IBM Research - Ireland

Techniques to improve the
scalability of Checkpoint-Restart

Bogdan Nicolae
Exascale Systems Group
IBM Research Ireland

Smarter

—
rechnology Centre © 2012 IBM Corporation

IBM Research - Ireland

A few words about the lab and team
Challenges of Exascale
A case for Checkpoint-Restart

Two techniques to improve the scalability of Checkpoint-Restart

— Leveraging memory access patterns and bounded COW buffers to
optimize asynchronous incremental checkpointing

— Collective inline memory contents deduplication
Conclusions

Future work / Collaboration opportunities

Smarter
r2chnology Centre © 2012 IBM Corporation g

IBM Research - Ireland

The smarter cities technology centre

Classic HPC (1)
)] (Government and
— Simulations agency

_ administration
Data centric
computing (2)

=marter buildings and
urban planning

Planning and

_ . . Public management Environmental
Data-intensive safety
— Streaming
— Data warehousing
. S0Cia
SpeleICS programs Human Infrastructure
— Convergence of Energy
(1) and (2) and water
. Blg data Healthcare

Education Transportation

SmarterCities '
-T'EChno'ogy Centre © 2012 IBM Corporation 2

IBM Research - Ireland

The Exascale Team

scalable
corﬂgg‘g{ng argtirt?gr? ing
é) algorithms

fault &
‘.ete rogeneous

accelerators

YT (GPU/FPGA)
discrete performance
agent event analysis
based simulatio
-

resource
allocation &
management

programming

languages imulation

programming
communlcation
/O (storage
techniques

PTT 2

Avinash Bogdan Mustafa Georgios Kostas Plerre Rolf Shoukat

passing

Malik Nicolae Rafique Thelodoro- Katrinis Lemarinier Riesen Ali
poulos

Works at system and runtime level
Gets workloads from application teams

Leverages new prototypes from hardware teams
Smarter

Tachnology Centre © 2012 IBM Corporation

IBM Research - Ireland

Collaborations

IDA funded
collaborations

No collaboration
at this time

’ @S Resource
p ! Management

S . ')

Interconnects
Networking

r
A

;’,!?' ¥

Simulation ¥ 4
PN~
Performance

IBM >

—

Fault
Tolerance

Informal,
external
collaborations

SmarterCities

iechnology Centre © 2012 IBM Corporation

IBM Research - Ireland

Massive 4000x increase in concurrency
— Mostly within the same compute node, hybrid systems likely
Imbalance between compute power and memory
— 500x compute, only 30x memory despite increasingly data-intensive
— Need to make better use memory and drive its costs down
Huge energy consumption
— Power-awareness in applications and runtime
Poor scalability of I/O and data management
— Need new I/O mechanisms and storage systems
— Leverage local storage (SSDs, NVMs, etc.)
High component failure
— Must improve system resilience and manage component failure
— Checkpoint/Restart not scalable in its current form

Smarter
7echnology Centre © 2012 IBM Corporation g

IBM Research - Ireland

Checkpoint-Restart: is it really dead?

What are the current
limitations?

— Blocking writes
— Too much data

— Coordinated protocols
— |/O bottlenecks due to
parallel FS
Directions f
— Asynchronous techniques

— Reduction of checkpointing
data

— Uncoordinated protocols

— Leverage local storage
(make it resilient)

X

o

SmarterCities
T2chnology Centre © 2012 IBM Corporation .

IBM Research - Ireland

Motivation: state-of-art asynchronous technigues have drawbacks

— Full copy, then flush in the background
* High copy overhead
* High memory utilization
* No synchronization overhead
— Copy-on-write
* Less copy overhead
* High memory utilization
* Monitoring overhead
— Zero-copy
* No copy overhead or memory utilization
* High synchronization overhead

What we ideally want: minimize memory utilization without paying
too much for synchronization/copy overhead

Smarter
«2chnology Centre © 2012 IBM Corporation g

IBM Research - Ireland

Bounded copy-on-write buffer
— Enables the app to specify how much mem to reserve for COW

Monitor memory writes between ckpt requests (i.e. “epoch”)

— Classify pages:
* RED: COW buffer full, app had to wait for page to be flushed
. : COW not full, app could do COW and then continue

* GREEN: page was flushed before app wrote to it
* BLUE: checkpoint already completed before app wrote to page

Leverage monitoring info to prioritize flushes
— Flush pages of in current COW buffer
— Otherwise use page color from previous epoch: from “hot” to “cold”

Implicit incremental support due to monitoring info

Smarter
r2chnology Centre © 2012 IBM Corporation g

IBM Research - Ireland

Compute node Compute node

Application processes Application processes

1

1 1

: < Unmodified computation > < Modified computation : < Unmodified computation > < Modified computation
: ;

1 1

malloc malloc_protected malloc malloc_protected
free free_protected free free_protected

1 1

1 1

1 ckpt T ckpt

' Page manager ! Page manager

1 signal 1 signal CHECKPOINT
1 1

Local commit Remote commit Remote commit Local commit

Shared repository >

Py

CHECKPOINT

N

Page manager does monitoring and flushing
— CHECKPOINT primitive initiates checkpoint
— Writes trapped using SEGFAULT

Explicit protection of memory contents using allocation primitives
Implicit protection of memory contents using a modified jemalloc

Smarter
7echnology Centre © 2012 IBM Corporation g

IBM Research - Ireland

Experimetal setup
— Platform: G5K
— App: Benchmarks + CM1 (only CM1 presented in this talk)
— Checkpoints at regular intervals (total of 3)

Experiments

— Compare three approaches:
* Synchronous checkpointing
* Asynchronous checkpointing without leveraging access pattern
* Our approach
— We are interested in:
* Performance results: duration of checkpointing and impact on app
* How the benefits of our approach depend on COW buffer size

Smarter
7echnology Centre © 2012 IBM Corporation e

IBM Research - Ireland

45 120
& 110}
@ 40 ¢ . o
o —~—— E 100t
£ c
+ kel
2 | 3
..E [0)
3 3 80
Q
£ 2
0 30 2
S £
9 &
our approach —+— o
async-no-pattern £ 50
sync —%—
20 1 1 1 T T I 40
0 5 10 15 20 25 30 35

Number of processes

Conclusions

— Sync ckpt is slow has poor scalability
— Naive async ckpt takes longer but overlapping reduces overhead
— Adaptation to access pattern further reduces overhead by almost 50%

compared to the naive async approach

Smarter

Technology Centre

© 2012 IBM Corporation

((o]
o
T

70 |

4

T T I T
our approach ——
async-no-pattern
sync —x—

5 10 15 20 25 30 35
Number of processes

.|

IBM Research - Ireland

Reduction in execution time (%)

Smarter

80

70 |

60

50

40 r

30 r

20 r

10 |

I our-abproacﬁ EZZZEI
async-no-pattern

calkl

SEBEERRLEEEEEERRLEEEEH

DK AAKAAHK KA AAAA AKX AL A AKX AAKAA

XX

No of page waits (% of total)

o0MB

Conclusions
— If COW buffer is large, access pattern makes little difference
— Huge reduction (>50%) in RED pages for small COW buffer size
— When memory is scarce, our approach has substantial benefits

7echnology Centre

iMB 4MB 16MB 32MB 64MB 256MB
Copy-on-write buffer size

© 2012 IBM Corporation

70

60

50

40

30

20 r

10

ou r—apprbach o]
2 async-no-pattern

il

oMB 1MB 4MB 16MB 32MB 64MB 256MB
Copy-on-write buffer size

<l

IBM Research - Ireland

Motivation: lots of checkpointing data generated by HPC aplications
contains duplicates (e.g. up to 70% according to the HPC data
deduplication study by D. Meister et al., SC'12)

State of art in de-duplication for HPC

— Wast majority are offline approaches (i.e. applied after checkpoints
were written to parallel FS)

— Inline approaches exist, but they operate locally on the memory space
of individual processes

Our idea: look at the collective memory space of all processes and
try to identify also duplicates belonging to different processes. Why
IS this challenging?

— Huge space to look for duplicates => high performance overhead

— Not easy to parallelize efficiently

— Metadata about identified duplicates is huge itself!

Smarter
7ezhnology Centre © 2012 IBM Corporation =

[[en]]
IHH]
il
[}

IBM Research - Ireland

i

Our approach(1)

Search for top-K most popular pages only
— Perform a local deduplication step

— With all remaining pages from all processes perform a global
reduction to obtain top-K

— Broadcast top-K most popular pages to all processes for further
deduplication

— Logarithmic approches (in proc #) can be used (e.g. MPI all_reduce)
Example with two processes, K=3:

Top 3
]
Broadcast
] B e e
B e B]
Bl]

Original contents After local dedup

Smarter
7echnology Centre © 2012 IBM Corporation =

[[en]]
IFTH)

IBM Research - Ireland

i

Our approach (2)

What to do once we know top-K?
— Basically store only one copy
— ...But who stores what?

— Load balancing is crucial in order to avoid waiting for slow
checkpointers that are responsible for more pages than others

— We propose an algorithm to do that during reduction
Example with two processes, K=3:

[]]
rops L T
Broadcast - - -
—»
[]
[]
Load balanced Unbalanced

Smarter
7echnology Centre © 2012 IBM Corporation -

IBM Research - Ireland

Experimetal setup
— Platform: G5K (INRIA), Shamrock (IBM Ireland)
— App: Benchmarks + CM1 (only CM1 presented in this talk)
— Checkpoints at regular intervals (total of 3)

Experiments

— Compare four approaches:
* No dedup
* Incremental
* Local dedup
* Collective dedup using our approach
— We are interested in:
* Performance overhead: impact on app performance
* How much storage space can be saved
* How well our load balancing strategy performs

Smarter
7echnology Centre © 2012 IBM Corporation e

IBM Research - Ireland

800 T T T T T T T 800
o) | _ _ B o)
2 700 fF 7 ° = & S o= = g a
0)
2 2
§ 600 X 8 600 ¥ —— o —x *
Q
S 500 | — * * * ;
a o 500
© our-approach —+— © our-approach —+—
© 400 local-dedup © local-dedup
2 inc-tracking —%— O 400 | inc-tracking —%—
_g' 300 + full-dump —8— _g— full-dump —&—
S i G 300
S 200 o
N N 4
(%] (2}
o 100 pa 200 \,_/ + : —+
< . . } N 2
0 1 La| T L T L — 100 I 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
Number of processes Number of processes

Conclusions
— Local dedup is better than incremental => overwrites with same data
— Massive amounts of duplicate data across different processes

— Thanks to load balancing, even the most loaded process needs to
save half of checkpointing data compared to local deduplication

Smarter
7echnology Centre © 2012 IBM Corporation k3

IBM Research - Ireland

Increase in execution time (s)

700 . . . 18 ! : .
our-approach —+— Threshold=2"16 —+—
local-dedup % 16 | Threshold=2"17
600 - inc-tracking —»— |1 o Threshold=2"18 —%—
full-dump —8— O 14t
500 F & o 5 g—2 a
w 12
D:I
400 'p B % :II 10 o
<
300 f % 81
2 6t
200 g
— 4 -
£
0 S 0

0 100 200 300 400

600 700

Number of processes

50 100 150 200 250 300
Number of processes

Conclusions
— ALL_REDUCE timings confirm logarithmic cost of top-K calculation

— Performance overhead is reduced by more than 50% compared to
local dedup, and by much more compared to the others

) |

Smarter

-, ~
rechnology Centre © 2012 IBM Corporation

IBM Research - Ireland

Checkpoint-Restart is not yet dead :)

Two directions have high potential for improvement

— Leveraging access pattern history to improve asynchronous
checkpointing with bounded COW buffer

— Collective inline memory deduplication
Results show

— Adaptation to access pattern reduces increase in execution time due

to checkpointing for real life apps by almost 50% compared to the
naive async approach

— Large reductions in storage space (up to 90%) and performance

overhead (at least 50%) for real apps that exhibit high duplication of
memory contents

Smarter
r2chnology Centre © 2012 IBM Corporation e

IBM Research - Ireland

Related to results presented so far

— How to best combine the two techniques for additional overall
reduction of performance overhead

— Extend the collective deduplication scheme to leverage natural
replication due to duplication to provide resilience

— Study more HPC apps and correlate duplication to semantics of
memory contents to understand its nature

Unrelated to current results

— Lightweight storage systems that leverage local storage (e.g. memory
allocators that combine RAM with local storage)

— HPC on the Cloud: how to make virtualization an ally instead of
enemy

Looking for collaborations in these areas
— Contact: bogdan.nicolae @ie.ibm.com
— Web: http.//researcher.ibm.com/person/ie-bogdan.nicolae

Smarter
r2chnology Centre © 2012 IBM Corporation k3

mailto:bogdan.nicolae@ie.ibm.com

	What you should have for preliminary discussion (Workshop)
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

