
Matthieu Dorier
matthieu.dorier@irisa.fr
KerData Team
Inria Rennes, IRISA
ENS Cachan

I/O and in-situ visualization:
recent results with the Damaris approach

8th workshop of the JLPC
November 19th, 2012

Joint work involving Matthieu Dorier, Gabriel Antoniu, Dave Semeraro,
Roberto Sisneros, Tom Peterka

Outline

1.  From I/O to in-situ visualization

2.  Recall on the Damaris approach

3.  Past results: achieving scalable I/O

4.  Recent work: non-impacting in-situ visualization

5.  Demonstration

6.  Conclusion

November 19th 2012 - 2

From I/O to in-situ visualization
When parallel file systems don’t scale anymore

1

The traditional I/O flow: offline data analysis

100.000+
cores

PetaBytes
of data ~ 10.000

cores

•  Periodic data generation from the simulation
•  Storage in a parallel file system (Lustre, PVFS, GPFS,…)
•  Offline data analysis (on another cluster)

November 19th 2012 - 4

Periodic synchronous snapshots lead to
I/O bursts and high variability (jitter)

The “cardiogram” of a PVFS
data server during a run of the
CM1 simulation

Input Output

November 19th 2012 - 5

Visualizing throughput variability:
-  Between cores
-  Between iterations

Big Data challenge on post-petascale machines

•  How to efficiently store, move data?
•  How to index, process, compress these data?
•  How to analyze, visualize and finally understand them?
•  … but wait… why storing anyway?

November 19th 2012 - 6

Recall on the Damaris approach
Dedicating cores to enable scalable asynchronous I/O

2

•  Network access contention at the level of a node

•  Next-generation supercomputers have multicore SMP nodes

The Damaris approach: dedicated I/O cores

November 19th 2012 - 8

•  Network access contention at the level of a node
•  Possibility of efficient interactions through shared memory
•  One core dedicated for gathering data
•  This core only writes

•  Next-generation supercomputers have multicore SMP nodes

The Damaris approach: dedicated I/O cores

November 19th 2012 - 9

Moving I/O to a dedicated core

Leave a core, go faster!

November 19th 2012 - 10

Time-Partitioning Space-Partitioning

Damaris at a glance

•  Dedicated Adaptable Middleware for
Application Resources Inline Steering

•  Main idea: dedicate one or a few
cores in each SMP node for data
management

•  Features:
- Shared-memory-based

communications
- Plugin system (C,C++, Python)
- Connection to VisIt
- XML external description of data

November 19th 2012 - 11

Damaris: current state of the software

•  Version 0.6.1 available at http://damaris.gforge.inria.fr/
- Along with documentation, tutorials and examples

•  Written in C++, uses
- Boost for IPC, Xerces-C and XSD for XML parsing

•  API for Fortran, C, C++

•  Tested on
- Grid’5000 (Linux Debian), Kraken (Cray XT5 - NICS), JaguarPF (Cray XK6 –
Oak Ridge), JYC (Blue Waters testing system: Cray XE6 - NCSA), Intrepid
(BlueGene/P – Argonne)

•  Tested with
- CM1 (climate), OLAM (climate), GTC (fusion), Nek5000 (CFD)

November 19th 2012 - 12

Past results: achieving scalable I/O
3

Running the CM1 simulation on Kraken,
G5K and BluePrint with Damaris

•  The CM1 simulation
- Atmospheric simulation
- One of the Blue Waters target
applications

- Uses HDF5 (file-per-process) and
pHDF5 (for collective I/O)

•  Kraken
- Cray XT5 at NICS
- 12 cores/node
- 16 GB/node
- Luster file system

•  Grid 5000
- 24 cores/node
- 48 GB/node
- PVFS file system

•  BluePrint
- Power5
- 16 cores/node
- 64 GB/node
- GPFS file system

November 19th 2012 - 14

Results on I/O with the CM1 application
Damaris achieves almost perfect scalability

0

2000

4000

6000

8000

10000

0 5000 10000
Sc

al
ab

ili
ty

 fa
ct

or

Number of cores

Perfect scaling

Damaris

File-per-process

Collective-I/O

Weak scalability factor S = N Tbase
T

N: number of cores
Tbase: time of an iteration on one core w/o write
T: time of an iteration + a write

0

200

400

600

800

1000

576 2304 9216

R
un

 ti
m

e
(s

ec
)

Number of cores

November 19th 2012 - 15

Damaris: How to Efficiently Leverage Multicore Parallelism
to Achieve Scalable, Jitter-free I/O
Matthieu Dorier, Gabriel Antoniu, Franck Cappello, Marc Snir, Leigh Orf
Proceedings of IEEE CLUSTER 2012 (Beijing, China)

More results…

November 19th 2012 - 16

Recent work: non-impacting
in-situ visualization
Getting insights from running simulations

4

From offline to coupled visualization

•  Offline approach
• I/O performance issues
in the simulation

• I/O performance issues
in visualization software

• Too much data!!!

•  Coupled approach
• Direct insight in the simulation
• Bypass the file system
• Interactive
BUT
• Hardly accepted by users

November 19th 2012 - 18

In-situ approaches

November 19th 2012 - 19

•  In-situ = on the same node, collocated with the simulation
•  As opposed to remote visualization

•  Can be:
• Time-partitioning
• Space-partitioning

•  Advantages:
• Can work from in-memory data without data movement
• Can leverage GPUs when the simulation does not use them

•  Drawbacks:
• Code instrumentation
• Impact on performance

Four main goals

Low impact on simulation code

Adaptability
(to different simulations and visualization scenarios)

Low impact on simulation run time

Good resource utilization
(low memory footprint, use of GPU,…)

Usability

Performance

Driving the acceptance of any in-situ approach

November 19th 2012 - 20

In-situ visualization through Damaris:
a glimpse at the interface

!
DC_write(“mesh_x”,mesh_x);!
DC_write(“mesh_y”,mesh_x);!
DC_write(“mesh_z”,mesh_x);!
!
DC_write(“temperature”,temperature);!
!

<parameter name="NX" type="int" value="4"/>!
<layout name="px" type="float" dimensions="NX"/>!
<variable name="mesh_x" layout="px">!
<!-- idem for PTY and PTZ, py and pz, mesh_y and mesh_z -->!
!
<layout name="data_layout" type="double” dimensions="NX,NY,NZ"/>!
<variable name="temperature" layout="data_layout” mesh=“my_mesh” />!
!
<mesh type=“rectilinear” name=“my_mesh” topology=“3”>!
 <coord name=“mesh_x” unit=“cm” label=“width” />!
 <coord name=“mesh_y” unit=“cm” label=“depth” />!
 <coord name=“mesh_z” unit=“cm” label=“height” />!
</mesh>!

•  VisIt provides the libsimV2 library
for in-situ visualization

•  Damaris connects the simulation
thanks to its XML description

•  Low impact on code
•  Use of dedicated cores
•  High adaptability thanks to plugins
•  Non-impacting interactivity

November 19th 2012 - 21

Damaris has a low impact on the code

VisIt Damaris
Curve.c 144 lines 6 lines
Mesh.c 167 lines 10 lines
Var.c 271 lines 12 lines
Life.c 305 lines 8 lines

Number of lines of code required to instrument sample simulations
with VisIt and with Damaris

November 19th 2012 - 22

Nek5000 VTK : 600 lines of C
and Fortran

Damaris : 20 lines of
Fortran, 60 of XML

Results with the Nek5000 simulation

•  The Nek5000 simulation
•  CFD solver
•  Based on spectral elements method
•  Developed at ANL
•  Written in Fortran 77 and MPI
•  Scales over 250,000 cores

•  Data in Nek5000
•  Fixed set of elements constituting an
unstructured mesh
•  Each element is a curvilinear mesh

•  Damaris already knows how to handle curvilinear
meshes and pass them to VisIt

•  Tested on up to 384 cores with Damaris so far
•  Traditional approach does not even scale to

this number!

November 19th 2012 - 23

Damaris removes the variability
inherent to in-situ visualization tasks

Experiments done with the
turbChannel test-case in Nek5000,
on 48 cores (2 nodes) of
Grid’5000’s Reims cluster.

November 19th 2012 - 24

Demonstration
Cool images coming

5

6
Conclusion

Conclusion

November 19th 2012 - 27

The Damaris approach
•  Dedicated cores
•  Shared memory
•  Highly adaptable system thanks to plugins and XML
•  Connection to VisIt

Past results
•  Fully hides the I/O jitter and I/O-related costs
•  15x sustained write throughput (compared to collective I/O)
•  Almost perfect application scalability
•  Execution time divided by 3.5 compared to collective I/O

Recent work and results
•  Efficient coupling of simulation and analysis tools
•  Perfectly hides the run-time impact of in-situ visualization
•  Minimal code instrumentation
•  High adaptability

Matthieu Dorier
matthieu.dorier@irisa.fr
KerData Team
Inria Rennes, IRISA
ENS Cachan

I/O and in-situ visualization:
recent results with the Damaris approach

8th workshop of the JLPC
November 19th, 2012

Joint work involving Matthieu Dorier, Gabriel Antoniu, Dave Semeraro,
Roberto Sisneros, Tom Peterka

Thank you!

