
November 21, 2012 – Joint laboratory workshop

Parallel repartitioning
and remapping in

Sébastien Fourestier
François Pellegrini

Table of contents

Parallel repartitioning

Shared-memory parallel algorithms

Remapping

Prospects

Fourestier, Pellegrini November 21, 2012 – Joint laboratory workshop – 2

Fourestier, Pellegrini November 21, 2012 – Joint laboratory workshop – 3

1
Parallel repartitioning

The project
I Toolbox of graph partitioning methods,

which can be used in numerous contexts
I Sequential library (v6.0)

I Graph and mesh partitioning
I Static mapping (edge dilation)
I Graph and mesh reordering
I Clustering
I Graph repartitioning, remapping

I Parallel library (v6.1)
I Graph partitioning (edge)
I Static mapping (edge dilation)
I Graph reordering
I Graph repartitioning, remapping

Fourestier, Pellegrini November 21, 2012 – Joint laboratory workshop – 4

Sequential repartitioning: big picture

I Repartitioning problem
I Improve cut and balance
I Minimizing migration

I Multilevel framework for
sequential repartitioning

I Coarsening mates only
vertices belonging to the
same part

I Initial repartitioning by
recursive bipartitioning

I K -way refinement

Fourestier, Pellegrini November 21, 2012 – Joint laboratory workshop – 5

Parallel repartitioning: big picture

P3P2

P1P0

P1

P2
P0 P3

P0

P1

P2

P3

P1

P2
P0 P3

P1

P2
P0 P3

Old partition

1 Parallel
coarsening

Fold Duplication

2 Sequential
repartitioning

Get best partition

3 Parallel
uncoarsening

I Parallel multilevel framework for repartitioning
I Parallel coarsening with fold and duplication
I Initial repartitioning by multi-sequential k-way

partitioning
I Parallel k-way refinement

Fourestier, Pellegrini November 21, 2012 – Joint laboratory workshop – 6

Uncoarsening: parallel k-way refinement

1. K -way Fiduccia-Mattheyses heuristic
I Computes good partitions while preserving a specified

load balance
I Performs only local optimizations
I Inherently iterative → does not parallelize well

2. Global diffusion-based heuristic
I Global, scalable and easily parallelizable
I More expensive, a band graph must be extracted
I The load balance tolerance cannot be chosen (≈ 5%)

Fourestier, Pellegrini November 21, 2012 – Joint laboratory workshop – 7

Multi-centralized band graphs

I For first uncoarsening levels (|Vb| < 10 000), we
centralize the band graph to use both
Fiduccia-Mattheyses and diffusion-based heuristic

I After we use only the diffusion-based heuristic

Fourestier, Pellegrini November 21, 2012 – Joint laboratory workshop – 8

Experimental setup

I Initial partitioning
I 128 parts
I Vertex loads are equal to 1
I Balance constraint of 0.05

I We increase by 1 the weights of the vertices that are in
the first 32 parts → imbalance of ≈ 0.16.

I Various strategies
I Migration cost from 0.1 to 50
→ 140 runs for each graph

Fourestier, Pellegrini November 21, 2012 – Joint laboratory workshop – 9

Test graphs

Graph Description Size (×103) Average
|V | |E | degree

10millions 3D electromagnetics 10 423 78 649 15.09
conesphere1m 3D electromagnetics 1 055 8 023 15.21
ldoor structural problem 952 22 785 47.86

I Size between 1 and 10 millions of vertices
I Average degree ranging from 15 to 47
I 10millions: the biggest number of vertices
I ldoor: the highest average degree

Fourestier, Pellegrini November 21, 2012 – Joint laboratory workshop – 10

Repartitioning strategies
I seq-diff

I Sequential strategy
I Initial partition: Recursive bipartitioning
I Refinement: Diffusion

I seq-diff+fm (default sequential strategy)
I Sequential strategy
I Initial partition: Recursive bipartitioning
I Refinement: Diffusion + Fiduccia-Mattheyses

I paral-cent+diff

I Parallel strategy on 32 cores
I Initial partition: Sequential recursive bipartitioning
I Multi-centralized refinement: Diffusion + Fid.-Matt.
I Parallel refinement: Diffusion

Fourestier, Pellegrini November 21, 2012 – Joint laboratory workshop – 11

Cut
0.

02
0

0.
03

0

10millions

se
q−

di
ff

se
q−

di
ff+

fm

pa
ra

l−
ce

nt
+

di
ff

0.
03

0
0.

04
5

ldoor

se
q−

di
ff

se
q−

di
ff+

fm

pa
ra

l−
ce

nt
+

di
ff

0.
06

0.
09

0.
12

conesphere1m

se
q−

di
ff

se
q−

di
ff+

fm

pa
ra

l−
ce

nt
+

di
ff

I paral-cent+diff is 7.8 % worse than seq-diff+fm

I paral-cent+diff is 5 % better than seq-diff

Fourestier, Pellegrini November 21, 2012 – Joint laboratory workshop – 12

Migration
15

25
35

45

10millions

se
q−

di
ff

se
q−

di
ff+

fm

pa
ra

l−
ce

nt
+

di
ff

20
40

60

ldoor

se
q−

di
ff

se
q−

di
ff+

fm

pa
ra

l−
ce

nt
+

di
ff

10
30

50

conesphere1m

se
q−

di
ff

se
q−

di
ff+

fm

pa
ra

l−
ce

nt
+

di
ff

I paral-cent+diff strategy migrates a little more
I Multi-centralisation yields partitions with more migration

but best cut

Fourestier, Pellegrini November 21, 2012 – Joint laboratory workshop – 13

Imbalance
0.

03
0.

06
0.

09

10millions

se
q−

di
ff

se
q−

di
ff+

fm

pa
ra

l−
ce

nt
+

di
ff

0.
02

0.
06

0.
10

ldoor

se
q−

di
ff

se
q−

di
ff+

fm

pa
ra

l−
ce

nt
+

di
ff

0.
04

0.
08

conesphere1m

se
q−

di
ff

se
q−

di
ff+

fm

pa
ra

l−
ce

nt
+

di
ff

I For conesphere1m, paral-cent+diff is 1.47 times
more imbalanced than seq-diff

I For other graphs, paral-cent+diff is close to
seq-diff

Fourestier, Pellegrini November 21, 2012 – Joint laboratory workshop – 14

Time (s)
0

50
15

0

10millions

se
q−

di
ff

se
q−

di
ff+

fm

pa
ra

l−
ce

nt
+

di
ff

5
10

20

ldoor

se
q−

di
ff

se
q−

di
ff+

fm

pa
ra

l−
ce

nt
+

di
ff

0
10

20

conesphere1m

se
q−

di
ff

se
q−

di
ff+

fm

pa
ra

l−
ce

nt
+

di
ff

I In mean, paral-cent+diff is 6.96 times cheaper than
seq-diff

I It is 7.24 times cheaper than seq-diff+fm

Fourestier, Pellegrini November 21, 2012 – Joint laboratory workshop – 15

Summary of experimental results

I paral-cent+diff brings a cut 5 % better than
seq-diff

I It migrates a little more
I It brings a worse imbalance

I We are currently checking which differences between the
sequential and the parallel implementation impact
imbalance

I On average, it is 7 times less expensive on 32 cores.

Fourestier, Pellegrini November 21, 2012 – Joint laboratory workshop – 16

Fourestier, Pellegrini November 21, 2012 – Joint laboratory workshop – 17

2
Shared-memory parallel
algorithms

Why invest in shared-memory parallelism

I Most users now have multi- or many-core machines
I From laptops to high-end supercomputers

I Shared-memory parallelism is almost always less expensive
than explicit message passing parallelism

I No need to allocate and fill user-managed
communication buffers

I Two applications of shared-memory parallelism
I Reduce number of MPI processes up to one per node for

I Use threads transparently for the (no longer)
“sequential”

Fourestier, Pellegrini November 21, 2012 – Joint laboratory workshop – 18

Implementation details

I We use Posix Pthreads
I Already used in other routines of
I Allowed us to implement a framework of primitives:

I Barrier, reduction, scan, join, etc.
I Limitations as of version 6.0

I Number of threads set up at compile time
I Thread allocation performed by increasing core numbers

I May not always reflect real core and memory affinity
I Will use hwloc in next release to ensure it

Fourestier, Pellegrini November 21, 2012 – Joint laboratory workshop – 19

Algorithms at stake

I We focused on the most expensive algorithms
I Matching and coarsening

I Involves all graph vertices
I Expensive at the highest levels of the multilevel process

I The diffusion method
I Involves band graph vertices only
I Expensive because of floating-point computations and

number of passes to perform

Fourestier, Pellegrini November 21, 2012 – Joint laboratory workshop – 20

Diffusion heuristic

I Almost embarrassingly parallel
I Synchronization after each iteration
I Deterministic results whatever the number of threads is

I Experimental setup
I Partitioning into 128 parts
I Use the seq-diff+fm strategy
I Use 8 threads

Fourestier, Pellegrini November 21, 2012 – Joint laboratory workshop – 21

Test graphs

Graph Description Size (×103) Average
|V | |E | degree

10millions 3D electromagnetics 10 423 78 649 15.09
af shell10 structural problem 1 508 25 582 33.93
conesphere1m 3D electromagnetics 1 055 8 023 15.21
coupole8000 3D structural mechanics 1 768 41 656 47.12
ecology1 2D/3D problem 1 000 1 998 4.00
ldoor structural problem 952 22 785 47.86
thermal2 thermal problem 1 228 3 676 5.99

I Graphs from various domains
I Size between 1 and 10 millions of vertices
I Average degree ranging from 4 to 47

Fourestier, Pellegrini November 21, 2012 – Joint laboratory workshop – 22

Run time (including non-threaded routines)

Time (s)

G
ra

ph

10millions

af_shell10

conesphere1m

coupole8000

ecology1

ldoor

thermal2

0 50 100

non−thread
thread

I Average gain
37.78 %

Fourestier, Pellegrini November 21, 2012 – Joint laboratory workshop – 23

Fourestier, Pellegrini November 21, 2012 – Joint laboratory workshop – 24

3
Remapping

Static mapping
I Compute a mapping of V(S) and E(S) of source graph S

to V(T) and E(T) of target architecture graph T,
respectively

I Communication cost function accounts for distance

|ρS,T (eS)| : Path load in T

Dilation:
∑

eS∈E(S)

w(eS)|ρS,T (eS)|

I Static mapping features
are already present in the
sequential
library

Fourestier, Pellegrini November 21, 2012 – Joint laboratory workshop – 25

Parallel static mapping and “twists”
I Recursive bi-mapping cannot be transposed in parallel

I All subgraphs at some level are supposed to be
processed simultaneously for parallel efficiency

I Yet, ignoring decisions in neighboring subgraphs can lead
to “twists”

I Sequential processing
only!

Fourestier, Pellegrini November 21, 2012 – Joint laboratory workshop – 26

Sequential and parallel dynamic remapping
I Take advantage of the k-way multilevel framework

I Initial mapping is computed sequentially (no twists !)
I Take dilation into account during k-way sequential or

parallel refinement
I Contribution to improve diffusion heuristic to handle

dilation

P3P2

P1P0

P1

P2
P0 P3

P0

P1

P2

P3

P1

P2
P0 P3

P1

P2
P0 P3

Old partition

1 Parallel
coarsening

Fold Duplication

2 Sequential
remapping

Get best partition

3 Parallel
uncoarsening

Fourestier, Pellegrini November 21, 2012 – Joint laboratory workshop – 27

Experimental setup

I Initial mapping
I 3D torus: 2× 2× 2 (8 processors)
I Vertex loads are equal to 1
I Balance constraint of 0.05

I We increase by 1 the weights of the vertices that are in
the first 2 processors → imbalance of ≈ 0.16.

I Graph: 10millions

I Migration cost: 0.1, 1 and 10

Fourestier, Pellegrini November 21, 2012 – Joint laboratory workshop – 28

Cut

Cut

M
ig

ra
tio

n
C

os
t

0.1

1

10

3e+05 4e+05 5e+05 6e+05

mapp
part

I Improve the
cut
(comprising
dilation) by
6 %

Fourestier, Pellegrini November 21, 2012 – Joint laboratory workshop – 29

Migration number (%)

Migration (%)

M
ig

ra
tio

n
C

os
t

0.1

1

10

10 20 30 40 50

mapp
part

I Need more
work to be
as sensible to
migration
cost as
repartitioning

Fourestier, Pellegrini November 21, 2012 – Joint laboratory workshop – 30

Fourestier, Pellegrini November 21, 2012 – Joint laboratory workshop – 31

4
Prospects

Prospects

I On going work
I Run more experiments to improve

I Sequential remapping
I Parallel repartitioning
I Parallel remapping

I Integrate shared-memory improvements to
I On going collaboration

I Load balancing within Charm++
I Potential collaborations

I Load balancing within MPI
I Evaluation of remapping on real applications

Fourestier, Pellegrini November 21, 2012 – Joint laboratory workshop – 32

Thanks

	Parallel repartitioning
	Shared-memory parallel algorithms
	Remapping
	Prospects

