

The Actor Model and Multi-core
Architectures

Emilio Francesquini

emilio@ime.usp.br

Alfredo Goldman

gold@ime.usp.br

Jean-François Méhaut
Jean-Francois.Mehaut@imag.fr

University of São Paulo

University of Grenoble

8th Workshop of the INRIA-ANL-Illinois Joint Laboratory on Petascale Computing. Argonne, 11/19/2012

mailto:gold@ime.usp.br

2
The Actor Model and Multi-core Architectures

Outline

The Actor Model

Erlang
Erlang's Actor Model Implementation
Application Characteristics

Ongoing Research

3
The Actor Model and Multi-core Architectures

The Actor Model

4
The Actor Model and Multi-core Architectures

The Actor Model

Introduced by Hewitt et al in '73, followed by Agha in '86
No shared memory
Asynchronous message passing

Strong integration with programming languages, not only as a
library but as an integral part of it

Actors are much like people. An actor
is born, spawns and kills other actors, and dies
Cannot read (or write) other actor's memories

5
The Actor Model and Multi-core Architectures

The Actor Model Fine-Grained Parallelism

The number of actors is typically much bigger than the
number of processors.

In a typical simple application, the number of actors, is in
the order of dozens or even hundreds
Charm++, for example, has a finer grain than MPI. The
actor model is even more fine-grained

This is reasonable since for most of the time they are just
waiting for mail, i.e., inactive

The lifespan of an actor, although variable, is usually short

6
The Actor Model and Multi-core Architectures

Actor Model – CouchDB
Application Characteristics

Long-lived actors are mostly
inactive

– Job distribution
– Overall application

housekeeping

Some worker actors can
achieve 100% activity ratio

7
The Actor Model and Multi-core Architectures

Actor Model - CouchDB
Actor Lifespan

Short lifespan

99.5% < 1.5s

89.5% <
0.25s

83% >
0.005s

Very cheap to
be created

~1.5µs

8
The Actor Model and Multi-core Architectures

Evolution of the actor's
communication graph during the
execution of the YCSB against
CouchDB on a 24-core machine

1/8 of the actual speed

Shows that, although not simple, there
is a clearly defined structure of
communication throughout the
application's lifetime

There are clearly defined hub actors

Link to video.

Couch DB Communication Graph

http://youtu.be/2MO6Uv7KZ7g

9
The Actor Model and Multi-core Architectures

Communication Graph

The communication graph is extremely dynamic
It depends on the application and on the data

MapReduce is just one example of several possible
sub-graph patterns

Some actors are clearly hubs, while others are just helpers

10
The Actor Model and Multi-core Architectures

The Actor Model – Summing-up

Scales well in local and distributed systems

Architecture agnostic programming
The runtime environment is responsible for all the
necessary adaptations:

To efficiently use different machines (memory topologies,
caches, processors, OSs, ...)
To conform to the needs of each individual application

Concurrency model used by Erlang, Scala, ...

11
The Actor Model and Multi-core Architectures

Erlang

Functional programming language

Created in the 80's by Ericsson

Originally used for Ericsson's telephony routers
High Availability Requirements
Hot Code Replacement

Available since 98 as Open Source Software

12
The Actor Model and Multi-core Architectures

Erlang – Notable Use Cases

Famous use cases:

Apache's CouchDB

WhatsApp (115K Messages/sec.)

Amazon's SimpleDB

Ericsson's AXD301 160Gbps ATM switch

Sim-Diasca, EDF's Discrete Event Simulator

13
The Actor Model and Multi-core Architectures

Concurrent (parallel and distributed) generic synchronous
discrete-event simulation engine

Fully implemented in Erlang

Actively used by EDF and other partners
Used by the Smart Energy Supply Clever Project

 The idea is to dynamically link energy supply and
consumption

Maintained by EDF R&D

Released in 2010 by EDF R&D as free software (LGPL)

14
The Actor Model and Multi-core Architectures

Erlang Virtual Machine

Runs on top of a custom built virtual machine

Only 3 concurrency constructs
Spawn – Creates a new process
! - Sends a message
receive – Receives a message

Application

Erlang Virtual Machine

Machine 1 Machine 2 ... Machine N

15
The Actor Model and Multi-core Architectures

Erlang Virtual Machine – Scheduler Architecture

For each PU, one OS
thread (called scheduler) is
created

There are specific VM
options to determine how
these schedulers are
distributed throughout the
available Pus

Each scheduler has a run
queue of actors ready to be
executed

16
The Actor Model and Multi-core Architectures

Erlang Virtual Machine – Memory Management

Each actor in the system has its private heap
Small heap
No need to “stop the world” to do a garbage collect (at most
only the actor being inspected is going to be stopped)
As the lifespan of each actor is usually short, most of them
never experience garbage collections during their lives

Message delivery is done by copying the message from the
sending actor heap to the receiving actor heap

17
The Actor Model and Multi-core Architectures

Erlang Virtual Machine

The current implementation does not take into consideration
The impact of the initial placement of each actor
Actor's migration

Cache
Bus contention
Memory topology

18
The Actor Model and Multi-core Architectures

18

Erlang Actor Communication – NUMA Machine

Message exchange between two
actors on the same NUMA node

If the message is small enough to fit
the caches, it can be sent using
them, otherwise it ends up using the
local node memory

19
The Actor Model and Multi-core Architectures

19

Erlang Actor Communication – NUMA Machine

Message exchange between two
actors on distinct NUMA nodes

Communication through the node's
interconnect

20
The Actor Model and Multi-core Architectures

Actor Communication Time - Message sizes from 1 B to 65KB – idkonn – 4
sockets – 6 cores per socket. Two cores/L2, Six cores/L3

L1 L3 L2

RAM

21
The Actor Model and Multi-core Architectures

Ongoing Research

22
The Actor Model and Multi-core Architectures

Actor Mapping to Multicore Machines

How to distribute the actors throughout the
schedulers, i.e., find a good mapping of the
communication graph to the machine

To minimize the makespan of the application
To take advantage of the hierarchical
memory for communication efficiency

23
The Actor Model and Multi-core Architectures

Initial Actor Placement

23

Most of the actors have a short life
initial placement importance
We could use strategies like BubbleSched for this since
the decision must be done fast

Is the father of the actor a good indicator of its behavior?
We do not know the actual behavior of the actor. Can we
predict it based on the past?

24
The Actor Model and Multi-core Architectures

Initial Placement Impact
24

Default Strategy – 3,030 Actors
~4,560 migrations

25
The Actor Model and Multi-core Architectures

Initial Placement Impact
25

Default Strategy – 3,030 Actors
~4,560 migrations

26
The Actor Model and Multi-core Architectures

Initial Placement Impact
26

Round Robin Strategy – 3,030 Actors
~610 migrations

27
The Actor Model and Multi-core Architectures

Initial Placement Impact
27

Round Robin Strategy – 3,030 Actors
~610 migrations

28
The Actor Model and Multi-core Architectures

Migration Count X Initial Placement Strategy

Strategy Avg. of 30
Executions

Default 4,560
Round Robin 573

Random 1,244

3,030 Actors
~20 seconds of execution time

29
The Actor Model and Multi-core Architectures

Initial Placement and Execution Times

Big Bang Mandel MR
0,00

1,00

2,00

3,00

4,00

5,00

6,00

Execution Time Difference

default

circular

local_circular

random

simple_random

Benchmark Name

P
e

rc
e

n
tu

a
l D

iff
e

re
n

ce
 in

 R
e

la
tio

n
 to

 th
e

 D
e

fa
u

lt
S

tr
a

te
g

y

30
The Actor Model and Multi-core Architectures

Ongoing Research

30

Actor migration
Only makes sense for the long lived actors
The analysis of the communication graph (highly
dynamic) should be taken into consideration
The procurement of the communication graph is
trivial, doing it fast is not
Iterative and continuous process
Should be automatic
Trying to choose the best placement based on
the current and historical data?

31
The Actor Model and Multi-core Architectures

Work in progress

31

 Initial Actor Placement
● Actors in general have a short life, therefore the initial placement

decision must be fast
● Idea: Implement something similar to BubbleSched

 Actor Migration
● Establish migration paths for each actor to minimize the makespan

based on the communication graph and the machine topology
● Idea: Hub actors, if placed together, might saturate the bus. Place

the hub nodes as far as possible to increase performance

 Actor Pinning
● Automatic for hub actors, and application developers might have

insights as to the best placement of each actor
● Idea: Implement an interface that allows the application developer

to specify where the actors should be placed

32
The Actor Model and Multi-core Architectures

Thank you!

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32

