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The increasing role of runtime systems 

Runtime - 2 

Code reusability 

• Many HPC applications rely on 

specific parallel libraries 

- Linear algebra, FFT, Stencils 

 

• Efficient implementations sitting on 

top of dynamic runtime systems 

- To deal with hybrid, multicore 

complex hardware 

• E.g. MKL/OpenMP, 

MAGMA/StarPU 

- To avoid reinventing the wheel! 

 

• Some application may benefit from 

relying on multiple libraries 

- Potentially using different 

underlying runtime systems… 
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Are parallel libraries ready to run 

simultaneously over the  

same hardware resources 
=> 



Struggle for resources 

Runtime - 4 

Interferences between parallel libraries 

• Parallel libraries typically 

allocate and bind one thread 

per core 

- Bypass the OS scheduler 

- Control cache utilization 

• Each library is unaware of the 

resource management of the 

other ones 

      => resource oversubscription 

• Optimizations (cache affinity, 

memory reuse, etc.) are 

strongly affected  
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Composability problem 

Runtime - 6 

How to deal with it? 

• Advanced environments allow partitioning hardware resources 

- IntelTBB:  

• The pool of workers are split in arenas 

- Lithe 

• Resource sharing management interface 

• Harts are transferred between parallel libraries 

• Main challenge: Automatically adjusting the amount of resources allocated to each library 

 

IntelTBB Lithe 

software.intel.com 

Phd Thesis : Cooperative Hierarchical Resource 

Management for Efficient 

Composition of Parallel Software,  Heidi Pan, 2010 



Scheduling Contexts 

Runtime - 7 

Toward code composability  

• Isolate concurrent parallel codes 

• Similar to lightweight virtual 

machines 

• Run on top of subsets of available 

PUs 

• Minimize interferences 

• Enforce data locality 

 

• Contexts may expand and shrink 

- Hypervised approach 

- Maximize overall throughput 

- Use dynamic feedback both from 

application and runtime 

 

Context B 
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Context A 
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Using StarPU as an experimental platform 

Runtime 

A runtime system for *PU architectures 

for studying resource negociation 
• The StarPU runtime system 

- Dynamically schedule tasks 

on all processing units 

• See a pool of 

heterogeneous processing 

units 

 

- Avoid unnecessary data 

transfers between 

accelerators 

• Software VSM for 

heterogeneous machines 

A = A+B 
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Overview of StarPU 

Runtime 

Maximizing PU occupancy, minimizing data transfers 

• Accept tasks that may have 

multiple implementations 

- Together with potential inter-

dependencies 

• Leads to a dynamic acyclic 

graph of tasks 

• Data-flow approach 

- Scheduling hints 

 

• Open, general purpose  

scheduling platform 

- Scheduling policies = plugins 

GPU MIC 

(ARW, BR, CR) 

f 
cpu 

gpu 

spu 

- 9 



Tasks scheduling 

Runtime 

How does it work? 

• When a task is submitted, it first 

goes into a pool of “frozen tasks” 

until all dependencies are met 

 

• Then, the task is “pushed” to the 

scheduler 

 

• Idle processing units actively poll 

for work (“pop”) 

 

• What happens inside the 

scheduler is… up to you! 

Scheduler 

CPU 

workers 

GPU 

workers 

Push 

Pop Pop 
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Dealing with heterogeneous architectures 

Runtime 

Performance prediction 

• Build-in schedulers: 

- E.g. Minimum Completion 

Time heuristic 

 

• Task completion time estimation 

- History-based performance 

models 

 

• Data transfer time estimation 

- Sampling based on off-line 

calibration  

time 

cpu #3 

gpu #1 

cpu #2 

cpu #1 

gpu #2 
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MAGMA with StarPU 
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With University of Tennessee & INRIA HiePACS 

• QR decomposition  

- 16 CPUs (AMD) + 4 GPUs (C1060) 

GPU 

only 

+12 CPUs 

~200 GFlops 

(although 

12 CPUs alone 

~150 Gflops) 

CCDSC 2012 



Scheduling Contexts in StarPU 

Runtime - 13 

Extension of StarPU 

 
• Heterogeneous machines 

• Virtualization of resources 

• Each context features its own 

scheduler 

• Scalability workaround 

• Contexts may share processing units 

- Avoid underutilized resources 

• Allocation of resources 

- The programmer entirely defines it 

- The programmer specifies an 

interval and leaves the contexts 

negotiate  

- The hypervisor computes it 

 

 

 They try to be considerate 

with each other’s needs 



Scheduling contexts in StarPU 

Runtime 

Easily use contexts in your application 

int resources1[3] = {CPU_1, CPU_2, GPU_1}; 

int resources2[4] = {CPU_3, CPU_4, CPU_5, 

CPU_6};  

 

/* define the scheduling policy and the table  

  of resource ids */ 

 

sched_ctx1 = 

starpu_create_sched_ctx(“mct",resources1,3); 

  

sched_ctx2 = 

starpu_create_sched_ctx("greedy",resources2,4); 
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MCT 



Scheduling contexts in StarPU 

Runtime 

Easily use contexts in your application 

// thread 2: 

/* define the context associated to kernel 2 */ 

starpu_set_sched_ctx(sched_ctx2); 

 

/* submit the set of tasks of parallel kernel 2*/ 

for( i = 0; i < ntasks2; i++) 

   starpu_task_submit(tasks2[i]); 

 

int resources1[3] = {CPU_1, CPU_2, GPU_1}; 

int resources2[4] = {CPU_3, CPU_4, CPU_5, 

CPU_6};  

 

/* define the scheduling policy and the table  

  of resource ids */ 

 

sched_ctx1 = 

starpu_create_sched_ctx("heft",resources1,3); 

  

sched_ctx2 = 

starpu_create_sched_ctx("greedy",resources2,4); 

// thread 1: 

/* define the context associated to kernel 1 */ 

starpu_set_sched_ctx(sched_ctx1); 

 

/* submit the set of tasks of the parallel kernel 

1*/ 

for( i = 0; i < ntasks1; i++) 

   starpu_task_submit(tasks1[i]); 
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Experimental evaluation 
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Platform and Application 

• 9 CPUs (two Intel hexacore processors, 3 cores devoted to execute 

GPU drivers) + 3 GPUs  

• MAGMA Linear Algebra Library 

- Implementation based on StarPU 

- Cholesky Factorization kernel 

• Euler3D solver 

- Computational Fluid Dynamic benchmark 

- Rodinia benchmark suite 

- Iterative solver for 3D Euler equations  

for compressible fluids 

- Implementation based on StarPU MAGMA – Cholesky Factorization 



Composing Magma and the Euler3D solver 

Runtime 

Different parallel kernels 
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CFD And Cholesky 
Factorization 

• CFD: 

- Domain decomposition parallelization 

- Independent tasks per iteration 

- Dependencies between iterations 

- Strong affinity with GPUs 

- 2 sub-domains: 2 GPUs 

• Cholesky Factorization: 

- Scalable on both CPUs & GPUs 

- 1GPU & 9 CPUs 

- Large number of tasks 

• Contexts enforce locality constraints 

 



What about 9 Cholesky factorizations…? 

Runtime 

Gain performance from data locality 

• Mixing parallel kernels: 

- Unnecessary data transfers 

between Host Memory & GPU 

memory -> blocking waits 

- Memory flushes 
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Runtime 

• Dynamically resizes scheduling 

contexts 

• Triggers resizing: 

- At some instances of time 

• feedback from the application 

- When the initial configuration 

deteriorates the performances 

• feedback from the runtime 

• different metrics: Idle resources, 

Speed of the contexts 

• User’s constraints for the negotiation 

of  resources  

- Idleness limit 

- Resize interval limitation 
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The Hypervisor 
What if static dimensioning doesn’t work? 

 



The Hypervisor 

Runtime - 21 

What if static dimensioning doesn’t work? 

 
• Stores contexts information and 

resource performance statistics 

• Policies for resizing contexts 

- Minimize the makespan 

- Need the workload of the parallel 

codes 

- Linear programs to compute the 

best allocation of resources 

 

 



The Hypervisor in StarPU 

Runtime 

Simple example 

/* select an existing resizing policy */ 

struct hypervisor_policy policy; 

policy.name = “min_makespan_policy"; 

 

/* initialize the hypervisor and  

set its resizing policy */ 

sched_ctx_hypervisor_init(policy); 

   

 

 

 

/* register context 1 to the hypervisor */ 

sched_ctx_hypervisor_register_ctx(sched_ctx1); 

 

/* register context 2 to the hypervisor */ 

sched_ctx_hypervisor_register_ctx(sched_ctx2); 
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/* define the constraints for the resizing */ 

sched_ctx_hypervisor_ctl(sched_ctx1, 

   HYPERVISOR_MIN_CPU_WORKERS, 3, 

   HYPERVISOR_MAX_CPU_WORKERS, 7, 

   NULL); 

 

MCT 
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Dealing with non scalable kernels 

Runtime 

Idleness-based policies 

• CFD decomposed in 2 sub-domains 

• Static distribution: 

- CFD: 3 GPUs 

- Cholesky Factorization: 9 CPUs 

 

• Hypervisor’s intervention: 

- CFD: 2GPUs 

- Cholesky Factorization: 1 GPU & 9 

CPUs 
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Feedback of the application 

Runtime 

When to resize? 
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Facing irregular applications 

Runtime 

Speed-based resizing policies 

• Composing parallel kernels 

facing different granularities 

• Same workload, different 

number of tasks 

• Coarse work estimation: 

- Flops statistics 

- Same granularity for the 

concurrent parallel kernels 

 

• Type of task based estimation: 

- Number of tasks statistics 

- Considers the type of tasks 
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1st Factorization: 30k matrix,                    

       960 block size 

2nd Factorization: 15k matrix,                    

       960 block size 

1st Factorization: 30k matrix,                    

       960 block size 

2nd Factorization: 15k matrix,                    

       192 block size 



Which one is the best for our application? 

Runtime 

Compromise between efficiency and precision? 

• It depends … 

• Coarse Work estimation 

- Faster 

- Less accurate 

- Irregular application may 

require it multiple times 

 

• Type of Task based Estimation 

- Higher complexity 

- More precise 

- Useful if the resizing is 

required a few times 
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Cost of the policies 



Conclusion  & Future Work 

Runtime 

• Scheduling Contexts allow you use multiple parallel libraries 

simultaneously 

- Currently implemented in StarPU runtime system 

- A Hypervisor dynamically shrinks / extends contexts 

 

• Further Work 

- New metrics to guide resizing 

- More intelligent sharing of resources (GPUs) 

 

- And much more! 
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Potential collaborations 

Runtime - 30 

• Extend the techniques to other runtime systems 

- Intel TBB / OS/R / Charm++ / OCR / Unistack 

 

• Experiment with code-coupling applications 

- Great expected benefit from running multiple kernels concurrently 

 

• Experiment with different hypervising strategies 

 

• Any collaboration topic related to (task-based) runtime systems for 

(hybrid) multicore machines is welcome! 


