Composing multiple StarPU applications
over heterogeneous machines:
a supervised approach

Andra Hugo

With Abdou Guermouche, Pierre-André Wacrenier, Raymond Namyst

Inria, LaBRI, University of Bordeaux
RUNTIME
INRIA Group
INRIA Bordeaux Sud-Ouest

The increasing role of runtime systems
Code reusability

« Many HPC applications rely on
specific parallel libraries
- Linear algebra, FFT, Stencils

IntelTBB

Harmony StarSs

KAAPI StarPU

DAGUE Charm++
Qilin

« Efficient implementations sitting on
top of dynamic runtime systems
- To deal with hybrid, multicore
complex hardware
« E.g. MKL/OpenMP,
MAGMA/StarPU
- To avoid reinventing the wheel!

« Some application may benefit from
relying on multiple libraries
- Potentially using different
underlying runtime systems...

I@W_

The increasing role of runtime systems
Code reusability

« Many HPC applications rely on
specific parallel libraries
- Linear algebra, FFT, Stencils

IntelTBB

Harmony StarSs

KAAPI StarPU

DAGUE Charm++
Qilin

« Efficient implementations sitting on
top of dynamic runtime systems
- To deal with hybrid, multicore
complex hardware
« E.g. MKL/OpenMP,
MAGMA/StarPU
- To avoid reinventing the wheel!

« Some application may benefit from Are parallel libraries ready to run
relying on multiple libraries _, simultaneously over the 7

- Potentially using different same hardware resources
underlying runtime systems...

I‘w&f_

Struggle for resources
Interferences between parallel libraries

« Parallel libraries typically
allocate and bind one thread

per core
- Bypass the OS scheduler

.) Parallel sparse linear
- Control cache utilization algebra solver

« Each library is unaware of the
resource management of the

355
reones e (P @S]

« Optimizations (cache affinity,
memory reuse, etc.) are
strongly affected

Struggle for resources
Interferences between parallel libraries

« Parallel libraries typically 3
allocate and bind one thread u
per core
- Bypass the OS scheduler
.) Parallel sparse linear
- Control cache utilization algebra solver

« Each library is unaware of the
resource management of the

355
reones e (P @S]

« Optimizations (cache affinity,
memory reuse, etc.) are => Composability problem
strongly affected

Composability problem

How to deal with it?
) TBB workfr threads) IntelTBB |_|the

Application

Component A

Sched gy || Schedomp || Schedopencr Lithe

Interface

thhe lenme
| o5 |
| * ' Hardware Cores 1 ' 1 |
Master Application threads - . - - - - .
L_Jt“’eads Phd Thesis : Cooperative Hierarchical Resource

Management for Efficient
Composition of Parallel Software, Heidi Pan, 2010

« Advanced environments allow partitioning hardware resources
- IntelTBB:
» The pool of workers are split in arenas
- Lithe
» Resource sharing management interface
» Harts are transferred between parallel libraries
« Main challenge: Automatically adjusting the amount of resources allocated to each library

software.intel.com

.&zu&,

Scheduling Contexts

Toward code composability
Push Push

 [solate concurrent parallel codes

« Similar to lightweight virtual
machines

* Run on top of subsets of available
PUs

« Minimize interferences

- Enforce data locality

« Contexts may expand and shrink
- Hypervised approach
- Maximize overall throughput

- Use dynamic feedback both from
application and runtime

CPU GPU

workers workers
. Crrzia—~

Using StarPU as an experimental platform

A runtime system for *PU architectures

. for studying resource negociation
« The StarPU runtime system ying J

- Dynamically schedule tasks
on all processing units
« See a pool of
heterogeneous processing
units

- Avoid unnecessary data
transfers between
accelerators

» Software VSM for
heterogeneous machines

HHHH

Overview of StarPU
Maximizing PU occupancy, minimizing data transfers

« Accept tasks that may have
multiple implementations parallel parallel
- Together with potential inter- Compilers Libraries
dependencies
« Leads to a dynamic acyclic
graph of tasks
« Data-flow approach
- Scheduling hints

HPC Applications

cpu
f gpu
spu

(Arw, Br, CRr)

Drivers (CUDA, OpenCL)
CPU GPU MIC

« Open, general purpose
scheduling platform
- Scheduling policies = plugins

I@W_

Tasks scheduling
How does it work?

* When a task is submitted, it first
goes into a pool of “frozen tasks”
until all dependencies are met

Push

* Then, the task is “pushed” to the
scheduler

 Idle processing units actively poll
for work (“pop”)

Pop Pop
7 7
« What happens inside the \ N\
v v

i |
scheduler is... up to you! CPU GPU

workers workers

Dealing with heterogeneous architectures

 Build-in schedulers:
- E.g. Minimum Completion
Time heuristic

Cpu #1

« Task completion time estimation cpu #2
- History-based performance

models cpu #3

- Data transfer time estimation gpu #1
- Sampling based on off-line

gpu #2

calibration

Performance prediction

MAGMA with StarPU
With University of Tennessee & INRIA HiePACS

* QR decomposition
- 16 CPUs (AMD) + 4 GPUs (C1060)

4GPUs+16CPUs —+ | s : 5 5
‘ ‘ ! E— B +

vop | 4GPUS+4CPUS - ox-- 3 | B
- 3GPUs+83CPUs - - R e e e -
2 GPUs + 2 CPUs & ‘ T : +12 CPUs

~200 GFlops

1GPUs +1CPUs - |
only 800 o 1
| | - LT | |

N R N S N (athough
L A P e i,,_,_,_,,x::::::tf,‘éf,* ,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,, _ 12 CPUS alone

© 600 | S | | |
) s s X 1 1
5 ~150 Gflops)
e ! ! ! !
| y "i _________________ E|1 |
| e B e 1
400 _‘,XEE """"""""""""""""""""""""""""" T]
: L i :
1 P 1 1
1 P | :
200 R e T S .
I
el
4
/

CCDSC 2012-12

Scheduling Contexts in StarPU

Heterogeneous machines
Virtualization of resources

Each context features its own
scheduler

Scalability workaround

Contexts may share processing units
- Avoid underutilized resources
Allocation of resources

- The programmer entirely defines it

- The programmer specifies an
Interval and leaves the contexts
negotiate

- The hypervisor computes it

Extension of StarPU

StarPU

"'II‘I‘I#I'}‘r p— - _

mmmant Cheguling Contexn 1 Scheduling Cantext 2

(DSM) O O O O
GPU driver ICPU driver

= They try to be considerate
with each other’s needs

Scheduling contexts in StarPU
Easily use contexts in your application
int resources1[3] = {CPU_1, CPU 2, GPU_1};

int resources2[4] = {CPU_3, CPU_4, CPU_5, Thread 1 Thread 2
CPU_6};
Push \ { Push

[* define the scheduling policy and the table - Greedy

of resource ids */ ﬂ D ﬂ D ﬂ D D

sched ctxl =
starpu_create_sched_ctx(“mct",resources1,3);

SRR AN

sched ctx2 =
starpu_create_sched ctx("greedy",resources2,4);

Scheduling contexts in StarPU

Easily use contexts in your application
int resources1[3] = {CPU_1, CPU 2, GPU_1};

int resources2[4] = {CPU_3, CPU_4, CPU_5, Thread 1 Thread 2
CPU_6};

Push Push

[* define the scheduling policy and the table Heft Greedy

of resource ids */ ﬂ D D [] ﬂ [j D

sched ctxl =
starpu_create_sched_ctx("heft",resourcesl,3);

D D T N S T
sched_ctx2 =

starpu_create_sched ctx("greedy",resources2,4);

/I thread 1: /l thread 2:
[* define the context associated to kernel 1 */ fI /« define the context associated to kernel 2 */
starpu_set_sched_ctx(sched_ctx1); starpu_set_sched_ctx(sched_ctx2);

/* submit the set of tasks of the parallel kemelll /= submit the set of tasks of parallel kernel 2%/
1*/ for(i=0; i< ntasks2; i++)

for(i=0; 1< ntasksl; i++) starpu_task_submit(tasks2[i]);
Apu task submit(tasks1]i]);

.hub/—

Experimental evaluation
Platform and Application

« 9 CPUs (two Intel hexacore processors, 3 cores devoted to execute
GPU drivers) + 3 GPUs
« MAGMA Linear Algebra Library
- Implementation based on StarPU
- Cholesky Factorization kernel
* Euler3D solver
- Computational Fluid Dynamic benchmark
- Rodinia benchmark suite
- Iterative solver for 3D Euler equations
for compressible fluids
- Implementation based on StarPU MAGMA — Cholesky Factorization

I‘be_

Composing Magma and the Euler3D solver
Different parallel kernels

« CFD: CFD And Cholesky

- Domain decomposition parallelization Factorization

- Independent tasks per iteration 1 context

- Dependencies between iterations

- Strong affinity with GPUs 18

- 2 sub-domains: 2 GPUs 16 s

« Cholesky Factorization:
- Scalable on both CPUs & GPUs
- 1GPU & 9 CPUs
- Large number of tasks 6
« Contexts enforce locality constraints #

I""’“’“f_

Time(s)
'—\
o

What about 9 Cholesky factorizations...?
Gain performance from data locality

« Mixing parallel kernels: 60
- Unnecessary data transfers s
between Host Memory & GPU 4
memory -> blocking walits 30

- Memory flushes

m Serial Execution

m 1 Context: 9 CPUs / 3GPUs

m 3 contexts : 3 x (3 CPUs /1 GPU)

m 9 Contexts: 9 x (1 CPUs /0.3 GPUs)

What about 9 Cholesky factorizations...?
Gain performance from data locality

« Mixing parallel kernels: 60
- Unnecessary data transfers so
between Host Memory & GPU 4
memory -> blocking walits 30

- Memory flushes

20

Time (s)

10

0

m Serial Execution : 87 GB

m 1 Context: 9 CPUs / 3GPUs : 113 GB

m 3 contexts : 3 x (3 CPUs /1 GPU):37 GB

m 9 Contexts: 9 x (1 CPUs /0.3 GPUs) : 41GB

The Hypervisor

What if static dimensioning doesn’t work?

« Dynamically resizes scheduling
contexts
« Triggers resizing:
- At some instances of time
 feedback from the application
- When the initial configuration Managment @@ f:j fj
deteriorates the performances ~

) ' Hypervisor
 feedback from the runtime
e different metrics: Idle resources,

Speed of the contexts Flops coul
« User’s constraints for the negotiation
of resources

- ldleness limit
- Resize interval limitation

I‘Wb’_

The Hypervisor

What if static dimensioning doesn’t work?

« Stores contexts information and

resource performance statistics
« Policies for resizing contexts

Minimize the makespan

Need the workload of the parallel
Managment

codes

Linear programs to compute the
best allocation of resources

Flops count

' Hypervisor
Resizing Engine
Ny

A
IGPU driver

The Hypervisor in StarPU

Simple example

o .) Thread 1 Thread 2
[* select an existing resizing policy */ .Q.‘
struct hypervisor_policy policy;

H 1] H . n PUSh PUSh
policy.name = “min_makespan_policy"; | ¥ === ~—--------¥----~- |

MCT

' |

|
/* initialize the hypervisor and ﬂ ﬂ ﬂ i ﬂ ﬂ ﬂ ﬂ i
set its resizing policy */ | :
|

sched_ctx_hypervisor_init(policy); ‘ . .

[* register context 1 to the hypervisor */ [* define the constraints for the resizing */
sched_ctx_hypervisor_register ctx(sched ctx1); sched_ctx_hypervisor_ctl(sched_ctx1,

HYPERVISOR_MIN_CPU_WORKERS, 3,
[* register context 2 to the hypervisor */ HYPERVISOR_MAX_ CPU_WORKERS, 7,
sched_ctx_hypervisor_register _ctx(sched_ctx2); NULL);

.hub/—

The Hypervisor in StarPU

Simple example

. . . Thread 1 Thread 2
[* select an existing resizing policy */ .Q.‘
struct hypervisor_policy policy;

H 1] H . n PUSh PUSh
policy.name = “min_makespan_policy"; ¥ === ~—-—---—----¥----- |

MCT

' |

|
/* initialize the hypervisor and ﬂ ﬂ ﬂ i ﬂ ﬂ ﬂ ﬂ i
set its resizing policy */ | :
|

sched_ctx_hypervisor_init(policy); ‘ . .

[* register context 1 to the hypervisor */ [* define the constraints for the resizing */
sched_ctx_hypervisor_register_ctx(sched ctx1);] sched_ctx_hypervisor_ctl(sched_ctx1,
HYPERVISOR_MIN_CPU_WORKERS, 3,
[* register context 2 to the hypervisor */ HYPERVISOR_MAX_ CPU_WORKERS, 7,
sched_ctx_hypervisor_register _ctx(sched_ctx2);] NULL);

v d
7

&t%—

The Hypervisor in StarPU

Simple example

. . . Thread 1 Thread 2
[* select an existing resizing policy */ .Q.‘
struct hypervisor_policy policy;

policy.name = “min_makespan_policy";

Push PUSh

—_——_——— — —_— —_ — = — e — — —

/* initialize the hypervisor and
set its resizing policy */

MCT

AR

sched_ctx_hypervisor_init(policy); ‘ . .

[* register context 1 to the hypervisor */

sched_ctx_hypervisor_register_ctx(sched ctx1);

[* register context 2 to the hypervisor */

sched_ctx_hypervisor_register_ctx(sched ctx2);

.hub/— 7

[* define the constraints for the resizing */

sched_ctx_hypervisor_ctl(sched_ctx1,
HYPERVISOR_MIN_CPU_WORKERS, 3,
HYPERVISOR_MAX CPU_WORKERS, 7,
NULL);

Dealing with non scalable kernels

ldleness-based policies

m Static distribution of resources
° CFD decomposed IN 2 SUb‘doma|nS m Dynamically adjusted distribution of resources
- Static distribution: 0
- CFD: 3 GPUs

Cholesky Factorization: 9 CPUs

50

40
Hypervisor’s intervention:
- CFD: 2GPUs

£
Cholesky Factorization: 1 GPU & 9 =
CPUs

10

Feedback of the application
When to resize?

« 2 streams of parallel kernels
« 1 of them pops in from time to time 20
« The hypervisor: assigns some CPUs to the intruder %

16

| || l L[] I | 155

= Overlapping contexts

m Dynamically adjusted distribution of
resources

Facing irregular applications

« Composing parallel kernels
facing different granularities
« Same workload, different
number of tasks
« Coarse work estimation:
- Flops statistics
- Same granularity for the
concurrent parallel kernels

* Type of task based estimation:

- Number of tasks statistics
- Considers the type of tasks

.&'z

Time(s)

Speed-based resizing policies

m Coarse Work Estimation

m Type of task based estimation

25' 25_

=
(6]
1
=
(6]
|

Time(s)

10 - 10 -

5 - 5 -

0

0

Same Blocking Size

1st Factorization: 30k matrix,
960 block size

2nd Factorization: 15k matrix,
960 block size

Different Blocking Size

1st Factorization: 30k matrix,

960 block size
2nd Factorization: 15k matrix,

192 block size

Which one is the best for our application?
Compromise between efficiency and precision?

* Itdepends ... Cost of the policies

70

« Coarse Work estimation | Coarse Work Estimation

Type of Task based Estimation

60 |

- Faster

- Less accurate

- lrregular application may
require it multiple times

50 |

40 |

30 |

Time (ms)

20 |

10 +

 Type of Task based Estimation _ | .
- Higher complexity O B e
- More precise
- Useful if the resizing is

Platform Architecture

required a few times

Conclusion & Future Work

« Scheduling Contexts allow you use multiple parallel libraries
simultaneously
- Currently implemented in StarPU runtime system
- A Hypervisor dynamically shrinks / extends contexts

e Further Work
- New metrics to guide resizing
- More intelligent sharing of resources (GPUS)

- And much more!

Potential collaborations

Extend the techniques to other runtime systems
- Intel TBB / OS/R / Charm++/ OCR / Unistack

Experiment with code-coupling applications
- Great expected benefit from running multiple kernels concurrently

Experiment with different hypervising strategies

Any collaboration topic related to (task-based) runtime systems for
(hybrid) multicore machines is welcome!

