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Cray XE6 Nodes 

• Dual-socket Node 

– Two AMD Interlagos 

chips 

• 16 core modules, 64 threads 

• 313 GFs peak performance 

• 64 GBs memory 

– 102 GB/sec memory 

bandwidth 

– Gemini Interconnect 

• Router chip & network 

interface 

• Injection Bandwidth (peak) 

– 9.6 GB/sec per direction 

Blue Waters contains 

22,640 Cray XE6 compute 

nodes. 



Cray XK7 Nodes 

• Dual-socket Node 

– One AMD Interlagos chip 

• 8 core modules, 32 threads 

• 156.5 GFs peak 

performance 

• 32 GBs memory 

– 51 GB/s bandwidth 

– One NVIDIA Kepler chip 

• 1.3 TFs peak performance 

• 6 GBs GDDR5 memory 

– 250 GB/sec bandwidth 

– Gemini Interconnect 

• Same as XE6 nodes 

Blue Waters contains 3,072 

Cray XK7 compute nodes. 



Initial Performance Results  

• NAMD 

– 100 million atom benchmark with Langevin dynamics and PME 

once every 4 steps, from launch to finish, all I/O included 

– 768 nodes, Kepler+Interlagos is 3.9X faster over Interlagos-only 

– 768 nodes, XK7 is 1.8X XE6 

• Chroma 

– Lattice QCD parameters: grid size of 483 x 512 running at the 

physical values of the quark masses 

– 768 nodes, Kepler+Interlagos is 4.9X faster over Interlagos-only 

– 768 nodes, XK7 is 2.4X XE6 

• QMCPACK 

– Full run Graphite 4x4x1 (256 electrons), QMC followed by VMC 

– 700 nodes, Kepler+Interlagos is 4.9X faster over Interlagos-only 

– 700 nodes, XK7 is 2.7X XE6 

 



Scalability vs. Numerical Stability 

A Major Algorithm Design Challenge 
Parallelism 

• Parallelism to fill growing HW parallelism 

Complexity and data scalability 

• Operations should grown linearly with data size 

Locality 

• DRAM bursts and cache space utilization 

Regularity 

• SIMD utilization and load balance 

Numerical Stability 

• Pivoting for linear system solvers 
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A Comparison of TDS on Major 

Platforms 
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GPU Tridiagonal System Solver 

Case Study 

• Hybrid Methods 

– PCR-Thomas (Kim 2011, 

Davidson 2011) 

– CR-PCR (CUSPARSE 2012) 

– Etc 

 

• Numerically unstable 
 

• Thomas (sequential) 

 

 

 

• Cyclic Reduction (1 step) 

 

 

 

• PCR (1 step) 
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Pivoting 

• Judiciously swap rows to avoid bad cases 
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Problem Decomposition 

 

• SPIKE (Polizzi et al) 

A X = F 

A = DS 

D (SX) = F 

D Y = F  (step 1) 

SX  = Y  (step 2) 



Forming S 

All i tiles call be solved in parallel 



Put the stable sequential algorithm 

inside each GPU thread 
• Each thread will process one tile by itself with a 

sequential, numerically stable pivoting algorithm 

 

• Note that each thread accessing the first 

element of its own tile will result in large, strided 

accesses 
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Memory Layout Issue 
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GPU Memory Bandwidth vs. 

Stride 
 

• SAXPY with stride: 

– y[i * stride ] = a * x[ i * stride ] + y[i * stride ]; 

"Efficient Sparse Matrix-Vector Multiplication on CUDA" 

Nathan Bell and Michael Garland, in, "NVIDIA Technical Report NVR-2008-004",, 

December 2008 
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Tiles Processed by Each Thread 

• Each tile: 

 

 

 

 

• Layout of all tiles: (similar to ELL before 

transposition) 
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Another Data Layout Alternative 

ASTA 

divide into tiles 
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ASTA Data Layout 
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In-place Transpostion – Step 1 

// data[W][H]-->data[H][W] 

parallel for (j<W) 

  parallel for (i<H) 

    float temp = data[j][i]; //offset = j*H + i 
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In-place Transpostion: Barrier 

// data[W][H]-->data[H][W] 

parallel for (j<W) 

  parallel for (i<H) 

    float temp = data[j][i]; //offset = j*H + i 

   barrier(); 
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In-place Transpostion: Step 2 

// data[W][H]-->data[H][W] 

parallel for (j<W) 

  parallel for (i<H) 

    float temp = data[j][i]; //offset = j*H + i 

   barrier(); 

   data[i][j] = temp; //offset = i*W + j 
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AoS to ASTA Transformation 

AoS to ASTA 

Marshaling 

Kernel  

Global Memory 

Throughput 

(GB/s) 

Fine Print 

Out-of-Place 80 2x Space 

In-Place Barrier 

Sync   
95 

Tile Size 

(tunable) <  

On-chip Memory 
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Dynamic Tiling 
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Cost and Benefit of ASTA Layout 

Marshaling 
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Error and Stability 
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Speed  
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Summary 

• Designing high-performance, scalable, and  

numerically stable algorithms is challenging 

• Fast transposition and dynamic tiling provides 

strong building blocks 

• We have built the first high-performance, 

scalable, and numerical stable tri-diagonal 

solver many-cores 

– Matches the speed of CUSPARSE 

– Surpasses the data scalability of CUSPARSE 

– Matches numerical stability of Intel MKL 

 
25 



THANK YOU! 

ANY QUESTIONS? 
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New Kernel Development Tools 

• OpenACC Accelerator Pragmas 

– Wider use of GPU in large applications but less 

performance in each kernel 

– Cray and others 

 

• Portland Group CUDA FORTAN compiler 

 

• NVIDIA Thrust 

 

• Microsoft C++AMP 

 

 

 



VecAdd in OpenACC 

1  void computeAcc(float *C, const float *A, const float *B, int n) 

2 { 

3 

4 #pragma acc parallel loop copyin(A[0:n]) copyin(B[0:n]) copyout(C[0:n])  

5 for (int i=0; i<n; i++) { 

6         C[i] = A[i] + B[i]; 

7   } 

8 } 



#include <amp.h> 

using namespace concurrency; 

  

void vecAdd(float* A, float* B, float* C, int n) 

{ 

    array_view<const float,1> AV(n,A), BV(n,B); 

    array_view<float,1> CV(n,C); 

    CV.discard_data(); 

    parallel_for_each(CV.extent, [=](index<1> i) restrict(amp) 

    { 

        CV[i] = AV[i] + BV[i]; 

    }); 

    CV.synchronize(); 

} 
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VecAdd in C++AMP 



Thank You! 



Numerical Stability 

• Algorithms that can always find an appropriate 

operation order and thus finding a solution to the 

problem as long as it exists for any given input 

values are numerically stable.  

 

• Algorithms that fall short are numerically 

unstable. 
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