
Hybrid Scheduling for already Optimized
Dense Matrix Factorization

Simplice Donfack, Laura Grigori
INRIA Saclay

Bill Gropp, Vivek Kale
UIUC

Page 2

Plan

• Brief introduction of communication avoiding methods

• Hybrid scheduling for already optimized dense linear algebra
(communication avoiding)

• Experiments on a 48 cores AMD Opteron machine

• Conclusions and future work

Page 3

Motivation for Communication Avoiding Algorithms
• Time_per_flop << 1/ bandwidth << latency

• Gaps growing exponentially with time

• Communication avoiding algorithmic design: the communication
minimization becomes part of the numerical algorithm design (in
collaboration with J. Demmel)

• Better performance, less energy consumption

Annual improvements
Time/flop Bandwidth Latency

Network 26% 15%
DRAM 23% 5%

59%

Page 4

Algorithms and lower bounds on communication

• Goals for CA algorithms:
• Minimize #words_moved = Ω (#flops/ M1/2) = Ω (n2 / P1/2)
• Minimize #messages = Ω (#flops/ M3/2) = Ω (P1/2)
• Minimize over multiple levels of memory/parallelism
• Allow redundant computations (preferably as a low order term)

• LAPACK and ScaLAPACK
• mostly suboptimal (newer version starts implementing CA algorithms)

• Recursive cache oblivious algorithms
• Minimize bandwidth, not latency, sometimes more flops (3x for QR)

• CA algorithms
• Communication optimal for dense algorithms and some sparse algorithms

Page 5

LU factorization (as in ScaLAPACK pdgetrf)
LU factorization on a P = Pr x Pc grid of processors
For i = 1 to n-1 step b
 A(ib) = A(ib:n, ib:n)

 (1) Compute panel factorization (pdgetf2)
 - find pivot in each column, swap rows

 (2) Apply all row permutations (pdlaswp)
 - broadcast pivot information along the rows
 - swap rows at left and right

(3) Compute block row of U (pdtrsm)
 - broadcast right diagonal block of L of current panel

 (4) Update trailing matrix (pdgemm)
 - broadcast right block column of L
 - broadcast down block row of U

L

U

A(ib)

L

U

A(ib+b)

L

U

A(ib)

L

U

A(ib)

)log(2 rPnO

)log/(2 cPbnO

))log(log/(22 rc PPbnO +

))log(log/(22 rc PPbnO +

Page 6

TSQR: QR factorization of a tall skinny matrix
using Householder transformations

W =
W0
W1
W2
W3

R00
R10
R20
R30

R01

R11

R02

• QR decomposition of m x b matrix W, m >> b
• P processors, block row layout

• Usual Parallel Algorithm
• Compute Householder vector for each column
• Number of messages ∝ b log P

• Communication Avoiding Algorithm
• Reduction operation, with QR as operator
• Number of messages ∝ log P

J. Demmel, LG, M. Hoemmen, J. Langou ‘08

Page 7

CAQR for general matrices

• Use TSQR for panel factorizations
• Update the trailing matrix - triggered by the reduction tree used for
the panel factorization

Page 8

Flexibility of CAQR factorization

W =
W0
W1
W2
W3

R00
R10
R20
R30

R01

R11

R02Parallel:

W =
W0
W1
W2
W3

R01 R02

R00

R03
Sequential:

W =
W0
W1
W2
W3

R00
R01

R01

R11
R02

R11

R03

Dual Core:

Reduction tree will depend on the underlying architecture,
could be chosen dynamically

Page 9

Factorizations that require pivoting

• Using the idea from CAQR leads to unstable factorizations

• Requires new tournament pivoting scheme (LU, RRQR)

• Consider a block algorithm that factors an n-by-n matrix A.

 , where

• At each iteration
• Preprocess W to find at low communication cost good pivots for the LU

factorization of W.
• Permute the pivots to top.
• Compute LU with no pivoting of W, update trailing matrix.

!

W =
A11
A21

"

$

%

&
'

!

A =
A11 A21
A21 A22

"

$

%

&
'

!

}
}

b
n " b

!

b n " b
} }

!

PA =
L11
L21 In"b

$
%

&

'
(
Ib

A22 " L21U12

$
%

&

'
(
U11 U12

In"b

$
%

&

'
(

Page 10

Tournament pivoting for a tall skinny matrix

time

P0

P1

P2

P3

!

2 4
0 1
2 0
1 2

"

$
$
$
$

%

&

'
'
'
'

=(0L0U0

!

2 0
0 0
4 1
1 0

"

$
$
$
$

%

&

'
'
'
'

=(1L1U1

!

0 1
1 4
0 0
0 2

"

$
$
$
$

%

&

'
'
'
'

=(2L2U2

!

2 1
0 2
1 0
4 2

"

$
$
$
$

%

&

'
'
'
'

=(3L3U3

!

2 4
2 0
"

$

%

&
'

!

4 1
2 0
"

$

%

&
'

!

1 4
0 2
"

$

%

&
'

!

4 2
0 2
"

$

%

&
'

!

2 4
2 0
4 1
2 0

"

$
$
$
$

%

&

'
'
'
'

=(0L0U0

!

1 4
0 2
4 2
0 2

"

$
$
$
$

%

&

'
'
'
'

=(2L2U 2

!

4 1
2 4
"

$

%

&
'

!

4 2
1 4
"

$

%

&
'

!

4 1
2 4
4 2
1 4

"

$
$
$
$

%

&

'
'
'
'

=(0L0U 0

!

4 1
1 4
"

$

%

&
'

!

W0

!

"0
TW0

!

W0

!

"0
T
W 0

!

W 0

!

"0
TW 0

!

W1

!

"1
TW1

!

W2

!

"2
TW2

!

W2

!

"2
T
W 2

!

W3

!

"3
TW3

Good pivots for
factorizing W

Page 11

Stability of CALU (experimental results)

Summer School Lecture 4 11

• Results show ||PA-LU||/||A||, normwise and componentwise backward
errors, for random matrices and special ones

• See [LG, Demmel, Xiang, 2010] for details
• BCALU denotes binary tree based CALU and FCALU denotes flat tree based CALU

Page 12

CALU_PRRP: CALU with panel rank revealing pivoting

• Tournament pivoting uses strong RRQR at each node of
the reduction tree

• Worst case analysis of growth factor
• matrix of size m-by-n
• reduction tree of height H=log(P).

• CALU_PRRP stable for pathological cases and matrices from solving
Volterra integral equation (Foster).

Upper bound
 2n-1

Attained
 2n-1

Upper bound
 2n(H+1)-1

GEPPCALU CALU_PRRP

Upper bound
(1+2b)(n/b)log(P)

Better stability

A. Khabou, LG, J. Demmel, M. Gu

Page 13

CALU and its task dependency graph

• The matrix is partitioned in blocks of size T x b.
• The computation of each block is associated with a task.
• The task dependency graph (DAG) can be executed using any

scheduling strategy.

Page 14

Scheduling CALU’s Task Dependency Graph
• Static scheduling

+ Good locality of data - Ignores OS jitter

Page 15

Scheduling CALU’s Task Dependency Graph
• Static scheduling

+ Good locality of data - Ignores OS jitter

• Dynamic scheduling
+ Keeps cores busy - Poor usage of data locality
 - Can lead to large overhead

Page 16

Profiling: CALU with dynamic scheduling

L2, L3 Cache misses on IBM Power 7.

m=n=5000, b=150, P = 4 x 2

0.47%Fetch task time
15ML3 cache misses (max)
25ML2 cache misses (max)

Page 17

CALU with dynamic scheduling and data locality

L2, L3 Cache misses on IBM Power 7.

m=n=5000, b=150, P = 4 x 2

2.3%Fetch task time
3.5ML3 cache misses
12.5ML2 cache misses

Page 18

Hybrid scheduling

• Emerging complexities of multi- and mani-core processors suggest a
need for self-adaptive strategies
• One example is work stealing

• Goal:
• Design a tunable strategy that is able to provide a good trade-off between

load balance, data locality, and low dequeue overhead.
• Provide performance consistency

• Approach: combine static and dynamic scheduling
• Shown to be efficient for regular mesh computation [B. Gropp and V. Kale]

√Column Major Layout (CM)

√√√2-level Block Layout (2l-BL)

√√√Block Cyclic Layout (BCL)

Static/(%dynamic)DynamicStaticData layout/scheduling
Design space

Page 19

Hybrid static/dynamic scheduling

• Part of the DAG is scheduled statically
• Using a 2D block cyclic distribution of data (tasks) to threads

• Threads execute in priority their statically assigned tasks
• When no ready task to execute, a thread picks a ready task from the

dynamic part

Page 20

Hybrid static/dynamic scheduling (contd)

• There are two critical paths:
• In the static part, the predefined order of execution ensures progress on the critical

path
• In the dynamic part, high priority is given to threads on the critical path

21

Data layout and other optimizations
• Three data distributions investigated

• CM : Column major order for the entire matrix
• BCL : Each thread stores contiguously (CM) the data on which it operates
• 2l-BL : Each thread stores in blocks the data on which it operates

• And other optimizations
• Updates (dgemm) performed on several blocks of columns (for BCL and
CM layouts)

22

Performance of static/dynamic on multicore
architectures

Eight socket, six core machine based on AMD Opteron processor (U. of Tennessee).

23

Impact of data layout

BCL : Each thread stores contiguously (CM) its data
2l-BL : Each thread stores in blocks its data

24

Performance of static/dynamic on multicores
Static scheduling

time

Static + 10% dynamic scheduling

100% dynamic scheduling

25

Best performance of CALU on multicore architectures

• CALU 10% dynamic achieves up to 50% of the peak performance.
• Reported performance for PLASMA uses LU with incremental pivoting.

Page 26

Preliminary performance model (V. Kale)

• Goal: find the breakpoint at which static scheduling induces
imbalance.

• Consider the parameters:
• fs is the fraction of static scheduling

• δi is the excess work on core i, with its max and avg values, δmax, δavg

• TP is the time for computation to be done on P cores

• Result:
 Assuming no overhead to the parallel time (eg communication), the static

scheduling induces no load imbalance as long as:

!

fs "1#
$max #$avg

TP

Page 27

Preliminary performance model (contd)

The relation implies:

• Given δmax-δavg constant
• For a given number of processor P and increasing matrix size, the static

fraction can be increased, thus avoiding scheduling overhead

• For both weak and strong scalability, the dynamic fraction needs to be
increased

• Predictions of the amplification of noise at large scale suggests
that the fraction of the dynamic part will be increasing.

• Model to be continued within this collaboration.

!

fs "1#
$max #$avg

TP

!

fd "
#max $#avg

TP

Page 28

Conclusions

• Highly efficient dense linear algebra routine
• Based on a tunable scheduling strategy.

• Performance of CALU on 48 cores Opteron is as good as the one reported in
literature for the QR factorization (using complex reduction trees).

• Future work
• Demonstrate the feasibility of the hybrid scheduling for other operations.

• Develop a performance model to guide the choice of the fraction of the
static/dynamic parts of the scheduler.

