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FLASH Basics

) More than 1.25 million
lines of code

1 Roughly 25% comments

J Infrastructure :

Mesh — UG, AMR, mesh
replication

|O — HDF5, PnetCDF, Direct
Lagrangian Particles
Runtime support

Monitoring and diagnostics

) Capabilities

Compressible Hydro, MHD
Incompressible Hydro
Gravity

EOS, Material properties
Radiation transfer
Cosmology

Source terms

o Radiation, Burn, Flame,
Laser drive, Chemistry,
Heat, Cool, Stir

Immersed boundaries



) Blocks consist of cells: guard cells
and interior cells.

. For purposes of guard cell filling,
guard cells are organized into

Computation Block and Oct-tree

guard cell regions.
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Architecture : Unit

. FLASH basic architecture unit
Component of the FLASH code providing a particular functionality

Different combinations of units are used for particular problem
setups

Publishes a public interface (API) for other units’ use.
Ex: Driver, Grid, Hydro, 10 etc

J Interaction between units governed by the Driver

J Not all units are included in all applications

Not all subunits of an included unit need to be included in all
applications

Any sub-unit or a component of a subunit can have multiple
alternative implementations

Different implementations can be picked for different applications
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How We Optimize

J Rarely too specific to the target machine
Portability is extremely important

o Large user base, runs on all kinds of platforms
o HPC platforms have short shelf life and the code base is large
o Usually simulation campaigns run on multiple platforms

Bigger dividends come from:
o Better algorithms
o Eliminating weaknesses in implementations
o Domain based problem specific intuitions

J Platform specific optimizations mostly limited to
infrastructure
Alternative implementations
Runtime or configuration time knobs



Example : Better Algorithms

) Lagrangian particles — non-native data structure, not automatically
managed by mesh, but needs intimate mesh knowledge
Early implementation — replicate oct-tree meta-data
32K procs BGL metadata wouldn’t fit in memory

Three new parallel algorithms
o Directional move for UG

o Point-to-point for displacement in AMR
= Makes use of view of the tree constructed for guard-cell fill

o Sieve for migrating data in the re-gridding event

) Mapping Lagrangian quantities to mesh

Virtual particles



Example: Eliminate Weakness in Implementation

J PARAMESH has a “Digital Orrery” algorithm for updating some
block neighbor information.

The “Digital Orrery” hands meta-information about blocks around until
every PE has seen it.

J PARAMESH builds face neighbors information without the Orrery

. A few extra nearest neighbor communications get edge and vertex
neighbors

Optimization of regridding event time for one step per block
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Example: Eliminate Weakness in Implementation-10
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2 Motivating factor: up to 35% runtime spent in I/O!
- Limiting factors :

a Collective I/O Silent error, data corruption

A Fix in the library

ad FLASH AMR data restriction — reuse of metadata
2 Modification of FLASH file format
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Example: Utilize Domain Knowledge

(J The GCD Simulation — computational challenges

J The difference in scales

! The whole star - 8 km resolution, flame thickness
ranges from 1 mm to a few cm.

(J The Multi-pole Self Gravity solver needs many
moments to keep the star from oscillating

 Over-refinement, too many blocks
J Load imbalance in the Flame

(J The initialization challenge

J Particles distributed based on density

J As bubble grows, all new blocks get added
along the bubble

(J The regions outside the bubble don’t refine; so

blocks concentrate on a few processors :
Memory crunch




Optimizations

] Gravity Solver

Make the bubble rise along the Z axis.
o Higher moments need fewer terms because of symmetry
o Reduce the subsampling
o Reduced the gravity cost by more than a factor of 10

] The Flame

Pre-compute the NSE states
o Changed the computation from iteration to table lookup
o Saving of another order of magnitude in flame calculation

J The Lagrangian Tracer Particles

o Force blocks to refine, even though hydro doesn’t require it



The Ultimate Black Magic — Refinement Criterion

(1 When the bubble is rising to
the surface, same criterion
applied all over the domain

Not much happening
anywhere except close to the
bubble

(] Later when the fronts are
moving around, there is also
action elsewhere

We are not interested in that
action

Increases number of blocks
Application won’t fit

(J Define regions (a cone here)
to refine.

Sometimes force refinement
to capture action at very
small scales




Current Optimizations

1 MPI + OpenMP Hybrid mode

Coarse — give a separate block to each thread

Fine — apply directives to performance critical loops

o Another general possibility-fragment blocks
= Not possible without modifications because of guard-cell overheads

o Replace in-place calculation with a separate destination blocks
= Not production ready

J Communication reduction through mesh replication

Mostly used for radiation with flux limited diffusion

J Runtime knobs for trial and error for optimal ranks / thread
combination



Future Optimizations

I Requirements
Maintainable code, support large user community
Reliable results within quantified limits
Retain code portability and performance
Measurable and predictable performance

I The challenges in meeting the requirements
Ongoing

o Modularity and performance
o Readabale/maintainable code and portability

New ones

o Easy adaptability to new and heterogeneous architectures and complex
multiphysics capabilities

o Regression test based verification and tolerance for non reproducibility



One Possible Approach

Provide some foothold for abstractions

) Separate complexity : Example of a deterministic code
Physical model, and its numerical algorithms

Implementation — data structures and therefore memory access
patterns

Parallelism

J Expose parallelism opportunities
Domain decomposition
Task parallelism
Operation parallelism



Implications of Data Structures

) At present we get a block, cell coordinates and other relevant grid
meta data explicitly
Assumption is solver knows what it wants and gets it
Solver has to make receiving data structures conform to the mesh -> has
to know them
) Solver could specify mesh data it wants for each cell and ask the
grid to fill it
higher meta-data overheads if done on a per cell basis

if not on per cell basis then solver has to decide on loop bounds for
calculations

The abstraction layers should do appropriate fusions and code
transformations and use dynamic runtime management to orchestrate
the computation for performance




Mapping to Programming Abstractions
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Specific Projects : Memory

J Memory optimization
J Replace in-place computations
J Make blocks arbitrarily small
) Stage data for cache
J Fuse blocks as needed

i
L

e
i

e
i

il =




Specific Projects

) Fault Tolerance — soft errors

AMR can provide low fidelity solution simultaneous to high fidelity
solution

In non-critical parts of the domain use for reconstruction

Expected outcome
o Help devise the interface for notification to app
o Study the overall degradation in solution
o Find the limits of error tolerance

J Communication reduction
) Selective mesh replication

) Different refinement patterns for different operators

Especially beneficial if only one operator is more demanding of
resolution



