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Parallel repartitioning
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The

project

» Toolbox of graph partitioning methods,
which can be used in numerous contexts

» Sequential fs3eeraia library (v6.0)

» Graph and mesh partitioning

» Static mapping (edge dilation)

» Graph and mesh reordering
Clustering
Graph repartitioning, remapping

i library (v6.1)

Graph partitioning (edge)

Static mapping (edge dilation) -y
Graph reordering
Graph repartitioning, remapping

\{

v

» Parallel
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Sequential repartitioning: big picture

» Repartitioning problem

» Improve cut and balance
» Minimizing migration

» Multilevel framework for

sequential repartitioning g pives necurse il
» Coarsening mates only \**/
vertices belonging to the s
same part
> Initial repartitioning by 0/ c:; ;? \;&

recursive bipartitioning
» K-way refinement
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Parallel repartitioning: big picture

old partltl
1 Parallel 2 Sequential 3 Parallel
7 coarsening repartitioning uncoarsenlng

Fold Duplication Get best partition @
< - ==~
—- @-—QD-—(D-—CD/CD"/

» Parallel multilevel framework for repartitioning
» Parallel coarsening with fold and duplication
» Initial repartitioning by multi-sequential k-way
partitioning
» Parallel k-way refinement
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Uncoarsening: parallel k-way refinement

1. K-way Fiduccia-Mattheyses heuristic
» Computes good partitions while preserving a specified
load balance
» Performs only local optimizations
> Inherently iterative — does not parallelize well

2. Global diffusion-based heuristic

» Global, scalable and easily parallelizable
» More expensive, a band graph must be extracted
» The load balance tolerance cannot be chosen (= 5%)
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Multi-centralized band graphs
S I
e

» For first uncoarsening levels (| V| < 10 000), we
centralize the band graph to use both
Fiduccia-Mattheyses and diffusion-based heuristic

» After we use only the diffusion-based heuristic
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Experimental setup

v

Initial partitioning
» 128 parts
» Vertex loads are equal to 1
» Balance constraint of 0.05

v

We increase by 1 the weights of the vertices that are in
the first 32 parts — imbalance of ~ 0.16.

Various strategies

v

v

Migration cost from 0.1 to 50
— 140 runs for each graph
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Test graphs

- Size (x10%) | Average

Graph Description % | E| degree
10millions 3D electromagnetics | 10 423 | 78 649 15.09
conespherelm | 3D electromagnetics | 1055 | 8 023 15.21
ldoor structural problem 952 | 22 785 47.86

» Size between 1 and 10 millions of vertices

» Average degree ranging from 15 to 47

» 10millions: the biggest number of vertices
» ldoor: the highest average degree
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Repartitioning strategies

» seq-diff
» Sequential strategy
» Initial partition: Recursive bipartitioning
» Refinement: Diffusion

» seq-diff+fm (|

(8 default sequential strategy)

» Sequential strategy
» Initial partition: Recursive bipartitioning
» Refinement: Diffusion + Fiduccia-Mattheyses
» paral-cent+diff
» Parallel strategy on 32 cores
» Initial partition: Sequential recursive bipartitioning
» Multi-centralized refinement: Diffusion + Fid.-Matt.
» Parallel refinement: Diffusion
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Cut
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» paral-cent+diff is 7.8 % worse than seq-diff+fm
» paral-cent+diff is 5 % better than seq-diff
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Migration
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» paral-cent+diff strategy migrates a little more

» Multi-centralisation yields partitions with more migration
but best cut
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Imbalance
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» For conespherelm, paral-cent+diff is 1.47 times
more imbalanced than seq-diff

» For other graphs, paral-cent+diff is close to
seq-diff
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Time (s)
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» In mean, paral-cent+diff is 6.96 times cheaper than
seq-diff

» It is 7.24 times cheaper than seq-diff+fm

Fourestier, Pellegrini
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Summary of experimental results

» paral-cent+diff brings a cut 5 % better than
seq-diff
» |t migrates a little more
» |t brings a worse imbalance
» We are currently checking which differences between the

sequential and the parallel implementation impact
imbalance

» On average, it is 7 times less expensive on 32 cores.

Fourestier, Pellegrini November 21, 2012 — Joint laboratory workshop — 16



2

Shared-memory parallel
algorithms
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Why invest in shared-memory parallelism

» Most users now have multi- or many-core machines
» From laptops to high-end supercomputers

» Shared-memory parallelism is almost always less expensive
than explicit message passing parallelism

» No need to allocate and fill user-managed
communication buffers

» Two applications of shared-memory parallelism
» Reduce number of MPI processes up to one per node for
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Implementation details

» We use Posix Pthreads

» Already used in other routines of
» Allowed us to implement a framework of primitives:
» Barrier, reduction, scan, join, etc.

» Limitations as of version 6.0

» Number of threads set up at compile time

» Thread allocation performed by increasing core numbers
» May not always reflect real core and memory affinity
» Will use hwloc in next release to ensure it
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Algorithms at stake

» We focused on the most expensive algorithms
» Matching and coarsening

» Involves all graph vertices

» Expensive at the highest levels of the multilevel process
» The diffusion method

» Involves band graph vertices only

» Expensive because of floating-point computations and
number of passes to perform
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Diffusion heuristic

v

Almost embarrassingly parallel

v

Synchronization after each iteration
Deterministic results whatever the number of threads is

v

v

Experimental setup
» Partitioning into 128 parts
» Use the seq-diff+fm strategy
» Use 8 threads
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Test graphs

. Size (x103%) Average

Graph Description % | E| degree
10millions 3D electromagnetics 10 423 | 78 649 15.09
af_shell1l0 structural problem 1508 | 25 582 33.93
conespherelm | 3D electromagnetics 1055 | 8023 15.21
coupole8000 | 3D structural mechanics | 1768 | 41 656 47.12
ecologyl 2D/3D problem 1000 | 1998 4.00
ldoor structural problem 952 | 22 785 47.86
thermal?2 thermal problem 1228 | 3676 5.99

» Graphs from various domains
» Size between 1 and 10 millions of vertices

» Average degree ranging from 4 to 47
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Run time (including non-threaded routines)
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Remapping
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Static mapping

» Compute a mapping of V(S) and E(S) of source graph S
to V(T) and E(T) of target architecture graph T,
respectively

» Communication cost function accounts for distance

|ps.7(es)| : Path load in T
Dilation: Z w(es)|ps,(es)|

es€E(S)
S
» Static mapping features @
are already present in the : '\
sequential fyeetrais . ,
library - T
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Parallel static mapping and “twists”

» Recursive bi-mapping cannot be transposed in parallel
» All subgraphs at some level are supposed to be
processed simultaneously for parallel efficiency
» Yet, ignoring decisions in neighboring subgraphs can lead
to “twists”

r'd

» Sequential processing
only!
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Sequential and parallel dynamic remapping

» Take advantage of the k-way multilevel framework
» Initial mapping is computed sequentially (no twists !)
» Take dilation into account during k-way sequential or
parallel refinement
» Contribution to improve diffusion heuristic to handle
dilation

old partntn
1 Parallel 2 Sequential 3 Parallel
coarsening remapping uncoarsenmg

’
Fold Dupllcatlon Get best partition @
-»*@*@*@*@
N Do~ e T AL
A oI Do D=3~
P abl b e bl bl
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Experimental setup

v

Initial mapping

» 3D torus: 2 X 2 x 2 (8 processors)

» Vertex loads are equal to 1

» Balance constraint of 0.05
» We increase by 1 the weights of the vertices that are in
the first 2 processors — imbalance of =~ 0.16.

v

Graph: 10millions
Migration cost: 0.1, 1 and 10

v
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Cut

10

g » |Improve the
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Migration number (%)

10
» Need more
g work to be
5§ 1 part as sensible to
5 migration
=
cost as
repartitioning
0.1
10 20 30 40 50

Migration (%)
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Prospects
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Prospects

» On going work
» Run more experiments to improve

» Sequential remapping
> Parallel repartitioning
» Parallel remapping

> Integrate shared-memory improvements to f&s

» On going collaboration
» Load balancing within CHARM+-+
» Potential collaborations

» Load balancing within MPI
» Evaluation of remapping on real applications
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