
Unified Model for Assessing Checkpointing
Protocols at Extreme-Scale

George Bosilca1, Aurélien Bouteiller1,
Elisabeth Brunet2, Franck Cappello3,

Jack Dongarra1, Amina Guermouche4,
Thomas Hérault1, Yves Robert1,4,

Frédéric Vivien4, and Dounia Zaidouni4

1. University of Tennessee Knoxville, USA
2. Telecom SudParis, France

3. INRIA & University of Illinois at Urbana Champaign, USA
4. Ecole Normale Supérieure de Lyon & INRIA, France

November 21, 2012



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Motivation

• Very very large number of processing elements (e.g., 220)
=⇒ Probability of failures dramatically increases

• Large application to be executed on whole platform
=⇒ Failure(s) will most likely occur before completion!

• Resilience provided through checkpointing

1 Coordinated protocols
2 Hierarchical protocols

2 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Coordinated Checkpointing Protocols

• Coordinated checkpoints over all
processes

• Global restart after a failure

P0

P1

P2

m1 m2 m3

m4 m5

, No risk of cascading rollbacks

, No need to log messages

/ All processors need to roll back

3 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Hierarchical Protocols

• Clusters of processes

• Coordinated checkpointing
protocol within clusters

• Message logging protocols between
clusters

• Only processors from failed group
need to roll back

P0

P1

P2

P3

m1

m2

m3

m4

m5

/ Need to log inter-groups messages
• Slowdowns failure-free execution
• Increases checkpoint size/time

, Faster re-execution with logged messages

4 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Which checkpointing protocol to use?

Coordinated checkpointing

, No risk of cascading rollbacks

, No need to log messages

/ All processors need to roll back

/ Rumor: May not scale to very large platforms

Hierarchical checkpointing

/ Need to log inter-groups messages
• Slowdowns failure-free execution
• Increases checkpoint size/time

, Only processors from failed group need to roll back

, Faster re-execution with logged messages

, Rumor: Should scale to very large platforms

5 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Outline

1 Protocol Overhead
Coordinated checkpointing
Hierarchical checkpointing

2 Accounting for message logging

3 Instanciating the model
Applications
Platforms

4 Experimental results
Simulations

6 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Outline

1 Protocol Overhead

2 Accounting for message logging

3 Instanciating the model

4 Experimental results

7 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Framework

• Periodic checkpointing policies (of period T )

• Independent and identically distributed failures

• Platform failure inter-arrival time: µ

• Tightly-coupled application:
progress ⇔ all processors available

• First-order approximation: at most one failure within a period

Waste: fraction of time not spent for useful computations

8 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Waste

• Timebase: application base time

• TimeFF: with periodic checkpoints
but failure-free

• Timefinal: expectation of time with failures

(1−Waste[FF ])TimeFF = Timebase

(1−Waste[fail])Timefinal = TimeFF

1−Waste = 1− (1−Waste[FF ])(1−Waste[fail])

9 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Checkpointing cost

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunkProcessing the first chunk

Time

Time spent working

Time spent checkpointing

10 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Checkpointing cost

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunkProcessing the first chunk

Time

Time spent working

Time spent checkpointing

Blocking model: while a checkpoint is taken, no computation can
be performed

10 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Checkpointing cost

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunk

Processing the first chunk

Time

Time spent working

Time spent checkpointing

Non-blocking model: while a checkpoint is taken, computations
are not impacted (e.g., first copy state to RAM, then copy RAM to
disk)

10 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Checkpointing cost

Checkpointing

the first chunk

Computing the first chunk

Processing the first chunk

Time

Time spent working

Time spent checkpointing

Time spent working with slowdown

General model: while a checkpoint is taken, computations are
slowed-down: during a checkpoint of duration C, the same amount
of computation is done as during a time αC without checkpointing
(0 ≤ α ≤ 1).

10 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

1 Protocol Overhead
Coordinated checkpointing
Hierarchical checkpointing

2 Accounting for message logging

3 Instanciating the model
Applications
Platforms

4 Experimental results
Simulations

11 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Waste in absence of failures

P0

P1

P2

P3

Time spent working Time spent checkpointing Time spent working with slowdown

Time

11 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Waste in absence of failures

T − C

P0

P1

P2

P3

Time spent working Time spent checkpointing Time spent working with slowdown

Time

11 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Waste in absence of failures

C

P0

P1

P2

P3

Time spent working Time spent checkpointing Time spent working with slowdown

Time

11 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Waste in absence of failures

T

CT − C

P0

P1

P2

P3

Time spent working Time spent checkpointing Time spent working with slowdown

Time

Time elapsed since last checkpoint: T

Amount of computation saved: (T − C) + αC

Waste[FF ] =
T − ((T − C) + αC)

T
=

(1− α)C

T

11 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Waste due to failures

P0

P1

P2

P3

Time spent working Time spent checkpointing Time spent working with slowdown

Time

Failure can happen

1 During computation phase

2 During checkpointing phase

• Re-Exec: Time needed for the re-execution

11 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Waste due to failures in computation phase

P0

P1

P2

P3

Time spent working Time spent checkpointing Time spent working with slowdown

Time

11 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Waste due to failures in computation phase

P0

P1

P2

P3

Time spent working Time spent checkpointing Time spent working with slowdown

Time

Coordinated checkpointing protocol: when one processor is victim
of a failure, all processors lose their work and must roll-back to last
checkpoint

11 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Waste due to failures in computation phase

D

P0

P1

P2

P3

Time spent working Time spent checkpointing Time spent working with slowdown

Downtime Time

11 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Waste due to failures in computation phase

R

P0

P1

P2

P3

Time spent working Time spent checkpointing Time spent working with slowdown

Recovery timeDowntime Time

Coordinated checkpointing protocol: All processors must recover
from last checkpoint

11 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Waste due to failures in computation phase

P0

P1

P2

P3

Time spent working Time spent checkpointing Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime Time

11 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Waste due to failures in computation phase

C αC

P0

P1

P2

P3

Time spent working Time spent checkpointing Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime Time

Redo the work destroyed by the failure, that was done in the
checkpointing phase before the computation phase

But no checkpoint is taken in parallel, hence this re-computation is
faster than the original computation

11 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Waste due to failures in computation phase

Tlost

P0

P1

P2

P3

Time spent working Time spent checkpointing Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime Time

Re-execute the computation phase

11 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Waste due to failures in computation phase

αCRDTlost

P0

P1

P2

P3

Time spent working Time spent checkpointing Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime Time

Re-Exec: Re-Execcoord−fail−in−work = Tlost + αC

Expectation: Tlost =
1

2
(T − C)

Re-Execcoord−fail−in−work =
T − C

2
+ αC

11 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Waste due to failures in checkpointing phase

P0

P1

P2

P3

Time spent working Time spent checkpointing Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime Time

11 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Waste due to failures in checkpointing phase

P0

P1

P2

P3

Time spent working Time spent checkpointing Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime Time

11 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Waste due to failures in checkpointing phase

Tlost

P0

P1

P2

P3

Time spent working Time spent checkpointing Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime Time

Re-Execcoord−fail−in−checkpoint = (T − C) + Tlost + αC

Expectation: Tlost =
1

2
C

Re-Execcoord−fail−in−checkpoint = (T − C) +
C

2
+ αC

= T − C

2
+ αC

11 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Waste due to failures

• Failure in the computation phase (probability:
T − C
T

)

Re-Execcoord−fail−in−work =
T − C

2
+ αC

• Failure in the checkpointing phase (probability:
C

T
)

Re-Execcoord−fail−in−checkpoint = T − C

2
+ αC

T − C
T

(
T − C

2
+ αC

)
+
C

T

(
T − C

2
+ αC

)

= αC +
T

2

12 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Total waste

Waste[FF ] =
(1− α)C

T

Waste[fail] =
1

µ

(
D +R+ αC +

T

2

)
Waste = Waste[FF ] + Waste[fail]−Waste[FF ]Waste[fail]

Optimal period

T∗ =
√

2(1− α)(µ− (D +R))C

13 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Total waste

Waste[FF ] =
(1− α)C

T

Waste[fail] =
1

µ

(
D +R+ αC +

T

2

)
Waste = Waste[FF ] + Waste[fail]−Waste[FF ]Waste[fail]

Optimal period

T∗ =
√

2(1− α)(µ− (D +R))C

13 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

1 Protocol Overhead
Coordinated checkpointing
Hierarchical checkpointing

2 Accounting for message logging

3 Instanciating the model
Applications
Platforms

4 Experimental results
Simulations

14 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Hierarchical checkpointing

• Processors partitioned into G groups

• Each group includes q processors

• Inside each group: coordinated checkpointing in time C(q)

• Inter-group messages are logged

14 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Impact of checkpointing

G2

G4

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working with slowdownTime spent checkpointingTime spent working

Time

15 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Impact of checkpointing

G2

G4

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working with slowdownTime spent checkpointingTime spent working

Time

When a group checkpoints, its own computation speed is
slowed-down

15 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Impact of checkpointing

G2

G4

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working with slowdownTime spent checkpointingTime spent working

Time

When a group checkpoints, its own computation speed is
slowed-down

This holds for all groups because of the tightly-coupled assumption

15 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Impact of checkpointing

G.C

G2

G4

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working with slowdownTime spent checkpointingTime spent working

Time

When a group checkpoints, its own computation speed is
slowed-down

This holds for all groups because of the tightly-coupled assumption

Waste[FF ] =
T −Work

T
where Work = T − (1− α)GC(q)

15 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Failure during computation phase

G2

G4

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working with slowdownTime spent checkpointingTime spent working

Time

15 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Failure during computation phase

G2

G4

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working with slowdownTime spent checkpointingTime spent working

Time

15 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Failure during computation phase

G2

G4

Gg

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working with slowdownTime spent checkpointingTime spent working

Time

15 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Failure during computation phase

G2

G4

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working with slowdownTime spent checkpointingTime spent working

Time

Tightly-coupled model: while one group is in downtime, none can
work

15 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Failure during computation phase

G2

G4

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working with slowdownTime spent checkpointingTime spent working

Time

Tightly-coupled model: while one group is in recovery, none can
work

15 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Failure during computation phase

G2

G4

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working with slowdownTime spent checkpointingTime spent working

Time

Groups must have completed the same amount of work in between
two consecutive checkpoints, independently of the fact that a
failure may have happened on the platform in between these
checkpoints. Hence, no checkpointing is possible during the
rollback.

15 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Failure during computation phase

(G− g + 1)C

G2

G4

Gg

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working with slowdownTime spent checkpointingTime spent working

Time

Redo work done during previous checkpointing phase and that was
destroyed by the failure

15 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Failure during computation phase

α(G−g+1)C(G− g + 1)C

G2

G4

Gg

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working with slowdownTime spent checkpointingTime spent working

Time

Redo work done during previous checkpointing phase and that was
destroyed by the failure
But no checkpoint is taken in parallel, hence this re-computation is
faster than the original computation

15 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Failure during computation phase

TlostTlost

G2

G4

Gg

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working with slowdownTime spent checkpointingTime spent working

Time

Redo work done in computation phase and that was destroyed by
the failure

15 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Failure during computation phase

TlostTlost

G2

G4

Gg

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working with slowdownTime spent checkpointingTime spent working

Time

Re-Exec: Tlost + α(G− g + 1)C

Expectation: Tlost =
1

2
(T −G.C)

Approximated Re-Exec:
T −G.C

2
+ α(G− g + 1)C

15 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Failure during computation phase

TlostTlost

G2

G4

Gg

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working with slowdownTime spent checkpointingTime spent working

Time

Average approximated Re-Exec:

1

G

G∑
g=1

[
T −G.C(q)

2
+ α(G− g + 1)C(q)

]
=
T −G.C(q)

2
+ α

G+ 1

2
C(q)

15 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Failure during checkpointing phase

G2

G4

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working with slowdownTime spent checkpointingTime spent working

Time

15 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Failure during checkpointing phase

T −G.C

G2

G4

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working with slowdownTime spent checkpointingTime spent working

Time

15 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Failure during checkpointing phase

G2

G4

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working with slowdownTime spent checkpointingTime spent working

Time

When does the failing group fail?

1 Before starting its own checkpoint

2 While taking its own checkpoint

3 After completing its own checkpoint

15 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Failure during checkpointing phase:
failure before checkpoint

G2

Gg

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working with slowdownTime spent checkpointingTime spent working

Time

15 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Failure during checkpointing phase:
failure during checkpoint

G2

Gg

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working with slowdownTime spent checkpointingTime spent working

Time

15 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Failure during checkpointing phase:
failure after checkpoint

Gg

G4

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working with slowdownTime spent checkpointingTime spent working

Time

15 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Average waste for failures during checkpointing phase

Average Re-Exec when the failing-group g fails
Overall average Re-Exec: Re-Execckpt =

1

G
((g−1).Re-Execbefore ckpt + 1.Re-Execduring ckpt

+ (G−g).Re-Execafter ckpt)

Average over all groups:

avg Re-Execckpt =

G+ 1

2G
T +

αC(q)(G+ 3)

2
+
C(q)(1− 2α)

2G
− C(q)(G+ 1)

2

16 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Total waste

Waste[FF ] =
T −Work

T
with Work = T − (1− α)GC(q)

Waste[fail] =
1

µ

(
D(q) +R(q) + Re-Exec

)
with

Re-Exec =
T−GC(q)

T
Re-Execcomp +

GC(q)

T
Re-Execckpt

Waste = Waste[FF ] + Waste[fail]−Waste[FF ]Waste[fail]

Minimize Waste subject to:

• GC(q) ≤ T (by construction)

• Gets complicated! Use computer algebra software /

17 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Outline

1 Protocol Overhead

2 Accounting for message logging

3 Instanciating the model

4 Experimental results

18 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Impact on work

• / Logging messages slows down execution:
⇒ Work becomes λWork, where 0 < λ < 1
Typical value: λ ≈ 0.98

• , Re-execution after a failure is faster:

⇒ Re-Exec becomes
Re-Exec

ρ
, where ρ ∈ [1..2]

Typical value: ρ ≈ 1.5

Waste[FF ] =
T − λWork

T

Waste[fail] =
1

µ

(
D(q) +R(q) +

Re-Exec

ρ

)

19 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Impact on checkpoint size

• Inter-groups messages logged continuously

• Checkpoint size increases with amount of work executed
before a checkpoint

• C0(q): Checkpoint size of a group without message logging

C(q) = C0(q)(1 + βWork)⇔ β =
C(q)− C0(q)

C0(q)Work

Work = λ(T − (1− α)GC(q))

C(q) =
C0(q)(1 + βλT )

1 +GC0(q)βλ(1− α)

20 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Outline

1 Protocol Overhead

2 Accounting for message logging

3 Instanciating the model

4 Experimental results

21 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Three case studies

Coord-IO

Coordinated approach: C = CMem =
Mem

bio
where Mem is the memory footprint of the application

Hierarch-IO
Several (large) groups, I/O-saturated
⇒ groups checkpoint sequentially

C0(q) =
CMem

G
=

Mem

Gbio

Hierarch-Port
Very large number of smaller groups, port-saturated
⇒ some groups checkpoint in parallel
Groups of qmin processors, where qminbport ≥ bio

22 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

1 Protocol Overhead
Coordinated checkpointing
Hierarchical checkpointing

2 Accounting for message logging

3 Instanciating the model
Applications
Platforms

4 Experimental results
Simulations

23 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Three applications

1 2D-stencil

2 3D-Stencil
• Plane
• Line

3 Matrix product

23 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Computing β for Stencil-2D

C(q) = C0(q) + Logged Msg = C0(q)(1 + βWork)

• 2 out of the 4 messages are logged

24 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Three applications: 2) 3D-stencil

• 3D-Plane: Vertical messages
are logged

• 3D-Line: Twice as many
messages are logged

25 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Three applications: 2) 3D-stencil

• 3D-Plane: Vertical messages
are logged

• 3D-Line: Twice as many
messages are logged

25 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Three applications: 2) 3D-stencil

• 3D-Plane: Vertical messages
are logged

• 3D-Line: Twice as many
messages are logged

25 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

1 Protocol Overhead
Coordinated checkpointing
Hierarchical checkpointing

2 Accounting for message logging

3 Instanciating the model
Applications
Platforms

4 Experimental results
Simulations

26 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Four platforms: basic characteristics

Name Number of Number of Number of cores Memory I/O Network Bandwidth (bio) I/O Bandwidth (bport)
cores processors ptotal per processor per processor Read Write Read/Write per processor

Titan 299,008 16,688 16 32GB 300GB/s 300GB/s 20GB/s
K-Computer 705,024 88,128 8 16GB 150GB/s 96GB/s 20GB/s

Exascale-Slim 1,000,000,000 1,000,000 1,000 64GB 1TB/s 1TB/s 200GB/s
Exascale-Fat 1,000,000,000 100,000 10,000 640GB 1TB/s 1TB/s 400GB/s

26 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Four platforms: 2D-Stencil and Matrix-Product

Name Scenario G (C(q)) β for β for
2D-Stencil Matrix-Product

Coord-IO 1 (2,048s) / /
Titan Hierarch-IO 136 (15s) 0.0001098 0.0004280

Hierarch-Port 1,246 (1.6s) 0.0002196 0.0008561

Coord-IO 1 (14,688s) / /
K-Computer Hierarch-IO 296 (50s) 0.0002858 0.001113

Hierarch-Port 17,626 (0.83s) 0.0005716 0.002227

Coord-IO 1 (64,000s) / /
Exascale-Slim Hierarch-IO 1,000 (64s) 0.0002599 0.001013

Hierarch-Port 200,0000 (0.32s) 0.0005199 0.002026

Coord-IO 1 (64,000s) / /
Exascale-Fat Hierarch-IO 316 (217s) 0.00008220 0.0003203

Hierarch-Port 33,3333 (1.92s) 0.00016440 0.0006407

27 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Four platforms: 2D-Stencil and Matrix-Product

Name Scenario G (C(q)) β for β for
2D-Stencil Matrix-Product

Coord-IO 1 (2,048s) / /
Titan Hierarch-IO 136 (15s) 0.0001098 0.0004280

Hierarch-Port 1,246 (1.6s) 0.0002196 0.0008561

Coord-IO 1 (14,688s) / /
K-Computer Hierarch-IO 296 (50s) 0.0002858 0.001113

Hierarch-Port 17,626 (0.83s) 0.0005716 0.002227

Coord-IO 1 (64,000s) / /
Exascale-Slim Hierarch-IO 1,000 (64s) 0.0002599 0.001013

Hierarch-Port 200,0000 (0.32s) 0.0005199 0.002026

Coord-IO 1 (64,000s) / /
Exascale-Fat Hierarch-IO 316 (217s) 0.00008220 0.0003203

Hierarch-Port 33,3333 (1.92s) 0.00016440 0.0006407

27 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Four platforms: 3D-Stencil

Name Scenario G β for 3D-Stencil

Coord-IO 1 /
Titan Hierarch-IO-Plane 26 0.001476

Hierarch-IO-Line 675 0.002952
Hierarch-Port 1,246 0.004428

Coord-IO 1 /
K-Computer Hierarch-IO-Plane 44 0.003422

Hierarch-IO-Line 1,936 0.006844
Hierarch-Port 17,626 0.010266

Coord-IO 1 /
Exascale-Slim Hierarch-IO-Plane 100 0.003952

Hierarch-IO-Line 10,000 0.007904
Hierarch-Port 200,000 0.011856

Coord-IO 1 /
Exascale-Fat Hierarch-IO-Plane 46 0.001834

Hierarch-IO-Line 2,116 0.003668
Hierarch-Port 33,333 0.005502

28 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Outline

1 Protocol Overhead

2 Accounting for message logging

3 Instanciating the model

4 Experimental results

29 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

1 Protocol Overhead
Coordinated checkpointing
Hierarchical checkpointing

2 Accounting for message logging

3 Instanciating the model
Applications
Platforms

4 Experimental results
Simulations

30 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Simulation parameters

• Failure distribution: Weibull, k = 0.7

• Failure free execution on each process: 4 days

• Time-out: 1 year

• No assumption on failures

• α = 0.3, ρ = 1.5, λ = 0.98

• Each point: average over 20 randomly generated instances

• Computed period and best period:

→ Generate 480 periods in the neighborhood of the period from
the model

→ Numerically evaluate the best one through simulations

30 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Platform: Titan

• Solid line: Computed period
• Dotted line: Best Period

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 7.5 10 15 20 25 30 35 50 75 100

Hierarchical

Hierarchical Port

Coordinated

Hierarchical BestPer

Hierarchical Port BestPer

Coordinated BestPer

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 7.5 10 15 20 25 30 35 50 75 100

Hierarchical

Hierarchical Port

Coordinated

Hierarchical BestPer

Hierarchical Port BestPer

Coordinated BestPer

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 7.5 10 15 20 25 30 35 50 75 100

Hierarchical Port

Hierarchical Plane

Hierarchical Line

Coordinated

Hierarchical Port BestPer

Hierarchical Plane BestPer

Hierarchical Line BestPer

Coordinated BestPer

2D-Stencil Matrix Product 3D-Stencil

Waste as a function of processor MTBF µ
31 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Platform: Exascale

Waste = 1 for all scenarios!!!

32 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Platform: Exascale

Waste = 1 for all scenarios!!!

Goodbye Exascale?!

32 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Checkpoint size for K-Computer and Exascale platforms

Name G

K-Computer 14,688s

Exascale-Slim 64,000

Exascale-Fat 64,000

• Large time to dump the memory

• Using 1%C
• faster I/O and storage (two-level checkpoint, SSD, . . . )
• smaller amount of memory written

• Comparing with 0.1%C for the exascale platforms

33 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Platform: KComputer

• Solid line: Computed period
• Dotted line: Best Period

Hierarchical
Hierarchical-Port
Coordinated

Hierarchical
Hierarchical-Port
Coordinated

Hierarchical-Port
Hierarchical-Plane
Hierarchical-Line
Coordinated

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 7.5 10 15 20 25 30 35 50 75 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 7.5 10 15 20 25 30 35 50 75 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 7.5 10 15 20 25 30 35 50 75 100

2D-Stencil Matrix Product 3D-Stencil

Waste as a function of processor MTBF µ

34 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Platform: Exascale with C = C/100

• Solid line: Computed period• Dotted line: Best Period

Hierarchical
Hierarchical-Port
Coordinated

Hierarchical
Hierarchical-Port
Coordinated

Hierarchical-Port
Hierarchical-Plane
Hierarchical-Line
Coordinated

E
xa

sc
a

le
-S

li
m

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 7.5 10 15 20 25 30 35 50 75 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 7.5 10 15 20 25 30 35 50 75 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 7.5 10 15 20 25 30 35 50 75 100

E
xa

sc
a

le
-F

a
t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 7.5 10 15 20 25 30 35 50 75 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 7.5 10 15 20 25 30 35 50 75 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 7.5 10 15 20 25 30 35 50 75 100

2D-Stencil Matrix Product 3D-Stencil

Waste as a function of processor MTBF µ, C = C/100 35 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Checkpoint impact: Exascale Slim

• Solid line: Computed period• Dotted line: Best Period

Hierarchical
Hierarchical-Port
Coordinated

Hierarchical
Hierarchical-Port
Coordinated

Hierarchical-Port
Hierarchical-Plane
Hierarchical-Line
Coordinated

C
=
C
/
1
0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 7.5 10 15 20 25 30 35 50 75 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 7.5 10 15 20 25 30 35 50 75 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 7.5 10 15 20 25 30 35 50 75 100

C
=
C
/
1
0
0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 7.5 10 15 20 25 30 35 50 75 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 7.5 10 15 20 25 30 35 50 75 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 7.5 10 15 20 25 30 35 50 75 100

2D-Stencil Matrix Product 3D-Stencil

Waste as a function of processor MTBF µ with checkpoint variation 36 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Checkpoint impact: Exascale Fat

• Solid line: Computed period• Dotted line: Best Period

Hierarchical
Hierarchical-Port
Coordinated

Hierarchical
Hierarchical-Port
Coordinated

Hierarchical-Port
Hierarchical-Plane
Hierarchical-Line
Coordinated

C
=
C
/
1
0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 7.5 10 15 20 25 30 35 50 75 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 7.5 10 15 20 25 30 35 50 75 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 7.5 10 15 20 25 30 35 50 75 100

C
=
C
/
1
0
0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 7.5 10 15 20 25 30 35 50 75 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 7.5 10 15 20 25 30 35 50 75 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 7.5 10 15 20 25 30 35 50 75 100

2D-Stencil Matrix Product 3D-Stencil

Waste as a function of processor MTBF µ with checkpoint variation 37 / 38



Protocol Overhead Accounting for message logging Instanciating the model Experimental results

Conclusion

• First attempt at analytical comparison of coordinated and
hierarchical checkpointing protocols

• Classical models (Young, Daly) extended
• Several new parameters (α, λ, ρ)
• Message logging impact (β)

• Instantiation
• Scenarios: Coord-IO, Hierarch-IO, Hierarch-Port
• Realistic application/platform combinations

• Current work: Application co-scheduling

• Future work and possible collaboration:
• Use trace-based failure logs
• Application-dependant checkpointing

38 / 38



Unified Model for Assessing Checkpointing
Protocols at Extreme-Scale

George Bosilca1, Aurélien Bouteiller1,
Elisabeth Brunet2, Franck Cappello3,

Jack Dongarra1, Amina Guermouche4,
Thomas Hérault1, Yves Robert1,4,

Frédéric Vivien4, and Dounia Zaidouni4

1. University of Tennessee Knoxville, USA
2. Telecom SudParis, France

3. INRIA & University of Illinois at Urbana Champaign, USA
4. Ecole Normale Supérieure de Lyon & INRIA, France

November 21, 2012


	Protocol Overhead
	Coordinated checkpointing
	Hierarchical checkpointing

	Accounting for message logging
	Instanciating the model
	Applications
	Platforms

	Experimental results
	Simulations


