Generation and Tuning of parallel solutions for linear algebra equations

Alexandre X. Duchâteau University of Illinois

illinois.edu

Collaborators

- Thesis Advisors
 - Denis Barthou (Labri/INRIA)
 - David Padua (UIUC)
- Future collaboration
 - starPU team, INRIA Bordeaux

Objectives and Contributions

INTRODUCTION

Objectives

• Compile linear algebra equations

- Compute X for L * X * U - X = C [DTSY]

- Compute L and U for L * U = A [LU]
- Generate efficient task parallel code
 - Identify tasks
 - Generate task dependence graph

Motivation

- Focus is on linear algebra
 - Start from high level description
 - No code or algorithm
- Derivation through blocking of operands
 Data centric approach
- Derivation for parallelism

- Output is a parallel task graph

Contributions

- A specification language
 - Express computation
 - Characterize operands (shapes)
 - Identify wanted result
- Derivation rules
 - Validity/applicability patterns
 - Operators symbolic execution rules
 - Dependence build engine

A detailed view of the generator

SYSTEM DESCRIPTION

Description Language -Operands

%% Operands

- X: Unknown Matrix
- L: Lower Triangular Square Matrix
- U: Upper Triangular Square Matrix
- C: Square Matrix

%% Equation L*X*U-X=C

- All operands
- (Type inference)

- Status
 - Known, Unknown
- Shape
 - Triangular, diagonal
- Type
 - Matrix, (vector, scalar)
- (Sizes)
- (Density)

Description language - Equation

%% Operands

- X: Unknown Square Matrix
- L: Lower Triangular Square Matrix
- U: Upper Triangular Square Matrix
- C: Square Matrix

%% Equation L*X*U-X=C

- Simple equations
 - Assignments
 - X = A*B
- Solvers
 - LU, Sylvester
- Base for decomposition L*X=B

Kernel Declaration

- Generate a full solution
 - Cost of full recursion
 - Usually not a good idea
- Use existing kernels and libraries

 Already optimized

Kernel Performance

- Measure performance
 Depend on size
- Guide exploration
 - Optimal nodes
 - Similar to ATLAS

Equation Derivation

- Start from input formula
 - divide and conquer approach finds algorithms
- Operands are blocked
 - Explore many possible blockings
 - Now matrices of blocks and not elements
- Symbolically execute equation
 - Expose problem subdivision

Defining blocking space

Blocking defines the space of solutions
 Must only generate valid solutions

- Look at the equation's operation tree
 - Each node gets a set of dimensions
 - Generate constraints depending on operation

Validity of Blocking

Valid Blockings - DTSY

Constraints

$$y_A = x_X$$

 $y_X = x_B$
 $x_A = x_X$
 $y_B = y_X$
 $x_C = x_X$

Valid Blockings – DTSY (2)

A*X*B - X = C | A lower triangular, B upper triangular

xA = yA = xX = 2xB = yB = yX = 2

xA = yA = xX = 2xB = yB = yX = 1

B(2,2)

X(2,2)

Jointlab INRIA-UIUC

X(2,2)

0000000 000000

0. A(2.2)

C(2,2)

Derivation example

Operand characterization

- Blocks of X are outputs (unknown)
- A(0,0) and A(1,1) are lower triangular

Equation	Input	Output
T(1,1) = A(1,1) * X(1,1)	T(1,1) A(1,1)	X(1,1)
T(1,0) = A(1,1) * X(1,0)	T(1,0) A(1,1)	X(1,0)
T(0,1) = A(0,0) * X(0,1) + A(0,1) * X(1,1)	T(0,1) A(0,0) A(0,1)	X(0,1) X(1,1)
T(0,0) = A(0,0) * X(0,0) + A(0,1) * X(1,0)	T(0,0) A(0,0) A(0,1)	X(0,0) X(1,0)

Equation Signature

Need to identify equations

- Identification through types and operators -A * X = T : LT * UNK = MT
- Set of simplification rules $-UNK + MT * MT \Rightarrow UNK + MT$

Identify task

- T(1,1) = A(1,1) * X(1,1)- Signature : LT * UNK = MT
- Instance of original problem
 Solvable
- X(1,1) can now be considered known

Building dependence

- Find instances of *X*(1,1)
 - Shift in input set
 - Add dependence edge

Equation	Input	Output
T(0,1) = A(0,0) * X(0,1) + A(0,1) * X(1,1)	T(0,1) A(0,0) A(0,1) X(1,1)	X(0,1)

New Dependence

 $\left\{ T(1,1) = A(1,1) * X(1,1) \to T(0,1) = A(0,0) * X(0,1) + A(0,1) * X(1,1) \right\}$

Signature Simplification

- T(0,1) = A(0,0) * X(0,1) + A(0,1) * X(1,1)
 - 1. MT = LT * UNK + MT * MT
 - 2. MT = LT * UNK + MT
 - 3. MT MT = LT * UNK
 - 4. MT = LT * UNK

Match to the original problem !

Post identification expansion

Simplification step	Corresponding equation
MT = LT * UNK + MT * MT	T(0,1) = A(0,0) * X(0,1) + A(0,1) * X(1,1)
MT = LT * UNK + MT	T1 = A(01) * X(1,1) T(0,1) = A(0,0) * X(0,1) + T1
MT - MT = LT * UNK	
MT = LT * UNK	T1 = A(01) * X(1, 1) T2 = T(0, 1) - T1 T2 = A(0, 0) * X(0, 1)

Simple graph example

Graph Example

Heterogeneous Graph Example

Translating task graphs into code

FUTURE WORK

Exploiting heterogeneous machines : starPU Runtime

- Goal: Scheduling (≠ offloading) tasks over heterogeneous machines
 - CPU + GPU + SPU = *PU
 - Auto-tuning of performance models
 - Optimization of memory transfers
- Target for
 - Compilers
 - StarSs [UPC], HMPP [CAPS]
 - Libraries
 - PLASMA/MAGMA [UTK]
 - Applications
 - Fast multipole methods [CESTA]
- StarPU provides an Open Scheduling platform
 - Scheduling algorithm = plugins

Jointlab INRIA-UIUC

Overview of StarPU

Maximizing PU occupancy, minimizing data transfers

- Principle
 - Accept tasks that may have multiple implementations
 - Together with potential interdependencies
 - Leads to a dynamic acyclic graph of tasks
 - Data-flow approach
 - Provide a high-level data management layer
 - Application should only describe
 - Which data may be accessed by tasks
 - How data may be divided

CONCLUSION

Conclusion

- Faster development cycle for architectures
 - No time to hand-tune everything anymore
 - Can't hand tune for every HW iteration
- Increased complexity
 - Heterogeneous systems
- Description of an automatic methodology
 Leverage existing "small scale" libraries

