
IBM Research - Ireland

© 2012 IBM Corporation1

Techniques to improve the
scalability of Checkpoint-Restart

Bogdan Nicolae
Exascale Systems Group

IBM Research Ireland

IBM Research - Ireland

© 2012 IBM Corporation2

Outline

• A few words about the lab and team

• Challenges of Exascale

• A case for Checkpoint-Restart

• Two techniques to improve the scalability of Checkpoint-Restart
– Leveraging memory access patterns and bounded COW buffers to

optimize asynchronous incremental checkpointing

– Collective inline memory contents deduplication

• Conclusions

• Future work / Collaboration opportunities

IBM Research - Ireland

© 2012 IBM Corporation3

The smarter cities technology centre

• Classic HPC (1)
– Simulations

• Data centric
computing (2)

– Data-intensive

– Streaming

– Data warehousing

• Specifics
– Convergence of

(1) and (2)
– Big data

IBM Research - Ireland

© 2012 IBM Corporation4

The Exascale Team

• Works at system and runtime level

• Gets workloads from application teams

• Leverages new prototypes from hardware teams

IBM Research - Ireland

© 2012 IBM Corporation5

Collaborations

IBM Research - Ireland

© 2012 IBM Corporation6

Challenges of Exascale

• Massive 4000x increase in concurrency
– Mostly within the same compute node, hybrid systems likely

• Imbalance between compute power and memory
– 500x compute, only 30x memory despite increasingly data-intensive

– Need to make better use memory and drive its costs down

• Huge energy consumption
– Power-awareness in applications and runtime

• Poor scalability of I/O and data management
– Need new I/O mechanisms and storage systems
– Leverage local storage (SSDs, NVMs, etc.)

• High component failure
– Must improve system resilience and manage component failure

– Checkpoint/Restart not scalable in its current form

IBM Research - Ireland

© 2012 IBM Corporation7

Checkpoint-Restart: is it really dead?

• What are the current
limitations?

– Blocking writes

– Too much data

– Coordinated protocols
– I/O bottlenecks due to

parallel FS

• Directions
– Asynchronous techniques

– Reduction of checkpointing
data

– Uncoordinated protocols

– Leverage local storage
(make it resilient)

IBM Research - Ireland

© 2012 IBM Corporation8

Contribution #1: Leveraging Memory Access Patterns for
Adaptive Asynchronous Incremental Checkpointing

• Motivation: state-of-art asynchronous techniques have drawbacks
– Full copy, then flush in the background

• High copy overhead

• High memory utilization

• No synchronization overhead

– Copy-on-write
• Less copy overhead

• High memory utilization

• Monitoring overhead

– Zero-copy
• No copy overhead or memory utilization

• High synchronization overhead

• What we ideally want: minimize memory utilization without paying
too much for synchronization/copy overhead

IBM Research - Ireland

© 2012 IBM Corporation9

Contribution #1: Our approach

• Bounded copy-on-write buffer
– Enables the app to specify how much mem to reserve for COW

• Monitor memory writes between ckpt requests (i.e. “epoch”)
– Classify pages:

• RED: COW buffer full, app had to wait for page to be flushed

• YELLOW: COW not full, app could do COW and then continue

• GREEN: page was flushed before app wrote to it

• BLUE: checkpoint already completed before app wrote to page

• Leverage monitoring info to prioritize flushes
– Flush pages of in current COW buffer

– Otherwise use page color from previous epoch: from “hot” to “cold”

• Implicit incremental support due to monitoring info

IBM Research - Ireland

© 2012 IBM Corporation10

Contribution #1: Architecture and implementation

• Page manager does monitoring and flushing
– CHECKPOINT primitive initiates checkpoint

– Writes trapped using SEGFAULT

• Explicit protection of memory contents using allocation primitives

• Implicit protection of memory contents using a modified jemalloc

IBM Research - Ireland

© 2012 IBM Corporation11

Results: preliminaries

• Experimetal setup
– Platform: G5K

– App: Benchmarks + CM1 (only CM1 presented in this talk)

– Checkpoints at regular intervals (total of 3)

• Experiments
– Compare three approaches:

• Synchronous checkpointing

• Asynchronous checkpointing without leveraging access pattern

• Our approach

– We are interested in:
• Performance results: duration of checkpointing and impact on app

• How the benefits of our approach depend on COW buffer size

IBM Research - Ireland

© 2012 IBM Corporation12

Results: performance evaluation (16 MB COW buffer, 400MB/process)

• Conclusions
– Sync ckpt is slow has poor scalability
– Naïve async ckpt takes longer but overlapping reduces overhead

– Adaptation to access pattern further reduces overhead by almost 50%
compared to the naive async approach

IBM Research - Ireland

© 2012 IBM Corporation13

Results: impact of leveraging access pattern for variable COW buffer size

• Conclusions
– If COW buffer is large, access pattern makes little difference

– Huge reduction (>50%) in RED pages for small COW buffer size

– When memory is scarce, our approach has substantial benefits

IBM Research - Ireland

© 2012 IBM Corporation14

Contribution #2: Collective inline memory deduplication of checkpointing
data

• Motivation: lots of checkpointing data generated by HPC aplications
contains duplicates (e.g. up to 70% according to the HPC data
deduplication study by D. Meister et al., SC'12)

• State of art in de-duplication for HPC
– Wast majority are offline approaches (i.e. applied after checkpoints

were written to parallel FS)

– Inline approaches exist, but they operate locally on the memory space
of individual processes

• Our idea: look at the collective memory space of all processes and
try to identify also duplicates belonging to different processes. Why
is this challenging?

– Huge space to look for duplicates => high performance overhead

– Not easy to parallelize efficiently

– Metadata about identified duplicates is huge itself!

IBM Research - Ireland

© 2012 IBM Corporation15

Our approach(1)

• Search for top-K most popular pages only
– Perform a local deduplication step

– With all remaining pages from all processes perform a global
reduction to obtain top-K

– Broadcast top-K most popular pages to all processes for further
deduplication

– Logarithmic approches (in proc #) can be used (e.g. MPI all_reduce)

• Example with two processes, K=3:

Broadcast

Top 3

Original contents After local dedup

IBM Research - Ireland

© 2012 IBM Corporation16

Our approach (2)

• What to do once we know top-K?
– Basically store only one copy

– ...But who stores what?

– Load balancing is crucial in order to avoid waiting for slow
checkpointers that are responsible for more pages than others

– We propose an algorithm to do that during reduction

• Example with two processes, K=3:

Broadcast

Top 3

Load balanced Unbalanced

IBM Research - Ireland

© 2012 IBM Corporation17

Results: preliminaries

• Experimetal setup
– Platform: G5K (INRIA), Shamrock (IBM Ireland)

– App: Benchmarks + CM1 (only CM1 presented in this talk)

– Checkpoints at regular intervals (total of 3)

• Experiments
– Compare four approaches:

• No dedup

• Incremental

• Local dedup

• Collective dedup using our approach

– We are interested in:
• Performance overhead: impact on app performance

• How much storage space can be saved

• How well our load balancing strategy performs

IBM Research - Ireland

© 2012 IBM Corporation18

Results: storage space reduction (728MB/process, 24 cores/node)

• Conclusions
– Local dedup is better than incremental => overwrites with same data

– Massive amounts of duplicate data across different processes

– Thanks to load balancing, even the most loaded process needs to
save half of checkpointing data compared to local deduplication

IBM Research - Ireland

© 2012 IBM Corporation19

Results: performance overhead (728MB/process, 24 cores/node)

• Conclusions
– ALL_REDUCE timings confirm logarithmic cost of top-K calculation

– Performance overhead is reduced by more than 50% compared to
local dedup, and by much more compared to the others

IBM Research - Ireland

© 2012 IBM Corporation20

Conclusions

• Checkpoint-Restart is not yet dead :)

• Two directions have high potential for improvement
– Leveraging access pattern history to improve asynchronous

checkpointing with bounded COW buffer

– Collective inline memory deduplication

• Results show
– Adaptation to access pattern reduces increase in execution time due

to checkpointing for real life apps by almost 50% compared to the
naive async approach

– Large reductions in storage space (up to 90%) and performance
overhead (at least 50%) for real apps that exhibit high duplication of
memory contents

IBM Research - Ireland

© 2012 IBM Corporation21

Future work

• Related to results presented so far
– How to best combine the two techniques for additional overall

reduction of performance overhead

– Extend the collective deduplication scheme to leverage natural
replication due to duplication to provide resilience

– Study more HPC apps and correlate duplication to semantics of
memory contents to understand its nature

• Unrelated to current results
– Lightweight storage systems that leverage local storage (e.g. memory

allocators that combine RAM with local storage)

– HPC on the Cloud: how to make virtualization an ally instead of
enemy

Looking for collaborations in these areas
– Contact: bogdan.nicolae@ie.ibm.com

– Web: http://researcher.ibm.com/person/ie-bogdan.nicolae

mailto:bogdan.nicolae@ie.ibm.com

	What you should have for preliminary discussion (Workshop)
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

