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Plan

• Brief introduction of communication avoiding methods

• Hybrid scheduling for already optimized dense linear algebra
(communication avoiding)

• Experiments on a 48 cores AMD Opteron machine

• Conclusions and future work
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Motivation for Communication Avoiding Algorithms
• Time_per_flop  <<  1/ bandwidth  <<  latency

• Gaps growing exponentially with time

• Communication avoiding algorithmic design: the communication
minimization becomes part of the numerical algorithm design (in
collaboration with J. Demmel)

• Better performance, less energy consumption

Annual improvements
Time/flop Bandwidth Latency

Network 26% 15%
DRAM 23% 5%

59%
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Algorithms and lower bounds on communication

• Goals for CA algorithms:
• Minimize #words_moved = Ω (#flops/ M1/2 ) = Ω ( n2 / P1/2 )
• Minimize #messages       = Ω (#flops/ M3/2 ) = Ω ( P1/2 )
• Minimize over multiple levels of memory/parallelism
• Allow redundant computations (preferably as a low order term)

• LAPACK and ScaLAPACK
• mostly suboptimal (newer version starts implementing CA algorithms)

• Recursive cache oblivious algorithms
• Minimize bandwidth, not latency, sometimes more flops (3x for QR)

• CA algorithms
• Communication optimal for dense algorithms and some sparse algorithms
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LU factorization (as in ScaLAPACK pdgetrf)
LU factorization on a P = Pr x Pc grid of processors
For i = 1 to n-1 step b
     A(ib)  = A(ib:n, ib:n)

 (1) Compute panel factorization (pdgetf2)
        - find pivot in each column, swap rows

 (2) Apply all row permutations (pdlaswp)
        - broadcast pivot information along the rows
        - swap rows at left and right

(3) Compute block row of U (pdtrsm)
         - broadcast right diagonal block of L of current panel

 (4) Update trailing matrix (pdgemm)
        - broadcast right block column of L
        - broadcast down block row of U
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TSQR: QR factorization of a tall skinny matrix
using Householder transformations

W =
W0
W1
W2
W3

R00
R10
R20
R30

R01

R11

R02

•  QR decomposition of m x b matrix W,  m >> b
• P processors, block row layout

•  Usual Parallel Algorithm
• Compute Householder vector for each column
• Number of messages ∝ b log P

• Communication Avoiding Algorithm
• Reduction operation, with QR as operator
• Number of messages ∝ log P

J. Demmel, LG, M. Hoemmen, J. Langou ‘08
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CAQR for general matrices

•  Use TSQR for panel factorizations
•  Update the trailing matrix - triggered by the reduction tree used for
the panel factorization
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Flexibility of CAQR factorization

W =
W0
W1
W2
W3

R00
R10
R20
R30

R01

R11

R02Parallel:

W =
W0
W1
W2
W3

R01 R02

R00

R03
Sequential:

W =
W0
W1
W2
W3

R00
R01

R01

R11
R02

R11

R03

Dual Core:

Reduction tree will depend on the underlying architecture,
could be chosen dynamically



Page 9

Factorizations that require pivoting

• Using the idea from CAQR leads to unstable factorizations

• Requires new tournament pivoting scheme (LU, RRQR)

• Consider a block algorithm that factors an n-by-n matrix A.

                                   , where

• At each iteration
• Preprocess W to find at low communication cost good pivots for the LU

factorization of W.
• Permute the pivots to top.
• Compute LU with no pivoting of W, update trailing matrix.
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Tournament pivoting for a tall skinny matrix

time
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Stability of CALU (experimental results)

Summer School Lecture 4 11

• Results show ||PA-LU||/||A||, normwise and componentwise backward
errors, for random matrices and special ones

• See [LG, Demmel, Xiang, 2010] for details
• BCALU denotes binary tree based CALU and FCALU denotes flat tree based CALU
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CALU_PRRP: CALU with panel rank revealing pivoting

• Tournament pivoting uses strong RRQR at each node of
the reduction tree

• Worst case analysis of growth factor
• matrix of size m-by-n
• reduction tree of height H=log(P).

• CALU_PRRP stable for pathological cases and matrices from solving
Volterra integral equation (Foster).

Upper bound
 2n-1

Attained
 2n-1

Upper bound
 2n(H+1)-1

GEPPCALU CALU_PRRP

Upper bound
(1+2b)(n/b)log(P)

Better stability

A. Khabou, LG, J. Demmel, M. Gu
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CALU and its task dependency graph

• The matrix is partitioned in blocks of size T x b.
• The computation of each block is associated with a task.
• The task dependency graph (DAG) can be executed using any

scheduling strategy.
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Scheduling CALU’s Task Dependency Graph
• Static scheduling

+   Good locality of data              -    Ignores OS jitter
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Scheduling CALU’s Task Dependency Graph
• Static scheduling

+   Good locality of data              -    Ignores OS jitter

• Dynamic scheduling
+   Keeps cores busy                  -    Poor usage of data locality
                                                    -    Can lead to large overhead
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Profiling: CALU with dynamic scheduling

L2, L3 Cache misses on IBM Power 7.

m=n=5000, b=150, P = 4 x 2

0.47%Fetch task time
15ML3 cache misses (max)
25ML2 cache misses (max)
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CALU with dynamic scheduling and data locality

L2, L3 Cache misses on IBM Power 7.

m=n=5000, b=150, P = 4 x 2

2.3%Fetch task time
3.5ML3 cache misses
12.5ML2 cache misses
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Hybrid scheduling

• Emerging complexities of multi- and mani-core processors suggest a
need for self-adaptive strategies
• One example is work stealing

• Goal:
• Design a tunable strategy that is able to provide a good trade-off between

load balance, data locality, and low dequeue overhead.
• Provide performance consistency

• Approach: combine static and dynamic scheduling
• Shown to be efficient for regular mesh computation [B. Gropp and V. Kale]

√Column Major Layout (CM)

√√√2-level Block Layout (2l-BL)

√√√Block Cyclic Layout (BCL)

Static/(%dynamic)DynamicStaticData layout/scheduling
Design space
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Hybrid static/dynamic scheduling

• Part of the DAG is scheduled statically
• Using a 2D block cyclic distribution of data (tasks) to threads

• Threads execute in priority their statically assigned tasks
• When no ready task to execute, a thread picks a ready task from the

dynamic part
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Hybrid static/dynamic scheduling (contd)

• There are two critical paths:
• In the static part, the predefined order of execution ensures progress on the critical

path
• In the dynamic part, high priority is given to threads on the critical path
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Data layout and other optimizations
•  Three data distributions investigated

•  CM   : Column major order for the entire matrix
•  BCL  : Each thread stores contiguously (CM) the data on which it operates
•  2l-BL : Each thread stores in blocks the data on which it operates

•  And other optimizations
•  Updates (dgemm) performed on several blocks of columns (for BCL and
CM layouts)
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Performance of static/dynamic on multicore
architectures

Eight socket, six core machine based on AMD Opteron processor (U. of Tennessee).
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Impact of data layout

BCL   : Each thread stores contiguously (CM) its data
2l-BL  : Each thread stores in blocks its data
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Performance of static/dynamic on multicores
Static scheduling

time

Static + 10% dynamic scheduling

100% dynamic scheduling
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Best performance of CALU on multicore architectures

•   CALU 10% dynamic achieves up to 50% of the peak performance.
•   Reported performance for PLASMA uses LU with incremental pivoting.
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Preliminary performance model (V. Kale)

• Goal: find the breakpoint at which static scheduling induces
imbalance.

• Consider the parameters:
• fs is the fraction of static scheduling

• δi is the excess work on core i, with its max and avg values, δmax, δavg

• TP is the time for computation to be done on P cores

• Result:
      Assuming no overhead to the parallel time (eg communication), the static

scheduling induces no load imbalance as long as:

! 

fs "1#
$max #$avg

TP
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Preliminary performance model (contd)

The relation implies:

• Given δmax-δavg constant
• For a given number of processor P and increasing matrix size, the static

fraction can be increased, thus avoiding scheduling overhead

• For both weak and strong scalability, the dynamic fraction needs to be
increased

• Predictions of the amplification of noise at large scale suggests
that the fraction of the dynamic part will be increasing.

• Model to be continued within this collaboration.

! 

fs "1#
$max #$avg

TP

! 

fd "
#max $#avg

TP
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Conclusions

• Highly efficient dense linear algebra routine
• Based on a tunable scheduling strategy.

• Performance of CALU on 48 cores Opteron is as good as the one reported in
literature for the QR factorization (using complex reduction trees).

• Future work
• Demonstrate the feasibility of the hybrid scheduling for other operations.

• Develop a performance model to guide the choice of the fraction of the
static/dynamic parts of the scheduler.


