

New Directions in Extreme-Scale Operating Systems and Runtime Software

Thinking......

Pete Beckman

Argonne National Laboratory

Co-Director, Northwestern-Argonne Institute for Science and Engineering Senior Fellow, Computation Institute, University of Chicago

Been There, Done That... (or at least Started That)

- Communication scalability, memory optimizations, topology mapping, threaded runtime (MPICH)
- Resilience
 - CIFTS (Coordinated Infrastructure for Fault Tolerant Systems): ANL, ORNL,
 UTK, IU, LBNL, OSU
 - MPI fault tolerance
 - Global View Resilience: DOE X-Stack 2012
 - Local checkpoint/restart, fault prediction
- Many-task, workflow, resource management, scheduling (Cobalt, ExM)
- Exascale co-design (CESAR)
- Programming models & architecture
 - New DAG-based models, memory hierarchy (LDRD)
 - Message passing + GPU
 - Efficient data movement across heterogeneous memory
 - Computer architecture (10x10, GVR)
 - Exploring Blue Gene and Intel MIC and active management
- Scalable Operating Systems & Runtime (ZeptoOS)

OS/R

- Broad Experience:
 - Memory allocators
 - Simple power measurements
 - Understanding of noise
 - I/O forwarding, collective operations
 - Very small kernels
 - Messaging
 - Fault sharing / managing

A few BG/P & BG/Q Power Experiments

BGP power distribution for QCD running on a single rack

Energy Profiling: OpenMC

OMP NUM THREADS

Approx. 30% improvement in power efficiency with 8 threads, strict affinity, compared to the system default (32 threads, no affinity)

What's Happening:

20

40

time(sec)

N=32 without affinity set (default)

The number of OMP threads is set to the maximum number. 32 threads in this case.

Threads will migrate.

N=32 with affinity set

Threads won't migrate two sockets are in use

N=8 with affinity set

Threads won't migrate
Only one socket is in use

20

40

time(sec)

80

100

80

SYSTEM VIEW

ENCLAVE VIEW

External Interfaces Application Parallel components **Application** time or space partitioning **Component** Component Library **Enclave Enclave** Programming model Specific runtime system Tools Component Component Runtime Library Runtime Runtime **Enclave Common Runtime** Power **Enclave OS** Resilience Performance Data

NODE-LOCAL VIEW

Understanding Next Generation Memory Systems (Nonvolatile Memory) (from Jeff Vetter, et al)

- Use of NV-SCAVANGER, a tool for studying potential impact of DRAM-NVRAM partitioning of an application's data structures
 - Results on Nek on 2D eddy problem
 - 31% of memory footprint accessed in pattern suitable for NVRAM, suggesting a 28% reduction in overall power consumption.

Figure 3: Read/write ratios, memory reference rates and memory object sizes for memory objects in Nek5000

D. Li, J.S. Vetter et al., "Identifying Opportunities for Byte-Addressable Non-Volatile Memory in Extreme-Scale Scientific Applications," in IEEE International Parallel and Distributed Processing Symposium (IPDPS). Shanghai: IEEEE, 2012

But... Where I *want* to go with OS/R

- Power
 - Understand it
 - Use it wisely to **GO FASTER**
 - Manage it in real time based on model of usage
- Fault
 - Multiple memory allocators for different fault responses
 - Whole enclave fault response
- Memory
 - Multiple hierarchical memory allocators with auto migration to NVRAM
 - Structured blocked memory transfers within a node (send/recv; put/get) across the hierarchy
- Messaging
 - HW support for large numbers of message-activated lightweight threads
 - lightweight threads in the kernel connected to message queues and RMI queues
 - *REAL* active messages & Put/Get
- Kernel:
 - Core specialization / Fused OS
 - Dynamic Task Graph Execution
 - Lightweight performance tools for adaptation, power, fault, etc.
 - Auto migration big.LITTLE for power / speed
- The New Argonne Parallel Programming Model
- Not interesting: Virtual Machines, writing kernels from scratch