Charm++ update

Laxkinant “Sanjay” Kale
Parallel Programming Laboratory
Univ of lllinois

PPL

U10C

Our Guiding Principles: in Charm

* No reliance on magic
— (at least until you learn the trick)

— Parallelizing compilers have achieved close to
technical perfection, but are not enough

— Sequential programs obscure too much information

« Seek an optimal division of labor between the
system and the programmer

« Design abstractions based solidly on use-cases

— Application-oriented yet computer-science centered
approach

Object based over-decomposition

Let the programmer decompose computation
into objects
— Work units, data-units, composites

Let an intelligent runtime system assign

objects to processors
— RTS can change this assignment during execution

This empowers the RTS

— The research agenda started with the simple
precept above, just before NAMD,

— Continued until now!

Object-based over-decomposition: Charm++

* Multiple “indexed collections” of C++ objects

* Indices can be multi-dimensional and/or sparse

* Programmer expresses communication between objects
— with no reference to processors

System implementation

I

User View

Benefits of Charm++ model

Over-decomposition Scalable Tools
Automatic overlap of

l Communication and Computation

message-driver
execution

compositionality

Emulation for
Perf Prediction

Migratability

] Dynamic load balancing
Introspective and (topology-aware, scalable)

adaptive runtime system

Temperature/Power/Energy
Optimizations

Charm++ and CSE Applications

Well-known Biophysics
molecular simulations App

Nano-Materials..

‘ \\ ~’.. .‘\\-:/ /;,.s"?‘._m"'
,\NAMD Gordon Bell Award, 2002
: ,‘-.‘,\L\ X H Y,

e

|

i R

v Y
WAk

=

'QJ\I

W e e
enAtgn;, Synergy

Issues \

SO £ e J |
Enabling CS technology of parallel objects and intelligent runtime
systems has led to several CSE collaborative applications

- System
ChaNGa ‘B

S,Ro ket
Computational ébace-Time imu atl\OH

Ast f I
stronomy “Meshing” CharmSimdemics
| —

Stochastic
Optimization

Adaptive Runtime Systems

« Decomposing program into a large number of
WUDUs empowers the RTS, which can:

— Migrate WUDUs at will
— Schedule DEBS at will

— Instrument computation and communication at the
level of these logical units
« WUDU x communicates y bytes to WUDU z every iteration
« SEB A has a high cache miss ratio
— Maintain historical data to track changes in application
behavior
« Historical => previous iterations
« E.g., to trigger load balancing

Utility for Multi-cores, Many-cores,
Accelerators:

« Objects connote and promote locality

« Message-driven execution
— A strong principle of prediction for data and code use

— Much stronger than principle of locality
« Can use to scale memory wall:
« Prefetching of needed data:
— into scratch pad memories, for example

Charm++ Bo

11/20/12

Impact on communication

e Current use of communication network:
— Compute-communicate cycles in typical MPI apps
— So, the network is used for a fraction of time,
— and is on the critical path

* So, current communication networks are
over-engineered for by necessity

« With overdecomposition

— Communication is spread over an iteration

— Also, adaptive overlap of communication and
computation

Compositionality

« It is important to support parallel composition
— For multi-module, multi-physics, multi-paradigm
applications...
 What | mean by parallel composition
— B || C where B, C are independently developed modules
— B is parallel module by itself, and so is C
— Programmers who wrote B were unaware of C
— No dependency between B and C

« This is not supported well by MPI

— Developers support it by breaking abstraction
boundaries

« E.g., wildcard recvs in module A to process messages for
module B

— Nor by OpenMP implementations:
o PPL

UI0C

Without message-driven execution
(and virtualization), you get either:

Space-division

Time

1 PPL

UI0C

OR: Sequentialization

Time

> PPL

UI0C

Parallel Composition: AT1; (B || C); A2

G
Recall: Different modules, written in different
languages/paradigms, can overlap in time

and on processors, without programmer
having to worry about this explicitly

PPL

UI0C

Decomposition Independent of numCores

« Rocket simulation example under traditional MPI

Solid

Fluid

1

Solid

Fluid

2

With migratable-objects:

Solid,

Solid,

Solid

Fluid

Fluid,

Solid,

Fluid,

P

Solid,

Fluid,,

— Benefit: load balance, communication optimizations, modularity

11 PPL

UI0C

Object Based Over-decomposition:
AMPI

« Each MPI process is implemented as a user-level
thread

 Threads are light-weight and migratable!
— <1 microsecond context switch time, potentially >100k threads per core

« Each thread is embedded in a charm++ object (chare)

MPI
processes

Virtual
Processors
(user-level
migratable

J threads)

15 PPL

UI0C

Saving Cooling Energy

Easy: increase A/C setting
— But: some cores may get too hot

Reduce frequency if temperature is high
— Independently for each core or chip

This creates a load imbalance!

Migrate objects away from the slowed-down Procs
— Balance load using an existing strategy
— Strategies take speed of processors into account

Implemented in experimental version
— SC 2011 paper
— |EEE TC paper

Several new power/energy-related strategies

— PASA ‘12: Exploiting differential sensitivities of diff code
segments to freq change

1o PPL

UI0C

Fault Tolerance in Charm++/AMPI

 Four Approaches:
— Disk-based checkpoint/restart
— In-memory double checkpoint/restart
— Proactive object migration
— Message-logging: scalable fault tolerance

« Common Features:
— Leverages object-migration capabilities
— Based on dynamic runtime capabilities

« Several new results in the last year:
— FTXS 2012: scalability of in-mem scheme
— Hiding checkpoint overhead .. with semi-blocking..
— Energy efficiency of FT protocols : best paper SBAC-PAD

. pRL

UI0C

HPC Challenge Class 2 Award

Class: about programming systems

201
201

htt

1: C
2. C

n://C

narm++ won the award with Chapel
narm-+-+ was a finalist

narm.cs.illinois.edu/papers/12-47

15 PPL

UI0C

Our HPCC submission: summary

Productivity | Performance
Code C++ CI Benchmark Driver Total | Machine Max Performance Highlight
Subtotal Cores
Required Benchmarks

1D FFT 54 29 83 102 185 BG/P 64K 2.71 TFlop/s
BG/Q 16K 2.31 TFlop/s
Random Access 76 15 91 47 138 BG/P 128K 43.10 GUPS
BG/Q 16K 15.00 GUPS
Dense LU 1001 316 1317 453 1770 XT5 8K 55.1 TFlop/s
(65.7% peak)

Additional Benchmarks
Molecular Dynamics 571 122 693 n/a 693 BG/P 128K 24 ms/step (2.8M atoms)
BG/Q 16K 44 ms/step (2.8M atoms)
AMR 1126 118 1244 n/a 1244 BG/Q 32k 22 steps/sec, 2d mesh,
max 15 levels refinement
Triangular Solver 642 50 692 56 T48 BG/P 512 48x speedup on 64 cores
with helm2d03 matrix

http://charm.cs.illinois.edu/papers/12-47
. PPL

UI0C

Other papers and work

uGNI port and optimizations for NAMD: SC12
PAMI port

Improved support for sections (unranked)
Meta-Balancer

AMR: Highly asynchronous and memory efficient
Charm++ for multicore systems: Best paper
HiPC’' 11

Charm in the cloud:

Next : Charj

» PPL

UI0C

Charj: Compiler Supported Language with an
Adaptive Runtime

Laxmikant (Sanjay) Kale,
http://charm.cs.illinois.edu

Based on Aaron Becker’s thesis work

Thesis

Simple compiler support and basic static analysis can, when
paired with a sophisticated and feature-rich runtime system,
significantly improve productivity.

Approach

e Combine compiler technology with a rich runtime system to
iIncrease productivity without harming performance

e Better safety checks by incorporating programming model
semantic knowledge into compiler

e Static analysis allows more enforcement and can provide
optimizations that are impossible at the library level

e Tightly integrate with multiple programming models

e Add language-level support for rich runtime features

Where can | find a rich adaptive RTS?

Productivity

Simple Charm++

.— —-

Optimized Charm++

>

|

Performance

The Char] Language

Compiler Infrastructure

e Multi-pass compiler written in Java, uses ANTLR compiler
construction tool

e Simple operations use ANTLR’s AST recognition and rewriting
features

* More complex operations operate directly on the AST and
construct an explicit CFG

e Supports inter-procedural data-flow analysis

e Compiler driver takes .cj input, produces C++ and .ci files, and
translates and compiles the output source

Problems with Charm

e Most of your code is only seen by a C++ compiler
* No way to do lots of simple things, especially:

e Enforce Charm semantics

e Do compile-time analysis and optimization

e Moving model-specific features into the interface file works, but it's
difficult and inflexible.

Charj Design Principles

e Keep it simple
e Minimize new syntax
* Distinguish between local and remote operations

¢ Integrate tightly with the runtime

Productivity Benetits

e Enforcement of programming model semantics by the compiler
(e.g. assignment of readonly variables)

e Elimination of redundant program information
¢ Improved messages for Charm-specific syntax errors
e Clear syntactic distinction between remote and local operations

e Optimizations can be done by compiler instead of by hand

—xXample:

Readonly Variables

int n; // readonly variable

N

17; // Ok if we' re in a

// malnchare constructor.
// Silent bug otherwise.

—xample: Readonly Variables

In Charj:
readonly 1int n;

n =17; // Compiler will notity
// the programmer of
// 1llegal assignhments

—xample: Custom Reducers

CkReductionMsg* my reducer(
int nMsg, CkReductionMsg** msgs)

{
MyType* accum = new MyType();
for (int i=0; i<nMsg; ++1) {
MyType* Xx;
PUP: : fromMem p(msgs[i]->getData());
p | *x;
accum->reduce(x);

}
return CkReductionMsg: :buildNew(...);

12

—xample: Custom Reducers

// .ci

initcall void register my reducer(void);

// .cCC

CkReduction: :reducerType my reducer_type;
void register my reducer(void)
{
_my_reducer_type =
CkReduction: :addReducer(my reducer);

13

—xample: Custom Reducers in Char;

reducer<MyType> my reducer {
my reducer() { accum = new MyType(); }
reduce(MyType x) { accum.reduce(x); }

14

—-mbedded

Programming Models

15

Structured Dagger

e Coordination mini-language implemented on the Charm runtime

¢ Implemented as library + translator, functions containing SDAG are
put into Charm interface files, translator emits C++

¢ Allows the programmer to express the parallel structure of an
object’s lifetime without the need for threading or blocking
constructs

¢ Allows clear, concise, efficient code

16

Stencil code with sdag

entry void stencil()

{
for (int 1=0; i<N; ++1) {
sendStrips();
overlap {
when getStripFromLeft(Strip s) {
processStripFromLeft(s);
}
when getStripFromRight(Strip s) {
processStripFromRight(s);
}
}
doStencil();

17

Stencil: Message

Driven Equivalent

entry void stencil()

{
i = 0;
mainLoop();
}
void mainLoop()
{
leftStripReceived = false;
rightStripReceived = false;
if (1 < N) {
sendStrips();
}
}

entry void getStripFromLeft(Strip s)

{
processStripFromLeft(s);
leftStripReceived = true;
checkOverlapCompletion();
}
entry void getStripFromRight(Strip s)
{
processStripFromRight(s);
rightStripReceived = true;
checkOverlapCompletion();
}
void checkOverlapCompletion()
{
if (leftStripReceived && rightStripReceived) {
doStencil();
++1;
mainLoop();
}
}

18

Improvements in Charj SDAG

e | ocal variables

® Free mixing of sequential constructs and SDAG constructs (no
“atomic” blocks)

e No redundant declarations for “when” triggers

* No need for macro insertion or initialization calls during
construction and migration

19

Multiphase Shared Arrays

e Disciplined access to arrays in a partitioned global address space
e Arrays go through phases, with synchronization between

® [n each phase, only a subset of accesses are legal (e.g. read-only,
write-only, accumulate)

C C GC.[C

20

MSA: Original Implementation

// MSA array A 1n write mode
for (int 1=0; i<N; ++i)
A[random()]++;

A.sync(); // transition to read mode

for (int 1=0; i<N; ++i)
printf(“%d 7, A[i];

21

MSA: Typed Handles

// MSA array A in write mode

MSA: :Write whandle = A.getInitialWrite();

for (int i=0; i<N; ++i)
whandle(random())++;

MSA: :Read rhandle = whandle.syncToRead();

for (int i=0; i<N; ++i)
printf(“%d ”, rhandle(i));

22

MSA: Charj Implementation

// MSA array A in accumulate mode
for (int 1=0; i<N; ++i)
A[random()]++;

A.syncToRead();

for (int 1=0; i<N; ++i)
printf(“%d 7, A[i]);

23

Accelerated Entry Methods

e Access to different types of accelerator hardware using a unified
programming model and syntax

e Programmer creates special accelerated entry methods using a
variant of normal entry method syntax

e Entry method is split into two pieces: body (can execute on host or
on accelerator) and callback (host only)

* Runtime system can execute them on either the host processor or
on accelerator hardware

24

Accelerated Entry Methods

entry [accel] void X(int n)
[readWrite : float A <impl obj->A>,
readOnly : float B <impl obj->B>]

{
/] ...
} x callback;

25

Accelerated Entry Methods

entri |acce1| void Xiint ni

{
/] ...
} x _callback;

26

Accelerated Entry Methods

accelerated entry void X(int n) {

/] ...
} x callback;

27

Optimizations

28

Packing and Unpacking

How do we communicate data
structures in a parallel application”

29

MSA Strip Mining

e MSAs are split into pages, and MSA accesses go through a local
page cache

e Generic array accesses must first check to see if the desired
element is locally available, and if not, fetch it

e Prefetching and raw array accesses are faster, but more work for
the programmer

30

MSA Strip Mining

for (int i=0; i<N; ++i)
x = f(A[1]);

31

MSA Strip Mining

fetchPage(A, 0);
for (int i=0; i<N/PAGE; ++i) {
if (i+1 < N/PAGE)
fetchPage(A, i+1);
waitForPage(A, 1i);
for (int j=i*PAGE; j<(i+1)*PAGE; ++3j)
X = f(A.rawAccess(j));

32

Charj Application Suite

¢ | U Decomposition
¢ | eanMD (Molecular Dynamics)
e Barnes-Hut

e Jacobi Relaxation

33

Charj Application Suite

Source Lines of Code

Charm | Charj % Reduction
LU 187 135 28%
LeanMD 941 683 27%
Barnes-Hut 5174 3808 26%
Jacobi 327 163 50%

34

Contributions

e Demonstration of the thesis via the development of Charj programs
that are simpler than their Charm equivalents

¢ A language targeting the Charm runtime system that supports
multiple embedded programming models.

e A compiler for that language, supporting semantic checks and
optimizations specific to Charj.

e Embeddings of multiple DSLs based on the Charm runtime into
Char;j

¢ A collection of Charj implementations of existing applications,
which demonstrate the features of Charj.

35

Summary

e By combining compiler techniques with a rich runtime system, we
can improve programmer productivity without sacrificing
performance

e [Improved syntax and semantic checks
e Better integration of multiple programming models

e Optimizations powered by static analysis

More Info: http://charm.cs.illinois.edu/

36

