
Composing multiple StarPU applications
over heterogeneous machines:

a supervised approach

Andra Hugo
With Abdou Guermouche, Pierre-André Wacrenier, Raymond Namyst

Inria, LaBRI, University of Bordeaux

 RUNTIME

INRIA Group
INRIA Bordeaux Sud-Ouest

The increasing role of runtime systems

Runtime - 2

Code reusability

• Many HPC applications rely on

specific parallel libraries

- Linear algebra, FFT, Stencils

• Efficient implementations sitting on

top of dynamic runtime systems

- To deal with hybrid, multicore

complex hardware

• E.g. MKL/OpenMP,

MAGMA/StarPU

- To avoid reinventing the wheel!

• Some application may benefit from

relying on multiple libraries

- Potentially using different

underlying runtime systems…

Cilk OpenMP

IntelTBB

Anthill

DAGuE Charm++

Harmony

KAAPI

Qilin

StarPU

StarSs

The increasing role of runtime systems

Runtime - 3

Code reusability

• Many HPC applications rely on

specific parallel libraries

- Linear algebra, FFT, Stencils

• Efficient implementations sitting on

top of dynamic runtime systems

- To deal with hybrid, multicore

complex hardware

• E.g. MKL/OpenMP,

MAGMA/StarPU

- To avoid reinventing the wheel!

• Some application may benefit from

relying on multiple libraries

- Potentially using different

underlying runtime systems…

Cilk OpenMP

IntelTBB

Anthill

DAGuE Charm++

Harmony

KAAPI

Qilin

StarPU

StarSs

Are parallel libraries ready to run

simultaneously over the

same hardware resources
=>

Struggle for resources

Runtime - 4

Interferences between parallel libraries

• Parallel libraries typically

allocate and bind one thread

per core

- Bypass the OS scheduler

- Control cache utilization

• Each library is unaware of the

resource management of the

other ones

 => resource oversubscription

• Optimizations (cache affinity,

memory reuse, etc.) are

strongly affected

Struggle for resources

Runtime - 5

Interferences between parallel libraries

• Parallel libraries typically

allocate and bind one thread

per core

- Bypass the OS scheduler

- Control cache utilization

• Each library is unaware of the

resource management of the

other ones

 => resource oversubscription

• Optimizations (cache affinity,

memory reuse, etc.) are

strongly affected

=> Composability problem

Composability problem

Runtime - 6

How to deal with it?

• Advanced environments allow partitioning hardware resources

- IntelTBB:

• The pool of workers are split in arenas

- Lithe

• Resource sharing management interface

• Harts are transferred between parallel libraries

• Main challenge: Automatically adjusting the amount of resources allocated to each library

IntelTBB Lithe

software.intel.com

Phd Thesis : Cooperative Hierarchical Resource

Management for Efficient

Composition of Parallel Software, Heidi Pan, 2010

Scheduling Contexts

Runtime - 7

Toward code composability

• Isolate concurrent parallel codes

• Similar to lightweight virtual

machines

• Run on top of subsets of available

PUs

• Minimize interferences

• Enforce data locality

• Contexts may expand and shrink

- Hypervised approach

- Maximize overall throughput

- Use dynamic feedback both from

application and runtime

Context B

Push

Context A

CPU

workers

GPU

workers

Push

Using StarPU as an experimental platform

Runtime

A runtime system for *PU architectures

for studying resource negociation
• The StarPU runtime system

- Dynamically schedule tasks

on all processing units

• See a pool of

heterogeneous processing

units

- Avoid unnecessary data

transfers between

accelerators

• Software VSM for

heterogeneous machines

A = A+B

M.

CPU

CPU

CPU

CPU M. GPU

M. GPU

CPU

CPU

CPU

CPU

M. A

B

B

M. GPU

M. GPU

- 8

CPU

Parallel
Compilers

HPC Applications

StarPU

Drivers (CUDA, OpenCL)

Parallel
Libraries

Overview of StarPU

Runtime

Maximizing PU occupancy, minimizing data transfers

• Accept tasks that may have

multiple implementations

- Together with potential inter-

dependencies

• Leads to a dynamic acyclic

graph of tasks

• Data-flow approach

- Scheduling hints

• Open, general purpose

scheduling platform

- Scheduling policies = plugins

GPU MIC

(ARW, BR, CR)

f
cpu

gpu

spu

- 9

Tasks scheduling

Runtime

How does it work?

• When a task is submitted, it first

goes into a pool of “frozen tasks”

until all dependencies are met

• Then, the task is “pushed” to the

scheduler

• Idle processing units actively poll

for work (“pop”)

• What happens inside the

scheduler is… up to you!

Scheduler

CPU

workers

GPU

workers

Push

Pop Pop

- 10

Dealing with heterogeneous architectures

Runtime

Performance prediction

• Build-in schedulers:

- E.g. Minimum Completion

Time heuristic

• Task completion time estimation

- History-based performance

models

• Data transfer time estimation

- Sampling based on off-line

calibration

time

cpu #3

gpu #1

cpu #2

cpu #1

gpu #2

- 11

MAGMA with StarPU

Runtime - 12

With University of Tennessee & INRIA HiePACS

• QR decomposition

- 16 CPUs (AMD) + 4 GPUs (C1060)

GPU

only

+12 CPUs

~200 GFlops

(although

12 CPUs alone

~150 Gflops)

CCDSC 2012

Scheduling Contexts in StarPU

Runtime - 13

Extension of StarPU

• Heterogeneous machines

• Virtualization of resources

• Each context features its own

scheduler

• Scalability workaround

• Contexts may share processing units

- Avoid underutilized resources

• Allocation of resources

- The programmer entirely defines it

- The programmer specifies an

interval and leaves the contexts

negotiate

- The hypervisor computes it

 They try to be considerate

with each other’s needs

Scheduling contexts in StarPU

Runtime

Easily use contexts in your application

int resources1[3] = {CPU_1, CPU_2, GPU_1};

int resources2[4] = {CPU_3, CPU_4, CPU_5,

CPU_6};

/* define the scheduling policy and the table

 of resource ids */

sched_ctx1 =

starpu_create_sched_ctx(“mct",resources1,3);

sched_ctx2 =

starpu_create_sched_ctx("greedy",resources2,4);

- 14

MCT

Scheduling contexts in StarPU

Runtime

Easily use contexts in your application

// thread 2:

/* define the context associated to kernel 2 */

starpu_set_sched_ctx(sched_ctx2);

/* submit the set of tasks of parallel kernel 2*/

for(i = 0; i < ntasks2; i++)

 starpu_task_submit(tasks2[i]);

int resources1[3] = {CPU_1, CPU_2, GPU_1};

int resources2[4] = {CPU_3, CPU_4, CPU_5,

CPU_6};

/* define the scheduling policy and the table

 of resource ids */

sched_ctx1 =

starpu_create_sched_ctx("heft",resources1,3);

sched_ctx2 =

starpu_create_sched_ctx("greedy",resources2,4);

// thread 1:

/* define the context associated to kernel 1 */

starpu_set_sched_ctx(sched_ctx1);

/* submit the set of tasks of the parallel kernel

1*/

for(i = 0; i < ntasks1; i++)

 starpu_task_submit(tasks1[i]);

- 15

Experimental evaluation

Runtime - 16

Platform and Application

• 9 CPUs (two Intel hexacore processors, 3 cores devoted to execute

GPU drivers) + 3 GPUs

• MAGMA Linear Algebra Library

- Implementation based on StarPU

- Cholesky Factorization kernel

• Euler3D solver

- Computational Fluid Dynamic benchmark

- Rodinia benchmark suite

- Iterative solver for 3D Euler equations

for compressible fluids

- Implementation based on StarPU MAGMA – Cholesky Factorization

Composing Magma and the Euler3D solver

Runtime

Different parallel kernels

- 17

0

2

4

6

8

10

12

14

16

18

20

1 context,
19.83

2 contexts,
14.26

T
im

e
(s

)

CFD And Cholesky
Factorization

• CFD:

- Domain decomposition parallelization

- Independent tasks per iteration

- Dependencies between iterations

- Strong affinity with GPUs

- 2 sub-domains: 2 GPUs

• Cholesky Factorization:

- Scalable on both CPUs & GPUs

- 1GPU & 9 CPUs

- Large number of tasks

• Contexts enforce locality constraints

What about 9 Cholesky factorizations…?

Runtime

Gain performance from data locality

• Mixing parallel kernels:

- Unnecessary data transfers

between Host Memory & GPU

memory -> blocking waits

- Memory flushes

- 18

T
im

e
 (

s
)

0

10

20

30

40

50

60

44.3

52

34.8 34.4

Serial Execution

1 Context: 9 CPUs / 3GPUs

3 contexts : 3 x (3 CPUs / 1 GPU)

9 Contexts: 9 x (1 CPUs / 0.3 GPUs)

What about 9 Cholesky factorizations…?

Runtime

Gain performance from data locality

• Mixing parallel kernels:

- Unnecessary data transfers

between Host Memory & GPU

memory -> blocking waits

- Memory flushes

- 19

0

10

20

30

40

50

60

44.3

52

34.8 34.4

Serial Execution : 87 GB

1 Context: 9 CPUs / 3GPUs : 113 GB

3 contexts : 3 x (3 CPUs / 1 GPU) : 37 GB

9 Contexts: 9 x (1 CPUs / 0.3 GPUs) : 41GB

T
im

e
 (

s
)

Runtime

• Dynamically resizes scheduling

contexts

• Triggers resizing:

- At some instances of time

• feedback from the application

- When the initial configuration

deteriorates the performances

• feedback from the runtime

• different metrics: Idle resources,

Speed of the contexts

• User’s constraints for the negotiation

of resources

- Idleness limit

- Resize interval limitation

- 20

The Hypervisor
What if static dimensioning doesn’t work?

The Hypervisor

Runtime - 21

What if static dimensioning doesn’t work?

• Stores contexts information and

resource performance statistics

• Policies for resizing contexts

- Minimize the makespan

- Need the workload of the parallel

codes

- Linear programs to compute the

best allocation of resources

The Hypervisor in StarPU

Runtime

Simple example

/* select an existing resizing policy */

struct hypervisor_policy policy;

policy.name = “min_makespan_policy";

/* initialize the hypervisor and

set its resizing policy */

sched_ctx_hypervisor_init(policy);

/* register context 1 to the hypervisor */

sched_ctx_hypervisor_register_ctx(sched_ctx1);

/* register context 2 to the hypervisor */

sched_ctx_hypervisor_register_ctx(sched_ctx2);

- 22

/* define the constraints for the resizing */

sched_ctx_hypervisor_ctl(sched_ctx1,

 HYPERVISOR_MIN_CPU_WORKERS, 3,

 HYPERVISOR_MAX_CPU_WORKERS, 7,

 NULL);

MCT

The Hypervisor in StarPU

Runtime

Simple example

/* select an existing resizing policy */

struct hypervisor_policy policy;

policy.name = “min_makespan_policy";

/* initialize the hypervisor and

set its resizing policy */

sched_ctx_hypervisor_init(policy);

/* register context 1 to the hypervisor */

sched_ctx_hypervisor_register_ctx(sched_ctx1);

/* register context 2 to the hypervisor */

sched_ctx_hypervisor_register_ctx(sched_ctx2);

- 23

/* define the constraints for the resizing */

sched_ctx_hypervisor_ctl(sched_ctx1,

 HYPERVISOR_MIN_CPU_WORKERS, 3,

 HYPERVISOR_MAX_CPU_WORKERS, 7,

 NULL);

MCT

The Hypervisor in StarPU

Runtime

Simple example

/* select an existing resizing policy */

struct hypervisor_policy policy;

policy.name = “min_makespan_policy";

/* initialize the hypervisor and

set its resizing policy */

sched_ctx_hypervisor_init(policy);

/* register context 1 to the hypervisor */

sched_ctx_hypervisor_register_ctx(sched_ctx1);

/* register context 2 to the hypervisor */

sched_ctx_hypervisor_register_ctx(sched_ctx2);

- 24

/* define the constraints for the resizing */

sched_ctx_hypervisor_ctl(sched_ctx1,

 HYPERVISOR_MIN_CPU_WORKERS, 3,

 HYPERVISOR_MAX_CPU_WORKERS, 7,

 NULL);

MCT

Dealing with non scalable kernels

Runtime

Idleness-based policies

• CFD decomposed in 2 sub-domains

• Static distribution:

- CFD: 3 GPUs

- Cholesky Factorization: 9 CPUs

• Hypervisor’s intervention:

- CFD: 2GPUs

- Cholesky Factorization: 1 GPU & 9

CPUs

- 25

T
im

e
 (

s
)

0

10

20

30

40

50

60
53.08

14.11

Static distribution of resources

Dynamically adjusted distribution of resources

Feedback of the application

Runtime

When to resize?

- 26
T

im
e

 (
s
)

• 2 streams of parallel kernels

• 1 of them pops in from time to time

• The hypervisor: assigns some CPUs to the intruder

15.5

16

16.5

17

17.5

18

18.5

19

19.5

20 19.7

17.2

Overlapping contexts

Dynamically adjusted distribution of
resources

Facing irregular applications

Runtime

Speed-based resizing policies

• Composing parallel kernels

facing different granularities

• Same workload, different

number of tasks

• Coarse work estimation:

- Flops statistics

- Same granularity for the

concurrent parallel kernels

• Type of task based estimation:

- Number of tasks statistics

- Considers the type of tasks

- 27

0

5

10

15

20

25

Same Blocking Size

17.29 17.55

T
im

e
(s

)

Coarse Work Estimation

Type of task based estimation

0

5

10

15

20

25

Different Blocking Size

23.85

17.65

T
im

e
(s

)

1st Factorization: 30k matrix,

 960 block size

2nd Factorization: 15k matrix,

 960 block size

1st Factorization: 30k matrix,

 960 block size

2nd Factorization: 15k matrix,

 192 block size

Which one is the best for our application?

Runtime

Compromise between efficiency and precision?

• It depends …

• Coarse Work estimation

- Faster

- Less accurate

- Irregular application may

require it multiple times

• Type of Task based Estimation

- Higher complexity

- More precise

- Useful if the resizing is

required a few times

- 28

Cost of the policies

Conclusion & Future Work

Runtime

• Scheduling Contexts allow you use multiple parallel libraries

simultaneously

- Currently implemented in StarPU runtime system

- A Hypervisor dynamically shrinks / extends contexts

• Further Work

- New metrics to guide resizing

- More intelligent sharing of resources (GPUs)

- And much more!

- 29

Potential collaborations

Runtime - 30

• Extend the techniques to other runtime systems

- Intel TBB / OS/R / Charm++ / OCR / Unistack

• Experiment with code-coupling applications

- Great expected benefit from running multiple kernels concurrently

• Experiment with different hypervising strategies

• Any collaboration topic related to (task-based) runtime systems for

(hybrid) multicore machines is welcome!

