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A few words about the lab and team
Challenges of Exascale
A case for Checkpoint-Restart

Two techniques to improve the scalability of Checkpoint-Restart

— Leveraging memory access patterns and bounded COW buffers to
optimize asynchronous incremental checkpointing

— Collective inline memory contents deduplication
Conclusions

Future work / Collaboration opportunities
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Massive 4000x increase in concurrency
— Mostly within the same compute node, hybrid systems likely
Imbalance between compute power and memory
— 500x compute, only 30x memory despite increasingly data-intensive
— Need to make better use memory and drive its costs down
Huge energy consumption
— Power-awareness in applications and runtime
Poor scalability of I/O and data management
— Need new I/O mechanisms and storage systems
— Leverage local storage (SSDs, NVMs, etc.)
High component failure
— Must improve system resilience and manage component failure
— Checkpoint/Restart not scalable in its current form
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Checkpoint-Restart: is it really dead?

What are the current
limitations?

— Blocking writes
— Too much data

— Coordinated protocols
— |/O bottlenecks due to
parallel FS
Directions f
— Asynchronous techniques

— Reduction of checkpointing
data

— Uncoordinated protocols

— Leverage local storage
(make it resilient)
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Motivation: state-of-art asynchronous technigues have drawbacks

— Full copy, then flush in the background
* High copy overhead
* High memory utilization
* No synchronization overhead
— Copy-on-write
* Less copy overhead
* High memory utilization
* Monitoring overhead
— Zero-copy
* No copy overhead or memory utilization
* High synchronization overhead

What we ideally want: minimize memory utilization without paying
too much for synchronization/copy overhead
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Bounded copy-on-write buffer
— Enables the app to specify how much mem to reserve for COW

Monitor memory writes between ckpt requests (i.e. “epoch”)

— Classify pages:
* RED: COW buffer full, app had to wait for page to be flushed
. : COW not full, app could do COW and then continue

* GREEN: page was flushed before app wrote to it
* BLUE: checkpoint already completed before app wrote to page

Leverage monitoring info to prioritize flushes
— Flush pages of in current COW buffer
— Otherwise use page color from previous epoch: from “hot” to “cold”

Implicit incremental support due to monitoring info
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Compute node Compute node

Application processes Application processes
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Page manager does monitoring and flushing
— CHECKPOINT primitive initiates checkpoint
— Writes trapped using SEGFAULT

Explicit protection of memory contents using allocation primitives
Implicit protection of memory contents using a modified jemalloc
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Experimetal setup
— Platform: G5K
— App: Benchmarks + CM1 (only CM1 presented in this talk)
— Checkpoints at regular intervals (total of 3)

Experiments

— Compare three approaches:
* Synchronous checkpointing
* Asynchronous checkpointing without leveraging access pattern
* Our approach
— We are interested in:
* Performance results: duration of checkpointing and impact on app
* How the benefits of our approach depend on COW buffer size
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Conclusions

— Sync ckpt is slow has poor scalability
— Naive async ckpt takes longer but overlapping reduces overhead
— Adaptation to access pattern further reduces overhead by almost 50%

compared to the naive async approach
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Reduction in execution time (%)
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Conclusions
— If COW buffer is large, access pattern makes little difference
— Huge reduction (>50%) in RED pages for small COW buffer size
— When memory is scarce, our approach has substantial benefits
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Motivation: lots of checkpointing data generated by HPC aplications
contains duplicates (e.g. up to 70% according to the HPC data
deduplication study by D. Meister et al., SC'12)

State of art in de-duplication for HPC

— Wast majority are offline approaches (i.e. applied after checkpoints
were written to parallel FS)

— Inline approaches exist, but they operate locally on the memory space
of individual processes

Our idea: look at the collective memory space of all processes and
try to identify also duplicates belonging to different processes. Why
IS this challenging?

— Huge space to look for duplicates => high performance overhead

— Not easy to parallelize efficiently

— Metadata about identified duplicates is huge itself!
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Our approach(1)

Search for top-K most popular pages only
— Perform a local deduplication step

— With all remaining pages from all processes perform a global
reduction to obtain top-K

— Broadcast top-K most popular pages to all processes for further
deduplication

— Logarithmic approches (in proc #) can be used (e.g. MPI all_reduce)
Example with two processes, K=3:

Top 3
]
Broadcast
] B e e
B e B ]
Bl ]

Original contents  After local dedup
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Our approach (2)

What to do once we know top-K?
— Basically store only one copy
— ...But who stores what?

— Load balancing is crucial in order to avoid waiting for slow
checkpointers that are responsible for more pages than others

— We propose an algorithm to do that during reduction
Example with two processes, K=3:

[ ] ]
rops L T
Broadcast - - -
—»
[ ]
[ ]
Load balanced Unbalanced
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Experimetal setup
— Platform: G5K (INRIA), Shamrock (IBM Ireland)
— App: Benchmarks + CM1 (only CM1 presented in this talk)
— Checkpoints at regular intervals (total of 3)

Experiments

— Compare four approaches:
* No dedup
* Incremental
* Local dedup
* Collective dedup using our approach
— We are interested in:
* Performance overhead: impact on app performance
* How much storage space can be saved
* How well our load balancing strategy performs
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Conclusions
— Local dedup is better than incremental => overwrites with same data
— Massive amounts of duplicate data across different processes

— Thanks to load balancing, even the most loaded process needs to
save half of checkpointing data compared to local deduplication
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Increase in execution time (s)
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Conclusions
— ALL_REDUCE timings confirm logarithmic cost of top-K calculation

— Performance overhead is reduced by more than 50% compared to
local dedup, and by much more compared to the others

) |

Smarter

-, ~
rechnology Centre © 2012 IBM Corporation




IBM Research - Ireland

Checkpoint-Restart is not yet dead :)

Two directions have high potential for improvement

— Leveraging access pattern history to improve asynchronous
checkpointing with bounded COW buffer

— Collective inline memory deduplication
Results show

— Adaptation to access pattern reduces increase in execution time due

to checkpointing for real life apps by almost 50% compared to the
naive async approach

— Large reductions in storage space (up to 90%) and performance

overhead (at least 50%) for real apps that exhibit high duplication of
memory contents
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Related to results presented so far

— How to best combine the two techniques for additional overall
reduction of performance overhead

— Extend the collective deduplication scheme to leverage natural
replication due to duplication to provide resilience

— Study more HPC apps and correlate duplication to semantics of
memory contents to understand its nature

Unrelated to current results

— Lightweight storage systems that leverage local storage (e.g. memory
allocators that combine RAM with local storage)

— HPC on the Cloud: how to make virtualization an ally instead of
enemy

Looking for collaborations in these areas
— Contact: bogdan.nicolae @ie.ibm.com
— Web: http.//researcher.ibm.com/person/ie-bogdan.nicolae
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