

2
0

Grouped matrix

TreeMatch Algorithm

November 21st, 2012

Communication matrix + Tree Topology
= Process permutation

0 4 1 5 2 6 3 7

0 1000 10 1 100 1 1 1

1000 0 1000 1 1 100 1 1

10 1000 0 1000 1 1 100 1

1 1 1000 0 1 1 1 100

100 1 1 1 0 1000 10 1

1 100 1 1 1000 0 1000 1

1 1 100 1 10 1000 0 1000

1 1 1 100 1 1 1000 0

C: communication matrix

0 1 2 3 4 5 6 7

0 101
2

202 4

101
2

0 4 202

202 4 0 101
24 202 101

2
0

Grouped matrix 0 1 2 3 4 5 6 7

Process reordering

November 21st, 2012

TreeMatch: process permutation

If process already bound: rank reordering.

Problem: how to take into account placement constraint

Dealing with already mapped applicatons

November 21st, 2012

Problem:
• Given a hierarchichal topology
• An already mapped application

onto a subset of the node
• Reorder process while ensuring

only this subset is used

Requires to change the TreeMatch
algorithm to prevent it to use
some nodes

0 4 1 5 2 6 3 7

0 1 2 34 5

Dealing with already mapped applicatons

November 21st, 2012

Problem:
• Given a hierarchichal topology
• An already mapped application

onto a subset of the node
• Reorder process while ensuring

only this subset is used

Requires to change the TreeMatch
algorithm to prevent it to use
some nodes

0 4 1 5 2 6 3 7

0 1 2 34 5

5 1 2 40 3

Dealing with already mapped applicatons

November 21st, 2012

Problem:
• Given a hierarchichal topology
• An already mapped application

onto a subset of the node
• Reorder process while ensuring

only this subset is used

Requires to change the TreeMatch
algorithm to prevent it to use
some nodes

0 4 1 5 2 6 3 7

0 1 2 34 5

Dealing with already mapped applicatons

November 21st, 2012

Problem:
• Given a hierarchichal topology
• An already mapped application

onto a subset of the node
• Reorder process while ensuring

only this subset is used

Requires to change the TreeMatch
algorithm to prevent it to use
some nodes

0 4 1 5 2 6 3 7

0 1 2 34 5

5 1 2 40 3

New Version of TreeMatch to Deal With
Unbalanced Tree

November 21st, 2012

0 4 1 5 2 6 3 7

0 1 2 34 5

0 4 1 5 2 6 3 7

Solution:
• Extend the communication matrix with dummy nodes
• Process the tree backward by doing k-partitionning
• Force each partition to have the right number of dummy nodes
• Process recursively

November 21st, 2012

0 4 1 5 2 6 3 7

0 5 7 9 10 2

5 0 7 4 9 1

7 7 0 1 9 2

9 4 1 0 1 7

10 9 9 1 0 10

2 1 2 7 10 0

0 1 2 3 4 5

Example: bi-partitionning with forced
mapping

November 21st, 2012

0 4 1 5 2 6 3 7

0 5 7 9 10 2

5 0 7 4 9 1

7 7 0 1 9 2

9 4 1 0 1 7

10 9 9 1 0 10

2 1 2 7 10 0

0 5 7 9 10 2

5 0 7 4 9 1

7 7 0 1 9 2

9 4 1 0 1 7

10 9 9 1 0 10

2 1 2 7 10 0

0 1 2 3 4 5

Example: bi-partitionning with forced
mapping

November 21st, 2012

0 4 1 5 2 6 3 7

0 5 7 9 10 2

5 0 7 4 9 1

7 7 0 1 9 2

9 4 1 0 1 7

10 9 9 1 0 10

2 1 2 7 10 0

0 5 7 9 10 2

5 0 7 4 9 1

7 7 0 1 9 2

9 4 1 0 1 7

10 9 9 1 0 10

2 1 2 7 10 0

0 4 9

4 0 4

9 4 0

0 1 2 3 4 5

Example: bi-partitionning with forced
mapping

November 21st, 2012

0 4 1 5 2 6 3 7

0 5 7 9 10 2

5 0 7 4 9 1

7 7 0 1 9 2

9 4 1 0 1 7

10 9 9 1 0 10

2 1 2 7 10 0

0 5 7 9 10 2

5 0 7 4 9 1

7 7 0 1 9 2

9 4 1 0 1 7

10 9 9 1 0 10

2 1 2 7 10 0

0 4 9

4 0 4

9 4 0

0 1 2 3 4 5

Example: bi-partitionning with forced
mapping

November 21st, 2012

0 4 1 5 2 6 3 7

0 5 7 9 10 2

5 0 7 4 9 1

7 7 0 1 9 2

9 4 1 0 1 7

10 9 9 1 0 10

2 1 2 7 10 0

0 5 7 9 10 2

5 0 7 4 9 1

7 7 0 1 9 2

9 4 1 0 1 7

10 9 9 1 0 10

2 1 2 7 10 0

0 4 9

4 0 4

9 4 0

0 7 2

7 0 2

2 2 0

0 1 2 3 4 5

Example: bi-partitionning with forced
mapping

November 21st, 2012

0 4 1 5 2 6 3 7

0 5 7 9 10 2

5 0 7 4 9 1

7 7 0 1 9 2

9 4 1 0 1 7

10 9 9 1 0 10

2 1 2 7 10 0

0 5 7 9 10 2

5 0 7 4 9 1

7 7 0 1 9 2

9 4 1 0 1 7

10 9 9 1 0 10

2 1 2 7 10 0

0 4 9

4 0 4

9 4 0

0 7 2

7 0 2

2 2 0

0 1 2 3 4 5

Example: bi-partitionning with forced
mapping

November 21st, 2012

0 4 1 5 2 6 3 7

0 5 7 9 10 2

5 0 7 4 9 1

7 7 0 1 9 2

9 4 1 0 1 7

10 9 9 1 0 10

2 1 2 7 10 0

0 5 7 9 10 2

5 0 7 4 9 1

7 7 0 1 9 2

9 4 1 0 1 7

10 9 9 1 0 10

2 1 2 7 10 0

0 4 9

4 0 4

9 4 0

0 7 2

7 0 2

2 2 0

0 7 2

7 0 2

2 2 0

0 1 2 3 4 5

Example: bi-partitionning with forced
mapping

November 21st, 2012

0 4 1 5 2 6 3 7

0 5 7 9 10 2

5 0 7 4 9 1

7 7 0 1 9 2

9 4 1 0 1 7

10 9 9 1 0 10

2 1 2 7 10 0

0 5 7 9 10 2

5 0 7 4 9 1

7 7 0 1 9 2

9 4 1 0 1 7

10 9 9 1 0 10

2 1 2 7 10 0

0 4 9

4 0 4

9 4 0

0 7 2

7 0 2

2 2 0

0 7 2

7 0 2

2 2 0

0 2

2 0

0 1 2 3 4 5

Example: bi-partitionning with forced
mapping

November 21st, 2012

0 4 1 5 2 6 3 7

0 5 7 9 10 2

5 0 7 4 9 1

7 7 0 1 9 2

9 4 1 0 1 7

10 9 9 1 0 10

2 1 2 7 10 0

0 5 7 9 10 2

5 0 7 4 9 1

7 7 0 1 9 2

9 4 1 0 1 7

10 9 9 1 0 10

2 1 2 7 10 0

0 4 9

4 0 4

9 4 0

0 7 2

7 0 2

2 2 0

0 7 2

7 0 2

2 2 0

0 2

2 0

0 1 2 3 4 5

Example: bi-partitionning with forced
mapping

November 21st, 2012

0 4 1 5 2 6 3 7

0 5 7 9 10 2

5 0 7 4 9 1

7 7 0 1 9 2

9 4 1 0 1 7

10 9 9 1 0 10

2 1 2 7 10 0

0 5 7 9 10 2

5 0 7 4 9 1

7 7 0 1 9 2

9 4 1 0 1 7

10 9 9 1 0 10

2 1 2 7 10 0

0 4 9

4 0 4

9 4 0

0 7 2

7 0 2

2 2 0

0 7 2

7 0 2

2 2 0

0 2

2 0

0 1 2 3 4 5

Example: bi-partitionning with forced
mapping

November 21st, 2012

0 4 1 5 2 6 3 7

0 5 7 9 10 2

5 0 7 4 9 1

7 7 0 1 9 2

9 4 1 0 1 7

10 9 9 1 0 10

2 1 2 7 10 0

0 5 7 9 10 2

5 0 7 4 9 1

7 7 0 1 9 2

9 4 1 0 1 7

10 9 9 1 0 10

2 1 2 7 10 0

0 4 9

4 0 4

9 4 0

0 7 2

7 0 2

2 2 0

0 7 2

7 0 2

2 2 0

0 2

2 0

0

0 1 2 3 4 5

Example: bi-partitionning with forced
mapping

November 21st, 2012

0 4 1 5 2 6 3 7

0 5 7 9 10 2

5 0 7 4 9 1

7 7 0 1 9 2

9 4 1 0 1 7

10 9 9 1 0 10

2 1 2 7 10 0

0 5 7 9 10 2

5 0 7 4 9 1

7 7 0 1 9 2

9 4 1 0 1 7

10 9 9 1 0 10

2 1 2 7 10 0

0 4 9

4 0 4

9 4 0

0 7 2

7 0 2

2 2 0

0 7 2

7 0 2

2 2 0

0 2

2 0

0

0 1 2 3 4 5

1 3 4 02 5

Example: bi-partitionning with forced
mapping

November 21st, 2012

MPI_Dist_graph_create

Outputs a new communicator with new ranks:

Advantages:
• Standard: MPI_Dist_graph_create routine
• Dynamic: can be done at runtime several times
• Flexible: can take into account placement constraints

Integrated into OpenMPI

Implementation in MPI

Results: placement computation time

November 21st, 2012

Results

November 21st, 2012

64 nodes linked with an Infiniband interconnect (HCA: Mellanox Technologies, MT26428 ConnectX IB QDR).

Each node features two Quad-core INTEL XEON NEHALEM X5550 (2.66 GHz) processors.

Results

November 21st, 2012

64 nodes linked with an Infiniband interconnect (HCA: Mellanox Technologies, MT26428 ConnectX IB QDR).

Each node features two Quad-core INTEL XEON NEHALEM X5550 (2.66 GHz) processors.

36% gain
against
standard
MPI policy

Results

November 21st, 2012

64 nodes linked with an Infiniband interconnect (HCA: Mellanox Technologies, MT26428 ConnectX IB QDR).

Each node features two Quad-core INTEL XEON NEHALEM X5550 (2.66 GHz) processors.

Results

November 21st, 2012

64 nodes linked with an Infiniband interconnect (HCA: Mellanox Technologies, MT26428 ConnectX IB QDR).

Each node features two Quad-core INTEL XEON NEHALEM X5550 (2.66 GHz) processors.

400% gain
against
some graph
partitionners

Conclusion

November 21st, 2012

To ensure performance protability one must take into
account the topology of target machine

Process placement according to application behavior and
topology helps in increasing performance

(Potential) collaborations:
• TreeMatch in LibTopoMap (with Torsten)
• TreeMatch as LB in Charm++ (with Sanjay)
• TreeMatch in Dist_graph_create in MPICH2 (with

Pavan)
• Mixing communication affinity and I/O affinity (With Rob)

Thanks!

CCDSC 2012

www.inria.fr

