
Performance, Scalability, and

Numerical Stability of Many-

core Algorithms

Wen-mei Hwu

University of Illinois at Urbana-Champaign

1

Cray XE6 Nodes

• Dual-socket Node

– Two AMD Interlagos

chips

• 16 core modules, 64 threads

• 313 GFs peak performance

• 64 GBs memory

– 102 GB/sec memory

bandwidth

– Gemini Interconnect

• Router chip & network

interface

• Injection Bandwidth (peak)

– 9.6 GB/sec per direction

Blue Waters contains

22,640 Cray XE6 compute

nodes.

Cray XK7 Nodes

• Dual-socket Node

– One AMD Interlagos chip

• 8 core modules, 32 threads

• 156.5 GFs peak

performance

• 32 GBs memory

– 51 GB/s bandwidth

– One NVIDIA Kepler chip

• 1.3 TFs peak performance

• 6 GBs GDDR5 memory

– 250 GB/sec bandwidth

– Gemini Interconnect

• Same as XE6 nodes

Blue Waters contains 3,072

Cray XK7 compute nodes.

Initial Performance Results

• NAMD

– 100 million atom benchmark with Langevin dynamics and PME

once every 4 steps, from launch to finish, all I/O included

– 768 nodes, Kepler+Interlagos is 3.9X faster over Interlagos-only

– 768 nodes, XK7 is 1.8X XE6

• Chroma

– Lattice QCD parameters: grid size of 483 x 512 running at the

physical values of the quark masses

– 768 nodes, Kepler+Interlagos is 4.9X faster over Interlagos-only

– 768 nodes, XK7 is 2.4X XE6

• QMCPACK

– Full run Graphite 4x4x1 (256 electrons), QMC followed by VMC

– 700 nodes, Kepler+Interlagos is 4.9X faster over Interlagos-only

– 700 nodes, XK7 is 2.7X XE6

Scalability vs. Numerical Stability

A Major Algorithm Design Challenge
Parallelism

• Parallelism to fill growing HW parallelism

Complexity and data scalability

• Operations should grown linearly with data size

Locality

• DRAM bursts and cache space utilization

Regularity

• SIMD utilization and load balance

Numerical Stability

• Pivoting for linear system solvers

5

A Comparison of TDS on Major

Platforms

© John Stratton, UIUC August 13-17 2012 6

GPU Tridiagonal System Solver

Case Study

• Hybrid Methods

– PCR-Thomas (Kim 2011,

Davidson 2011)

– CR-PCR (CUSPARSE 2012)

– Etc

• Numerically unstable

• Thomas (sequential)

• Cyclic Reduction (1 step)

• PCR (1 step)

33

222

111

00

3

2

1

0

ba

cba

cba

cb

e

e

e

e

22

00

33

22

111

00

3

2

1

0

33

222

111

00

3

2

1

0

00

0

ba

cb

ba

ba

cba

cb

e

e

e

e

ba

cba

cba

cb

e

e

e

e

33

11

22

00

33

22

11

00

3

2

1

0

33

222

111

00

3

2

1

0

0

00

00

0

ba

cb

ba

cb

ba

ba

cb

cb

e

e

e

e

ba

cba

cba

cb

e

e

e

e

Pivoting

• Judiciously swap rows to avoid bad cases

8

10-10 1010

1010 0

1010 0

10-10 1010

1010 0

0 1010

Problem Decomposition

• SPIKE (Polizzi et al)

A X = F

A = DS

D (SX) = F

D Y = F (step 1)

SX = Y (step 2)

Forming S

All i tiles call be solved in parallel

Put the stable sequential algorithm

inside each GPU thread
• Each thread will process one tile by itself with a

sequential, numerically stable pivoting algorithm

• Note that each thread accessing the first

element of its own tile will result in large, strided

accesses

11

Memory Layout Issue

33

11

22

00

33

22

11

00

3

2

1

0

33

222

111

00

3

2

1

0

0

00

00

0

ba

cb

ba

cb

ba

ba

cb

cb

e

e

e

e

ba

cba

cba

cb

e

e

e

ethread 0

thread 3

thread 2

thread 1

thread 0

thread 3

thread 2

thread 1

GPU Memory Bandwidth vs.

Stride

• SAXPY with stride:

– y[i * stride] = a * x[i * stride] + y[i * stride];

"Efficient Sparse Matrix-Vector Multiplication on CUDA"

Nathan Bell and Michael Garland, in, "NVIDIA Technical Report NVR-2008-004",,

December 2008

13

Tiles Processed by Each Thread

• Each tile:

• Layout of all tiles: (similar to ELL before

transposition)

14

Another Data Layout Alternative

ASTA

divide into tiles

15

ASTA Data Layout

16

In-place Transpostion – Step 1

// data[W][H]-->data[H][W]

parallel for (j<W)

 parallel for (i<H)

 float temp = data[j][i]; //offset = j*H + i

17

In-place Transpostion: Barrier

// data[W][H]-->data[H][W]

parallel for (j<W)

 parallel for (i<H)

 float temp = data[j][i]; //offset = j*H + i

 barrier();

18

In-place Transpostion: Step 2

// data[W][H]-->data[H][W]

parallel for (j<W)

 parallel for (i<H)

 float temp = data[j][i]; //offset = j*H + i

 barrier();

 data[i][j] = temp; //offset = i*W + j

19

AoS to ASTA Transformation

AoS to ASTA

Marshaling

Kernel

Global Memory

Throughput

(GB/s)

Fine Print

Out-of-Place 80 2x Space

In-Place Barrier

Sync
95

Tile Size

(tunable) <

On-chip Memory

20

Dynamic Tiling

© John Stratton, UIUC August 13-17 2012 21

Cost and Benefit of ASTA Layout

Marshaling

© John Stratton, UIUC August 13-17 2012 22

Error and Stability

© John Stratton, UIUC August 13-17 2012 23

Speed

© John Stratton, UIUC August 13-17 2012 24

Summary

• Designing high-performance, scalable, and

numerically stable algorithms is challenging

• Fast transposition and dynamic tiling provides

strong building blocks

• We have built the first high-performance,

scalable, and numerical stable tri-diagonal

solver many-cores

– Matches the speed of CUSPARSE

– Surpasses the data scalability of CUSPARSE

– Matches numerical stability of Intel MKL

25

THANK YOU!

ANY QUESTIONS?

26

New Kernel Development Tools

• OpenACC Accelerator Pragmas

– Wider use of GPU in large applications but less

performance in each kernel

– Cray and others

• Portland Group CUDA FORTAN compiler

• NVIDIA Thrust

• Microsoft C++AMP

VecAdd in OpenACC

1 void computeAcc(float *C, const float *A, const float *B, int n)

2 {

3

4 #pragma acc parallel loop copyin(A[0:n]) copyin(B[0:n]) copyout(C[0:n])

5 for (int i=0; i<n; i++) {

6 C[i] = A[i] + B[i];

7 }

8 }

#include <amp.h>

using namespace concurrency;

void vecAdd(float* A, float* B, float* C, int n)

{

 array_view<const float,1> AV(n,A), BV(n,B);

 array_view<float,1> CV(n,C);

 CV.discard_data();

 parallel_for_each(CV.extent, [=](index<1> i) restrict(amp)

 {

 CV[i] = AV[i] + BV[i];

 });

 CV.synchronize();

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

VecAdd in C++AMP

Thank You!

Numerical Stability

• Algorithms that can always find an appropriate

operation order and thus finding a solution to the

problem as long as it exists for any given input

values are numerically stable.

• Algorithms that fall short are numerically

unstable.

© John Stratton, UIUC August 13-17 2012 31

