Hybrid Scheduling for already Optimized Dense Matrix Factorization

> Simplice Donfack, Laura Grigori INRIA Saclay

> > Bill Gropp, Vivek Kale UIUC

Plan

- Brief introduction of communication avoiding methods
- Hybrid scheduling for already optimized dense linear algebra (communication avoiding)
- Experiments on a 48 cores AMD Opteron machine
- Conclusions and future work

Motivation for Communication Avoiding Algorithms

• Time_per_flop << 1/ bandwidth << latency

Annual improvements				
Time/flop		Bandwidth	Latency	
59%	Network	26%	15%	
	DRAM	23%	5%	

Gaps growing exponentially with time

- Communication avoiding algorithmic design: the communication minimization becomes part of the numerical algorithm design (in collaboration with J. Demmel)
- Better performance, less energy consumption

Algorithms and lower bounds on communication

- Goals for CA algorithms:
 - Minimize #words_moved = Ω (#flops/ M^{1/2}) = Ω (n² / P^{1/2})
 - Minimize #messages = Ω (#flops/ M^{3/2}) = Ω (P^{1/2})
 - Minimize over multiple levels of memory/parallelism
 - Allow redundant computations (preferably as a low order term)
- LAPACK and ScaLAPACK
 - mostly suboptimal (newer version starts implementing CA algorithms)
- Recursive cache oblivious algorithms
 - Minimize bandwidth, not latency, sometimes more flops (3x for QR)
- CA algorithms
 - Communication optimal for dense algorithms and some sparse algorithms

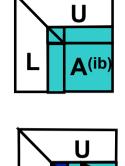
LU factorization (as in ScaLAPACK pdgetrf)

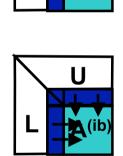
LU factorization on a $P = P_r \times P_c$ grid of processors For i = 1 to n-1 step b $A^{(ib)} = A(ib:n, ib:n)$

- (1) Compute panel factorization (pdgetf2) - find pivot in each column, swap rows
- (2) Apply all row permutations (pdlaswp) $O(n/b(\log_2 P_c + \log_2 P_r))$
 - broadcast pivot information along the rows
 - swap rows at left and right
- (3) Compute block row of U (pdtrsm)
 - broadcast right diagonal block of L of current panel
- (4) Update trailing matrix (pdgemm)
 - broadcast right block column of L
 - broadcast down block row of U

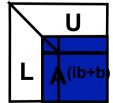
$$O(n/b(\log_2 P_c + \log_2 P_r))$$

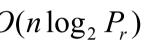
 $O(n/b\log_2 P_c)$





∆(ib





$$O(n\log_2 P_r)$$

TSQR: QR factorization of a tall skinny matrix using Householder transformations

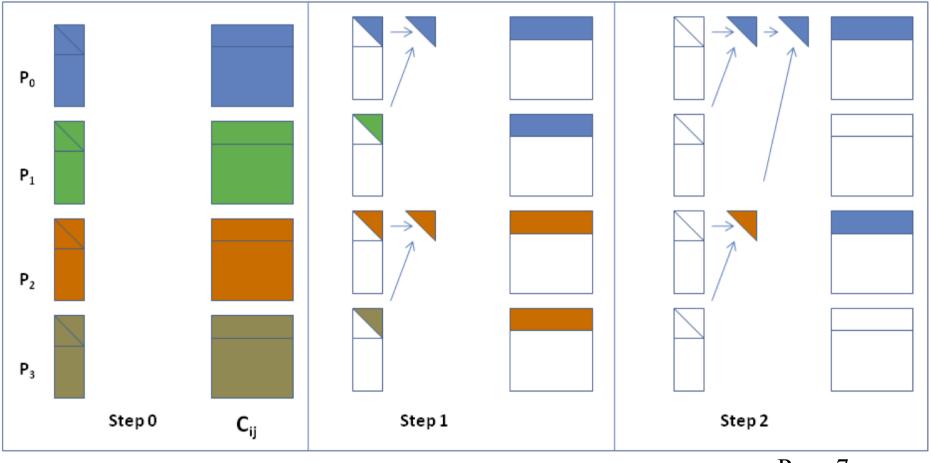
- QR decomposition of m x b matrix W, m >> b
 - P processors, block row layout
- Usual Parallel Algorithm
 - Compute Householder vector for each column
 - Number of messages \propto b log P
- Communication Avoiding Algorithm
 - Reduction operation, with QR as operator
 - Number of messages $\propto \log P$

$$W = \begin{bmatrix} W_0 \\ W_1 \\ W_2 \\ W_3 \end{bmatrix} \xrightarrow{\bullet} \begin{bmatrix} R_{00} \\ R_{10} \\ R_{20} \\ R_{30} \end{bmatrix} \xrightarrow{\bullet} R_{01} \xrightarrow{\bullet} R_{02}$$

J. Demmel, LG, M. Hoemmen, J. Langou '08

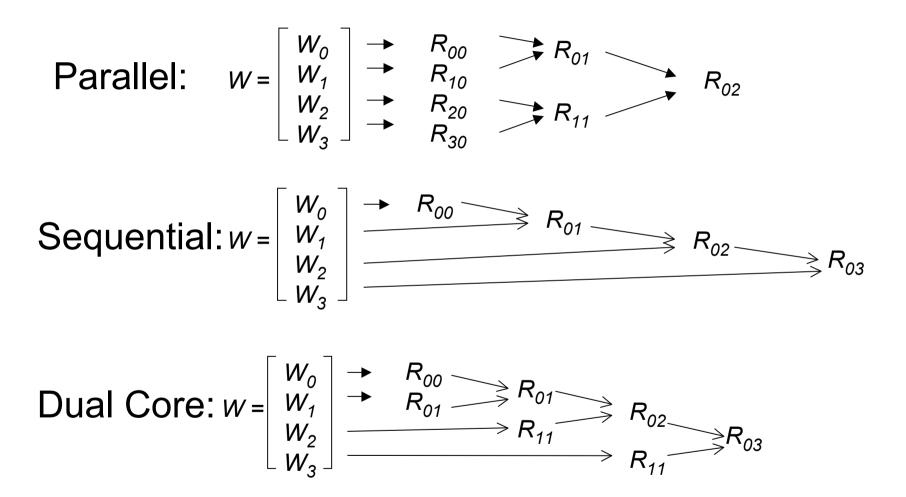
CAQR for general matrices

- Use TSQR for panel factorizations
- Update the trailing matrix triggered by the reduction tree used for the panel factorization



Page 7

Flexibility of CAQR factorization



Reduction tree will depend on the underlying architecture, could be chosen dynamically Page 8

Factorizations that require pivoting

- Using the idea from CAQR leads to unstable factorizations
- Requires new tournament pivoting scheme (LU, RRQR)
- Consider a block algorithm that factors an n-by-n matrix A.

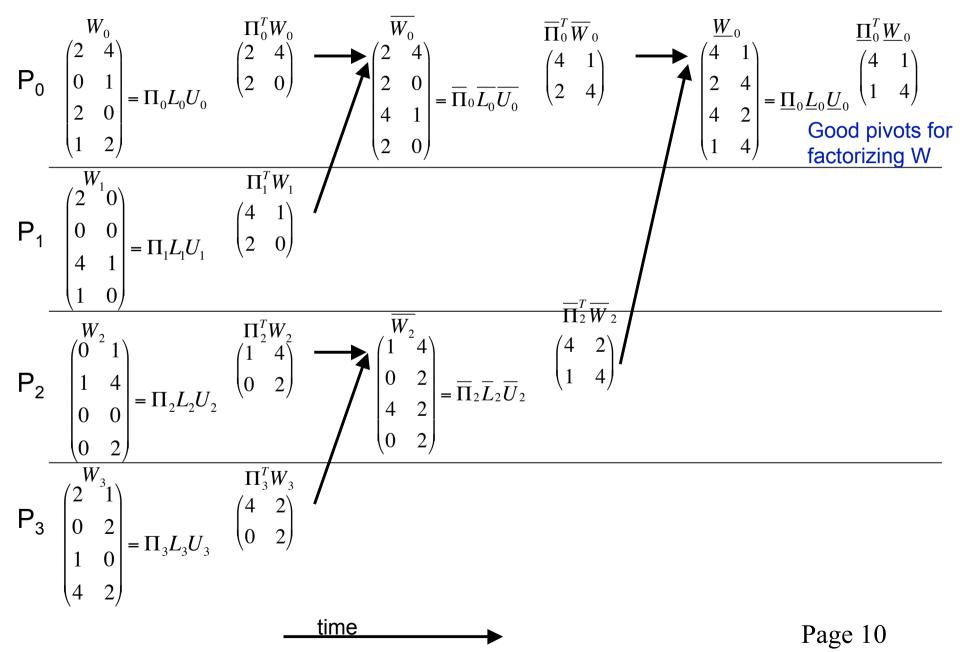
$$A = \begin{pmatrix} \hat{A}_{11} & \hat{A}_{21} \\ A_{21} & A_{22} \end{pmatrix} \begin{cases} b & \text{, where} \\ b & \text{, where} \end{cases} W = \begin{pmatrix} A_{11} \\ A_{21} \end{pmatrix}$$

- At each iteration
 - Preprocess W to find at low communication cost good pivots for the LU factorization of W.
 - Permute the pivots to top.
 - Compute LU with no pivoting of W, update trailing matrix.

$$PA = \begin{pmatrix} L_{11} & \\ L_{21} & I_{n-b} \end{pmatrix} \begin{pmatrix} I_b & \\ & A_{22} - L_{21}U_{12} \end{pmatrix} \begin{pmatrix} U_{11} & U_{12} \\ & I_{n-b} \end{pmatrix}$$

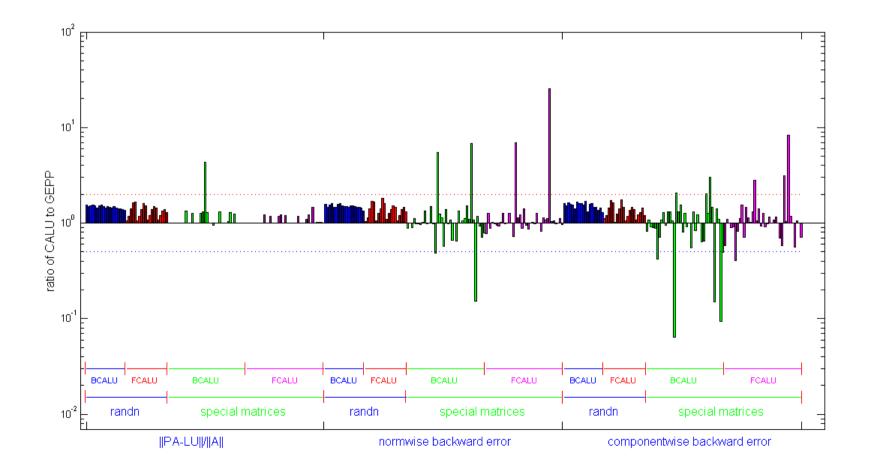
Page 9

Tournament pivoting for a tall skinny matrix



Stability of CALU (experimental results)

- Results show ||PA-LU||/||A||, normwise and componentwise backward errors, for random matrices and special ones
 - See [LG, Demmel, Xiang, 2010] for details
 - BCALU denotes binary tree based CALU and FCALU denotes flat tree based CALU



CALU_PRRP: CALU with panel rank revealing pivoting

- Tournament pivoting uses strong RRQR at each node of the reduction tree
- Worst case analysis of growth factor
 - matrix of size m-by-n
 - reduction tree of height H=log(P).

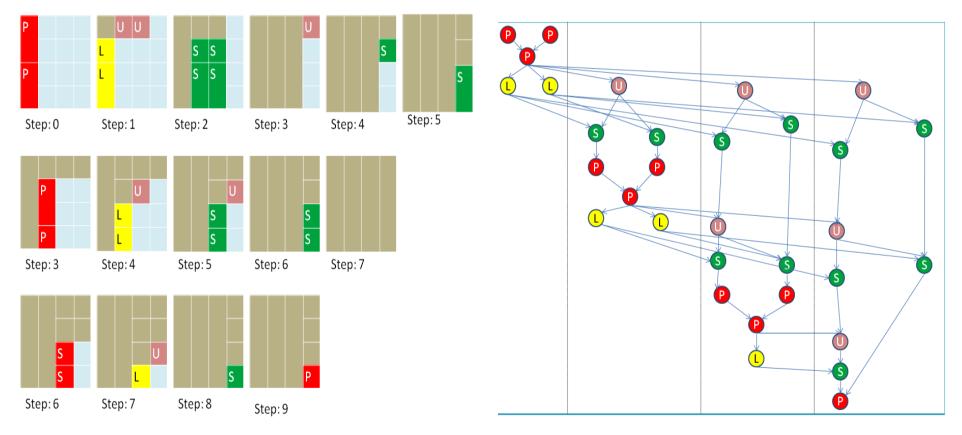
CALU	J	GEPP	CALU_PRRP
Upper bound	Attained	Upper bound	Upper bound
2 ^{n(H+1)-1}	2 ⁿ⁻¹	2 ⁿ⁻¹	(1+2b) ^{(n/b)log(P)}

Better stability

- CALU_PRRP stable for pathological cases and matrices from solving Volterra integral equation (Foster).
- A. Khabou, LG, J. Demmel, M. Gu

CALU and its task dependency graph

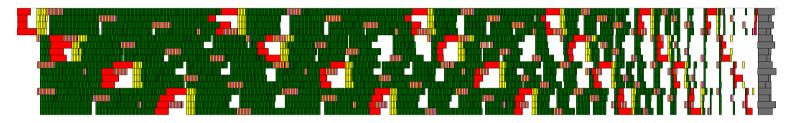
- The matrix is partitioned in blocks of size T x b.
- The computation of each block is associated with a task.
- The task dependency graph (DAG) can be executed using any scheduling strategy.



Page 13

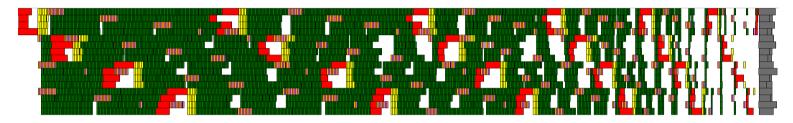
Scheduling CALU's Task Dependency Graph

- Static scheduling
 - + Good locality of data
- Ignores OS jitter



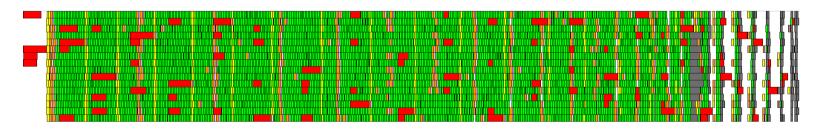
Scheduling CALU's Task Dependency Graph

- Static scheduling
 - + Good locality of data
- Ignores OS jitter

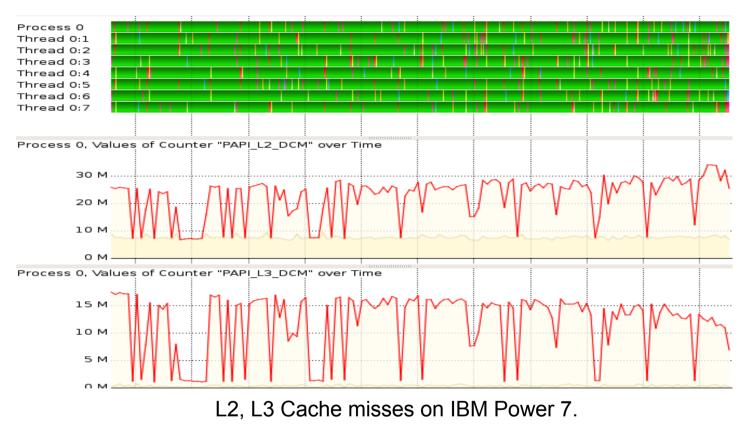


- Dynamic scheduling
 - + Keeps cores busy

- Poor usage of data locality
- Can lead to large overhead



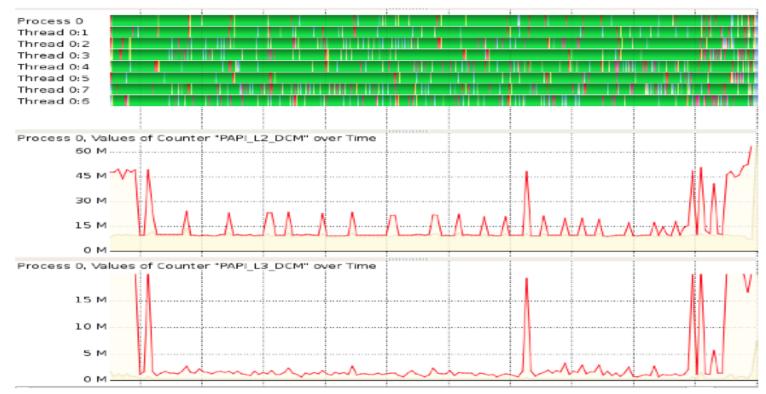
Profiling: CALU with dynamic scheduling



m=n=5000, b=150, P = 4 x 2

L2 cache misses (max)	25M
L3 cache misses (max)	15M
Fetch task time	0.47%

CALU with dynamic scheduling and data locality



L2, L3 Cache misses on IBM Power 7.

m=n=5000, b=150, P = 4 x 2

L2 cache misses	12.5M
L3 cache misses	3.5M
Fetch task time	2.3%

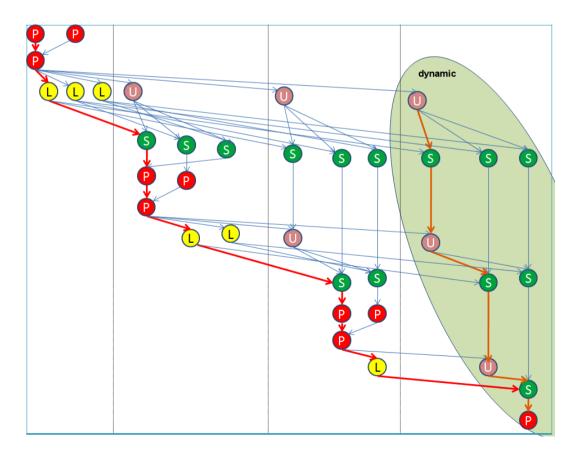
Hybrid scheduling

- Emerging complexities of multi- and mani-core processors suggest a need for self-adaptive strategies
 - One example is work stealing
- Goal:
 - Design a tunable strategy that is able to provide a good trade-off between load balance, data locality, and low dequeue overhead.
 - Provide performance consistency
- Approach: combine static and dynamic scheduling
 - Shown to be efficient for regular mesh computation [B. Gropp and V. Kale]

Design space				
Data layout/scheduling	Static	Dynamic	Static/(%dynamic)	
Block Cyclic Layout (BCL)	\checkmark	\checkmark	\checkmark	
2-level Block Layout (2I-BL)	\checkmark	\checkmark	\checkmark	
Column Major Layout (CM)				

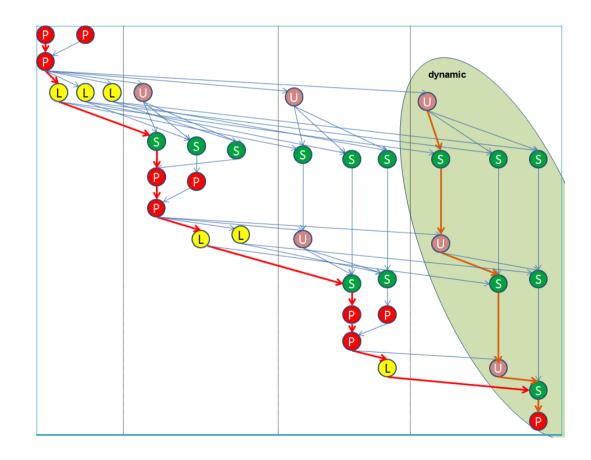
Hybrid static/dynamic scheduling

- Part of the DAG is scheduled statically
 - Using a 2D block cyclic distribution of data (tasks) to threads
- Threads execute in priority their statically assigned tasks
- When no ready task to execute, a thread picks a ready task from the dynamic part



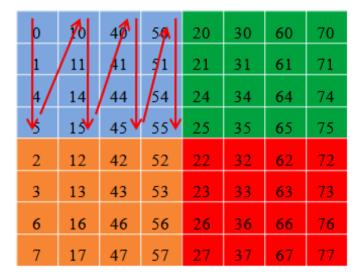
Hybrid static/dynamic scheduling (contd)

- There are two critical paths:
 - In the static part, the predefined order of execution ensures progress on the critical path
 - In the dynamic part, high priority is given to threads on the critical path

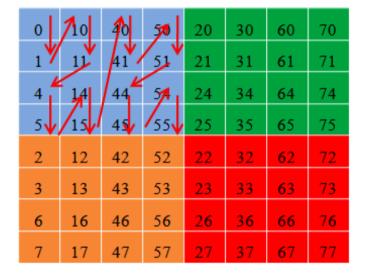


Data layout and other optimizations

- Three data distributions investigated
 - CM : Column major order for the entire matrix
 - BCL : Each thread stores contiguously (CM) the data on which it operates
 - 2I-BL : Each thread stores in blocks the data on which it operates



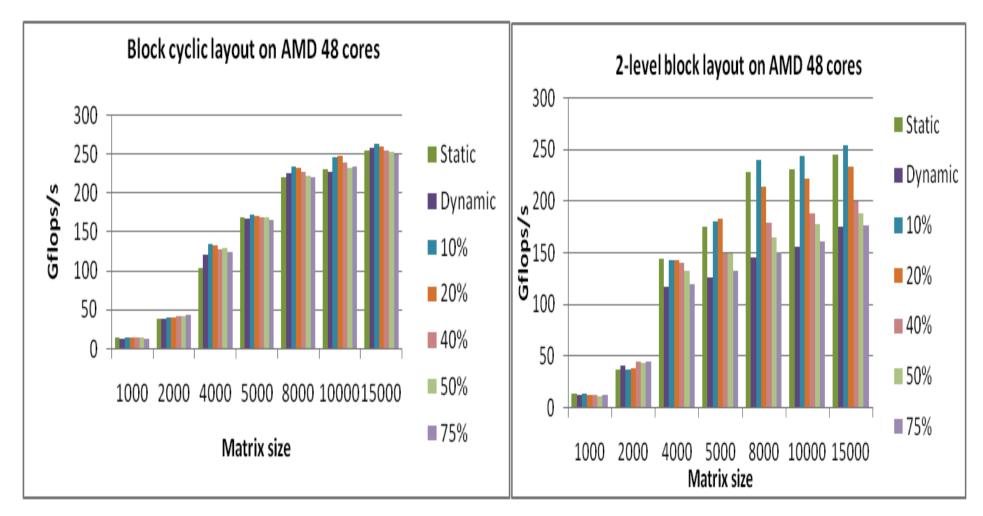
Block cyclic layout (BCL)



Two level block layout (2I-BL)

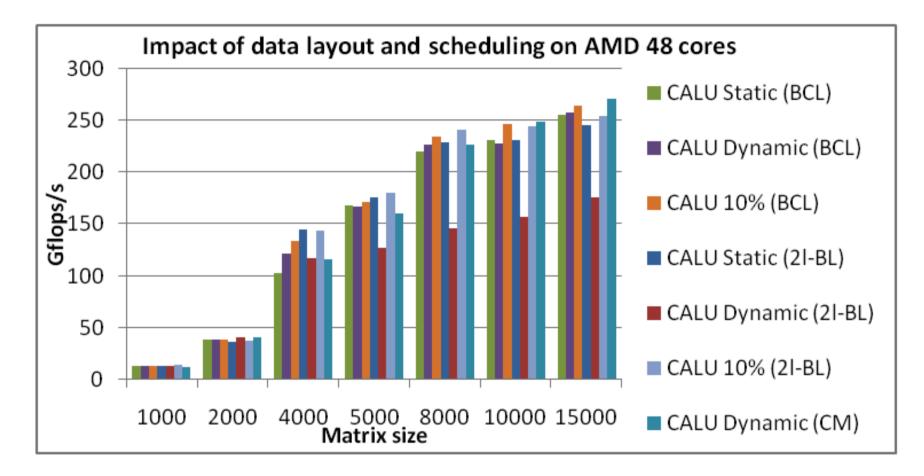
- And other optimizations
 - Updates (dgemm) performed on several blocks of columns (for BCL and CM layouts)

Performance of static/dynamic on multicore architectures



Eight socket, six core machine based on AMD Opteron processor (U. of Tennessee).

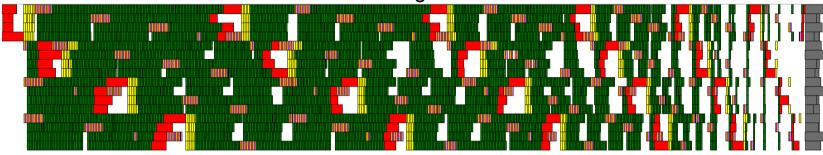
Impact of data layout



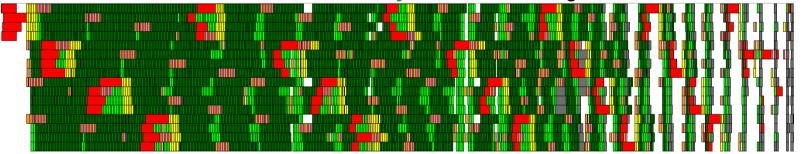
- BCL : Each thread stores contiguously (CM) its data
- 2I-BL : Each thread stores in blocks its data

Performance of static/dynamic on multicores

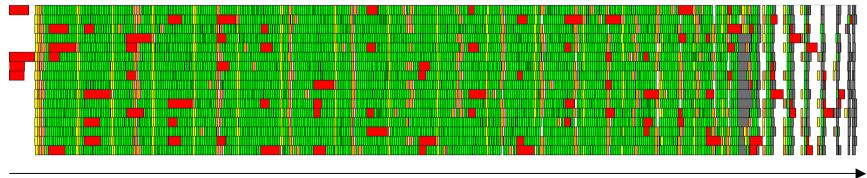
Static scheduling



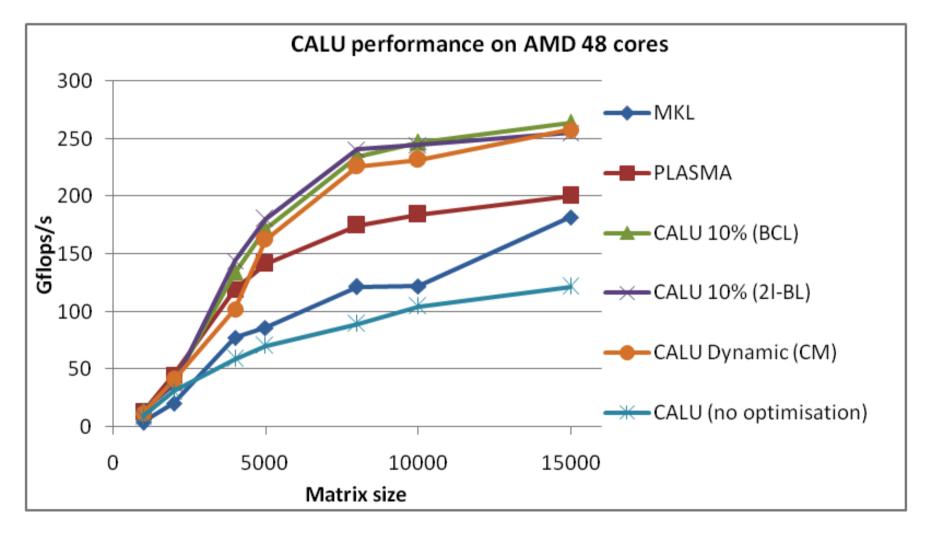
Static + 10% dynamic scheduling



100% dynamic scheduling



Best performance of CALU on multicore architectures



- CALU 10% dynamic achieves up to 50% of the peak performance.
- Reported performance for PLASMA uses LU with incremental pivoting •

Preliminary performance model (V. Kale)

- Goal: find the breakpoint at which static scheduling induces imbalance.
- Consider the parameters:
 - f_s is the fraction of static scheduling
 - δ_i is the excess work on core i, with its max and avg values, δ_{max} , δ_{avg}
 - T_P is the time for computation to be done on P cores

• Result:

Assuming no overhead to the parallel time (eg communication), the static scheduling induces no load imbalance as long as:

$$f_s \le 1 - \frac{\delta_{\max} - \delta_{avg}}{T_P}$$

Preliminary performance model (contd)

$$f_{s} \leq 1 - \frac{\delta_{\max} - \delta_{avg}}{T_{P}} \qquad \qquad f_{d} \geq \frac{\delta_{\max} - \delta_{avg}}{T_{P}}$$

The relation implies:

- Given δ_{max} - δ_{avg} constant
 - For a given number of processor P and increasing matrix size, the static fraction can be increased, thus avoiding scheduling overhead
 - For both weak and strong scalability, the dynamic fraction needs to be increased
- Predictions of the amplification of noise at large scale suggests that the fraction of the dynamic part will be increasing.
- Model to be continued within this collaboration.

Conclusions

- Highly efficient dense linear algebra routine
 - Based on a tunable scheduling strategy.
 - Performance of CALU on 48 cores Opteron is as good as the one reported in literature for the QR factorization (using complex reduction trees).
- Future work
 - Demonstrate the feasibility of the hybrid scheduling for other operations.
 - Develop a performance model to guide the choice of the fraction of the static/dynamic parts of the scheduler.