
BaTLaB

A Continuous-Integration Facility

Building Communities for SISI Workshop

Arlington, VA - Oct 2011

Todd Tannenbaum
Center for High Throughput Computing

University of Wisconsin-Madison

1

Today’s Overview of BaTLab

 What

 Why

 How

2

 Experience

 Coming next

 Get started

What: 10,000 foot view

 Lab Infrastructure

• many different platforms, professionally

managed

 Lab Software = Metronome

• Performs regular builds and/or tests

• User specifies source location (ex: web

server, CVS, SVN, git, …), platforms to use,

declares what to build or test

• Results stored in RDBMS, reports visible via a

web portal

 3

Build and Test Lab = BaTLab

Why?

4

Continuous Integration

 Detect problems early, before expensive to

fix

 Ship releases on schedule

 Find problems before users

 Even if code is stable, changes are

happening both above and below the

application

• Changes in OS, dependencies, user expectations

5

 Can others outside your environment

even build it at all?

Escrow

Managed Languages

 Write once, run everywhere? (“WORA”)

 Hint: Below shell script produces

different results between Red Hat vs

Debian vs BSD, even Debian vs

Debian…

6

#!/bin/sh

echo “Is WORA reality?”

exit -1

WORA reality

 Still sitting on top of heterogeneous OS

environments

 Even if all Linux, different distros have:

• Different interpreter versions (Ex: bash vs

dash)

• Different kernel, libc versions

• Different compiler versions

• Different LSB standards (packaging!)

• Different library / modules versions

• Different packages installed by default

7

Build and TEST!

 Regression tests

 Function vs Unit

 Scalability tests

 “Sweep” tests

 Forward and Backwards compatibility

 Cross versioning

8

9

10

BaTLab Infrastructure

 ~50 unique platforms for builds/tests

 Web portal (http://nmi.cs.wisc.edu)

 4 submit hosts

 Database cluster

 Backup server

 Network management (DNS, DHCP, SSL)

 Monitoring (Nagios, Ganglia)

 Internal Infrastructure (Condor, …)

11

http://nmi.cs.wisc.edu/

How?

12

 Get a BaTLab account

 Create Metronome “glue” scripts

 Submit Metronome build or test jobs

Metronome Framework

for callouts to glue scripts

Submit Node
Execute Node Execute Node Execute Node

pre_all

platform_pre platform_pre platform_pre

post_all

platform_post platform_post platform_post

remote_pre_declare

remote_declare

remote_pre

remote_task

remote_post

Metronome Submit File

 run_type = build

 remote_task = hello

 inputs = hello.input

 platforms = x86_64_winnt_6.1, \

 x86_64_deb_6.0, x86_64_rhap_6.1

14

Metronome Input File

 method = scp

 scp_file = me@mymachine:/path/to/hello

15

Metronome Command Line

 $ nmi_submit hello.submit

 Global ID: long_global_id

 Run Directory: /path/to/run/directory

 All jobs submitted. Waiting for monitor to get Run ID from
database......

 Run ID: 16116

 http://submit-1.batlab.org/nmi/results/details?runID=16116

16

17

Building CMake: Run Spec

 run_type = build

 remote_task = build.sh

 inputs = build.scp, cmake.git

 platforms = x86_64_deb_6.0, x86_64_rhap_6.1

18

Building CMake: Input Specs

 method = scp

 scp_file = /path/to/build.sh

 method = git

 git_repo = git://cmake.org/cmake.git

 git_path = CMake

19

Building CMake: Build Script

 cd Cmake

 ./bootstrap --prefix=`pwd`/../install \
• && make \

• && make install \

• && cd .. \

• && tar -c -z -f ./results.tar.gz ./install

 exit $?

20

Building CMake: command line

 nmi_submit /path/to/cmake.run-spec
• Global ID

• Run Directory

• Run ID

• Status URL

21

22

Experience

23

Condor Before Batlab

 Either Windows or Linux on desktop

 No Irix, AIX, oddball Linux, Solaris, etc. etc.

 Weeks before release
• Try to build by hand on each platform

• Try to fix porting issues introduced weeks earlier

• Run some tests by hand

 Took weeks just to get a set of binaries
• Time to fix a bug goes up 10x further away found

24

First steps

 With Batlab, nightly build on all ports

 Bugs found within 24 hours
• Usually fixed within 24 – 72 hours

• Still 24 hour latency on all platforms

• Test failures much harder to debug than build

 Test failures found within 24 hours
• Unless masked by build failures (problem)

 Developer one-off „workspace builds‟
• Much better than before, but still lots of steps

25

Web portal snapshot

Green build/test here at 10 am

What happened here? Click here to find out

26

What happened?

Click here

27

Whom to blame?

28

Back in business

Yell at Erik here

Test fixed here

29

“Hourly builds” on three

platforms

 Builds and esp tests fall behind

• Soln: JobPrio == Qdate

 Dramatically improved # of green nightly

builds – almost always, except for late

pushes

• Lesson learned – more build per day, better

Average Condor month…

• Performed over 170 commits to the

codebase

• Modified over 350 source code files

• Changed over 8,500 lines of code (Condor

source code written at UW-Madison as of June

2011 now sits at about 922,422 lines of code)

• Compiled about 2,500 builds of the code for

testing purposes

• Ran about 930,000 regression tests (both

functional and unit)

  Release a new version

30

Usage by Project, last 90 days

31

1 10 100 1000 10000 100000

Condor

OGCE

DMTCP

Pegasus

POINT

Rose Compiler

Bro

charm

Cactus

Globus

glideinWMS

MyProxy

CorralWMS

safefile

GSI-OpenSSH

nimbus

OPeNDAP

EF

VDT

bucky

tutorial

iRODS

pylint

MolSurf

icerec

git

Builds

Tests

Usage by Platform, last 90 days

32

58 Unique Platforms (all x86 64 bit unless noted)

12 Platforms with more than 1000 builds and tests

rhap_5, x86_rhas_3, x86_winnt_5.1, opensuse_11.4-updated, rhap_5.3-updated, deb_5.0, x86_deb_5.0,

x86_rhap_5, rhas_3, rhap_6.1-updated, deb_6.0-updated, ubuntu_10.04, rhas_4

29 Platforms with more than 100 builds and tests

rhap_5.2, macos_10.5-updated, opensuse_11.3-updated, rhap_5.3, fedora_14-updated, x86_rhas_4,

x86_ubuntu_10.04, freebsd_8.2-updated, sol_5.10, unmanaged-x86_rhap_5, sles_9, sol_5.11, fedora_12-

updated, x86_freebsd_7.4-updated, macos_10.6-updated, x86_macos_10.4, macos_10.6, fedora_13-

updated, fedora_13, fedora_11, sl_5.5, fedora_12, x86_suse_10.2, ia64_rhas_3, ia64_sles_9,

x86_suse_10.0, ubuntu_8.04.3, rhap_6.0-updated, x86_deb_4.0

6 Platforms with more than 10 builds and tests

ppc64_sles_9, ppc_macos_10.4, x86_sles_9, ppc_aix_5.3, sun4u_sol_5.10, x86_macos_10.5-updated

10 Platforms with less than 10 builds and tests

sun4u_sol_5.9, x86_winnt_6.0, ppc_aix_5.2-pl5, ps3_fedora_9, winnt_5.1, x86_deb_6.0-updated, sl_6.0-

updated, opensuse_tumbleweed-u, x86_rhap_6.1-updated, fedora_14

Coming “Real Soon Now”™

 New BaTLab.

 Leveraging UCS.

 Evolving to offer other tools.

 Customized result presentation.

33

“RSN”™: New BaTLab

 Following shift users‟ shift in focus to
native packaging.

 New hardware, new platforms.
• Service level designations.

• Regular, controlled update schedule.

• Empirical but rigorous package selection,
derived by building common software.

34

“RSN”™: UCS

 A Cisco product that permits dynamic
bare-metal provisioning, on-the-fly
creation of virtual lans.

 Will allow us to provide physical
hardware for virtual machine testing
without compromising our network or
statically partitioning it.

35

“RSN”™: Tool Evolution

 Metronome: continuous integration.

 Koji & Mock: native (RPM) packaging.
• Use Lab resources without using Metronome.

• Testing this capability with the VDT.

• Interface specific to packaging.

• Can already run as root.

36

“RSN”™: Custom Dashboards

 Custom dashboard loved by developers
• Organized by source code branch

• Visual representation of the continuous tests

• Don‟t even see anything unrelated

 but imposes its own maintenance costs,
and can‟t be shared with other projects

 Solution: collaborate with Metronome to
rewrite and generate a toolkit.

37

What do YOU want?

Getting Started

 Fill out a form, get an account and get
rollin!
• http://nmi.cs.wisc.edu/

• Clink “How do I get started -> “Complete this form
to request an account”

 Mailing Lists

• nmi-users@cs.wisc.edu

• uw-nmi-announce@cs.wisc.edu

 Additional Questions

• nmi-support@cs.wisc.edu

 39

http://nmi.cs.wisc.edu/
mailto:nmi-users@cs.wisc.edu
mailto:nmi-users@cs.wisc.edu
mailto:nmi-users@cs.wisc.edu
mailto:uw-nmi-announce@cs.wisc.edu
mailto:uw-nmi-announce@cs.wisc.edu
mailto:uw-nmi-announce@cs.wisc.edu
mailto:uw-nmi-announce@cs.wisc.edu
mailto:uw-nmi-announce@cs.wisc.edu
mailto:nmi-support@cs.wisc.edu
mailto:nmi-support@cs.wisc.edu
mailto:nmi-support@cs.wisc.edu

