

"Potential collaboration" talk

Work in Progress on Cloud Computing in Myriads Team and Contrail European Project

Christine Morin, Inria

Design and implementation of autonomous distributed systems

Internet of Services & Clouds: Ideal candidates to benefit from autonomy

Cloud computing for scientific applications

Overview of Myriads Activities on Cloud Computing

Ease of application deployment Automatic elasticity management Application execution in the context of SLA Application portability

PaaS
PaaS
IaaS
IaaS

Multi-cloud Environments

Efficient resource management
System support for VM management

Prototypes disseminated as open source software

Energy Management in laaS Clouds

Snooze laaS

Open source software http://snooze.inria.fr/

Energy-efficient resource management

Self-configuring & self-healing VM management system

Eugen Feller's PhD thesis [IEEE CC-Grid 2012 – Cloud 2012]

(nria_

PaaS: Autonomous Management of Application Performance/Cost

PaaS

ConPaaS: easy deployment of complex elastic applications in the cloud

(work started while Guillaume Pierre was at VU Amsterdam)

ConPaaS: a Platform for Hosting Elastic Cloud Applications, IEEE Internet Computing, 2012

PaaS

laaS providing heterogeneous resources

Application adaptation to laaS heterogeneous resources (GPU, FGPA)

Harness European project (started in October 2012)

Themis: Market-based Automatic Resource and Application Management in the Cloud

- Resource sharing between competing applications with different QoS
- Improving resource utilization in the infrastructure

Autonomous application managers

Horizontal & vertical scaling

Priority management between competing applications

Market-based resource allocation

PaaS

laaS

Stefania Costache's PhD

Themis: Economy-Based Automatic Resource Scaling for Cloud Systems, IEEE HPCC 2012.

Applications

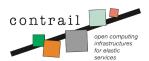
- Molecular dynamics simulator
 - http://www.gromacs.org/
- Non-linear solver of a convection diffusion problem
 - https://github.com/kortas/ZEPHYR
- Condor & Torque frameworks

PaaS in a Multi-Cloud Environment

Elastic frameworks (Batch, Hadoop clusters) over hybrid clouds

SLA management for jobs

PaaS


laaS 1
(private)

laaS 2
(public)

Djawida Dib's PhD thesis

Application Life Cycle Management

User

- Distributed application life cycle management
- Support for SLA management
- Portability, interoperability

Provider

Resource management

Virtual Execution Platform (VEP)

laaS 1

Virtual Execution Platform (VEP)

laaS 2

6th International DMTF Academic Alliance Workshop on Systems and Virtualization Management: Standards and the Cloud

- <u>Using Open Standards for Interoperability Issues, Solutions, and Challenges facing Cloud Computing</u>
- Managing OVF applications under SLA constraints on Contrail Virtual Execution Platform

(nría-

PaaS in a Multi-Cloud Environment

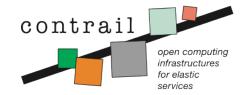
Elastic MapReduce over multiple private, community and public clouds

Flexible and easy MapReduce application deployment

Resilin Elastic MapReduce

laaS 1

laaS 2


Open source software: http://resilin.inria.fr

Inria Research Report, RR- 8081- 2012

RMAC activity

Contrail European Project

- FP7 Integrated Project
 - Build an open source cloud computing software stack for cloud federations
- Key Facts
 - 3 years, started in October 2010
 - 11.4 M€ budget & 8.3 M€ EC funding
- Consortium

- 11 universities, research centers and companies
- France, Germany, the Netherlands, U.K., Italy, Slovenia

http://www.contrail-project.eu

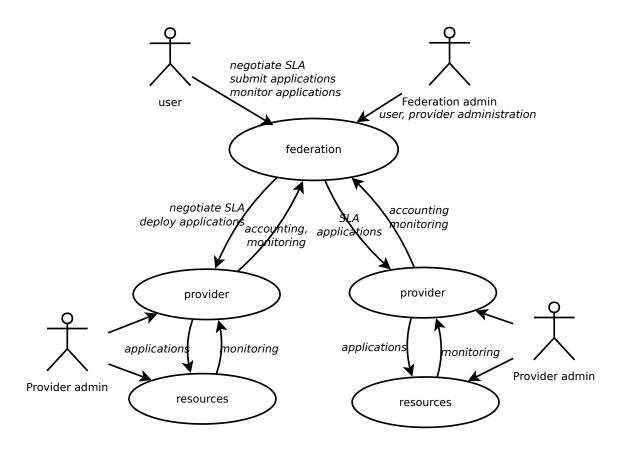
Contrail Consortium

Goals of Contrail

- Facilitate the **deployment of distributed applications** in clouds
- Provide **seamless access to resources** provisioned by different laaS cloud providers
- Provide trusted clouds
- Break the current customer lock-in situation
- Contribute to application portability and to interoperability in multi-cloud environments

November 20, 2012 - 12

Contrail Main Contributions

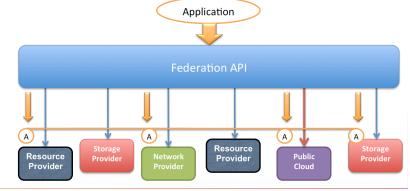

- Federation service interfaced with laaS cloud providers
 - **Virtual Execution Platform** (VEP) for distributed applications lifecycle in an laaS cloud provider
 - Advanced **SLA management** in cloud federations
 - Security framework: authentication, delegation, authorization

November 20, 2012 - 13

- ConPaaS runtime for hosting self-managed elastic applications in the cloud
- **XtreemFS** cloud storage system

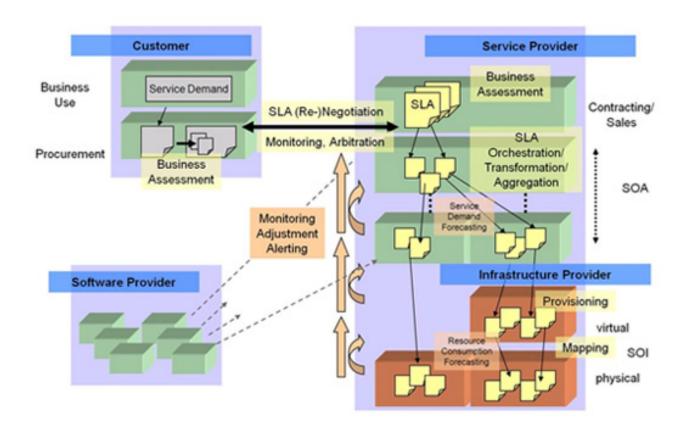
Actors in Contrail

Contrail Federation Service

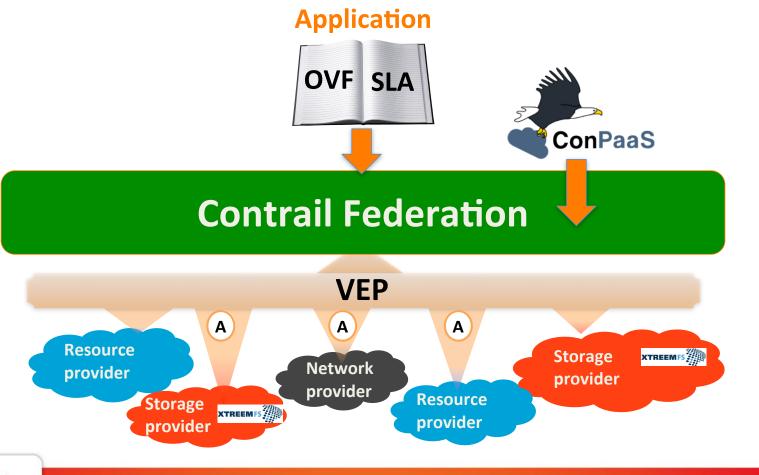

More than a simple broker

Some challenges

- Heterogeneous providers
 - Public, private
- Dynamically choosing best providers
- Combine providers for a single application
- Elasticity: add resources from extra providers
- Migration
- Security and privacy framework


QoS, QoP

- Service Level Agreements
 - Via provider selection and integration
- Enforcement mechanisms at federation level
- Federation service as a 3rd party mediator



Use of SLA@SOI Framework for SLA Management in Contrail

Virtual Execution Platform (VEP)

Inria Joint

Virtual Execution Platform (VEP)

OVF distributed applications

- OVF: Open Virtualization Format, DMTF standard
- Distributed applications made of virtual machines, disks, networks, shared storage
- Integrate deployment and configuration rules

Application lifecycle

- Contextualization
- Deployment
- Elasticity
- Checkpoints (OVF)
- Support for partial deployment (from federations): deployment documents

Heterogeneous laaS models

- VEP integrated to provider infrastructure (Contrail+OpenNebula)
 - Support for advanced resource reservation
- Remote exploitation of laaS Cloud from VEP (Amazon)

ConPaaS: A Platform for Hosting Elastic Cloud Applications

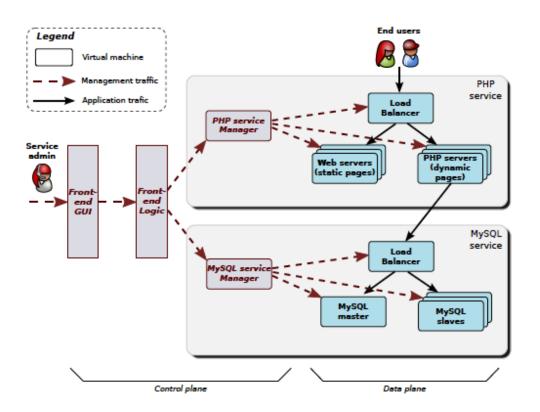
Broad range of functionalities

- Web application hosting (static files, PHP, Java, . . .)
- Databases (SQL and NoSQL)
- High-performance execution frameworks (MapReduce, TaskFarming)

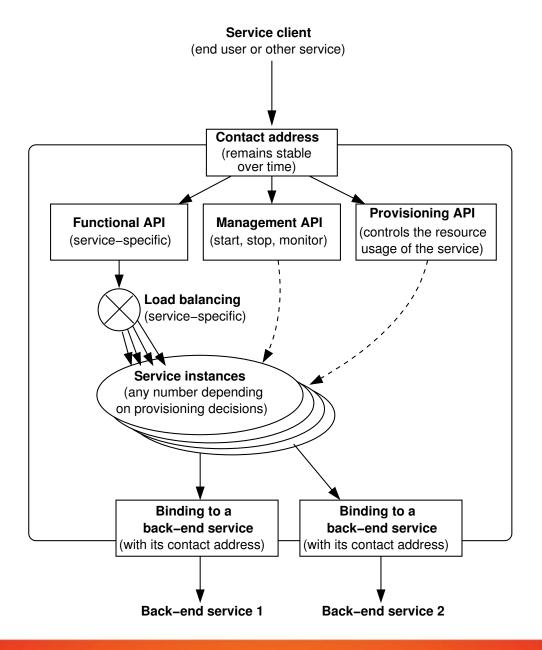
Fully integrated

Applications can compose any set of services together

Easy to use but also very powerful


- Simple Web GUI + powerful command-line tool
- Services are highly customizable

Cutting-edge SLA enforcement technologies

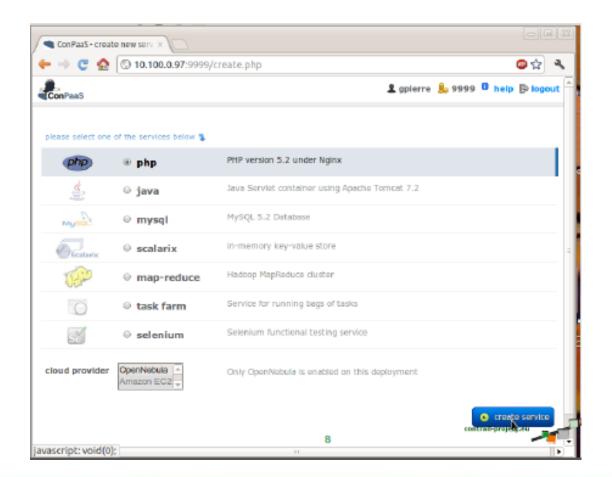

 Elasticity and resource provisioning techniques to guarantee performance at the lowest possible cost

Inria

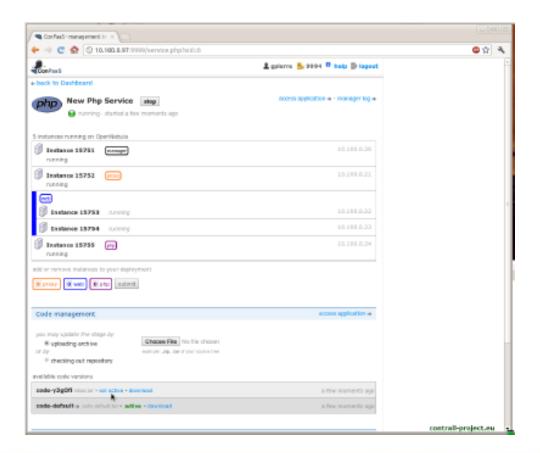
ConPaaS: A Platform for Hosting Elastic Cloud Applications



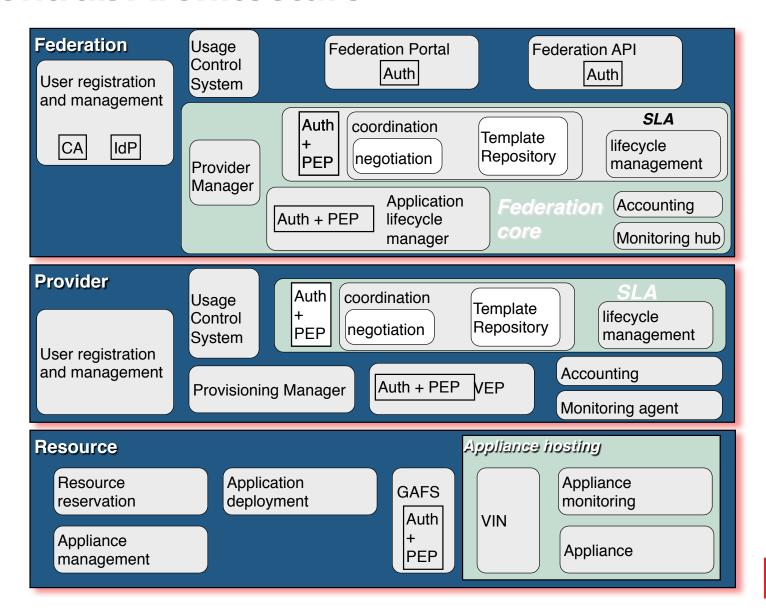
ConPaaS Front-End


Public testbed

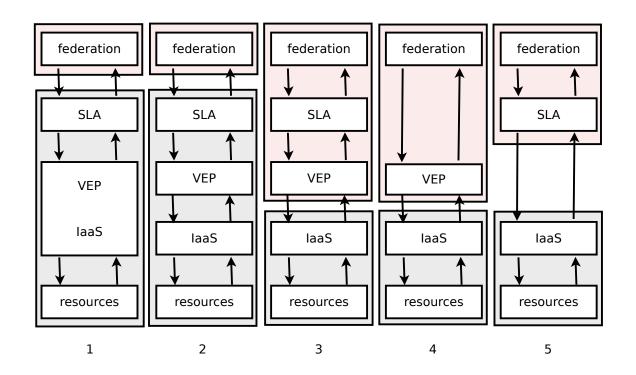
https://online.conpaas.eu



ConPaaS Front-End

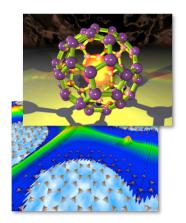


ConPaaS Front-End



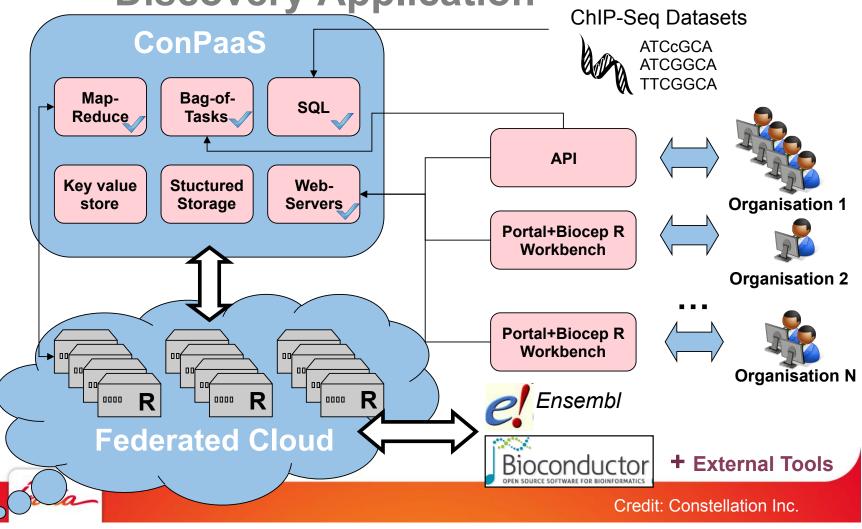
Contrail Architecture

Exploitation of Contrail Software Stack


Contrail Open Source Software

- Contrail stack release available (v1.2)
 - Open development in OW2
 - http://ow2.org/view/ActivitiesDashboard/Contrail
 - BSD/Apache licence
- Standalone components
 - ConPaaS free public testbed
 - www.conpaas.eu
 - XtreemFS cloud storage www.xtreemfs.org
 - Virtual Execution Platform (VEP) http://vep.gforge.inria.fr
- OpenNebula/EC2 as underlying laaS systems
 - OpenStack and OCCI compliant laaS in the future

Scientific Use Cases


- Clouds for high-performance real-time scientific data analysis
- High throughput electronic drug discovery

Deployment of an Electronic Drug Discovery Application

Concluding Remarks

- Potential topics for collaboration
 - Scientific data-intensive & workflow applications in the cloud
 - Automated resource selection in multi-cloud environments
 - SLA enforcement reliability, performance, cost
 - Automated elasticity management by PaaS runtimes
 - Portability, interoperability
 - Green cloud computing
 - Energy efficiency and awareness

(nría_

Autonomous Framework

Platform Creation

Platform Extension

Platform Migration

Fault-tolerance

- Users submit computations + policies
- Optimize between multiple objectives
 - Computation cost
 - Computation time
 - Energy consumption

Joint work with

- Yvon Jégou
- Anne-Cécile Orgerie
- Nikos Parlavantzas
- Guillaume Pierre
- Roberto Cascella
- Stefania Costache
- Djawida Dib
- Florian Dudouet
- Eugen Feller
- Filippo Gaudenzi
- Pyiush Harsh
- Ancuta lordache
- Pierre Riteau (until end of 2011)
- Matthieu Simonin
- Contrail consortium members

Thank you for your attention

Standards in Contrail

Contrail exploits open standards and open protocols

- OVF for distributed application description
- CDMI for storage (partial support)
- OCCI/CIMI for laaS providers
- libcloud,
- SLA management compatible with WS-Agreement
- VEP based on CIMI API
- User attribute management based on SAML
- Identity management: OAuth and Shibboleth
- AMQP for monitoring

