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Today’s Overview of BaTLab 

 What 

 Why 

 How 
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 Experience 

 Coming next 

 Get started 



What: 10,000 foot view 

 Lab Infrastructure 

• many different platforms, professionally 

managed 

 Lab Software = Metronome 

• Performs regular builds and/or tests 

• User specifies source location (ex: web 

server, CVS, SVN, git, …), platforms to use, 

declares what to build or test 

• Results stored in RDBMS, reports visible via a 

web portal 
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Build and Test Lab = BaTLab 



Why? 
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Continuous Integration 

 Detect problems early, before expensive to 

fix 

 Ship releases on schedule 

 Find problems before users 

 Even if code is stable, changes are 

happening both above and below the 

application 

• Changes in OS, dependencies, user expectations 
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 Can others outside your environment 

even build it at all? 

Escrow 



Managed Languages 

 Write once, run everywhere? (“WORA”) 

 Hint: Below shell script produces 

different results between Red Hat vs 

Debian vs BSD, even Debian vs 

Debian… 
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#!/bin/sh 

echo “Is WORA reality?” 

exit -1 



WORA reality 

 Still sitting on top of heterogeneous OS 

environments 

 Even if all Linux, different distros have: 

• Different interpreter versions (Ex: bash vs 

dash) 

• Different kernel, libc versions 

• Different compiler versions 

• Different LSB standards (packaging!) 

• Different library / modules versions 

• Different packages installed by default 
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Build and TEST! 

 Regression tests 

 Function vs Unit 

 Scalability tests 

 “Sweep” tests 

 Forward and Backwards compatibility 

 Cross versioning 
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BaTLab Infrastructure 

 ~50 unique platforms for builds/tests 

 Web portal (http://nmi.cs.wisc.edu) 

 4 submit hosts 

 Database cluster  

 Backup server 

 Network management (DNS, DHCP, SSL) 

 Monitoring (Nagios, Ganglia) 

 Internal Infrastructure (Condor, …) 
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http://nmi.cs.wisc.edu/


How? 
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 Get a BaTLab account 

 Create Metronome “glue” scripts  

 Submit Metronome build or test jobs 



Metronome Framework 

for callouts to glue scripts 

Submit Node 
Execute Node Execute Node Execute Node 

pre_all 

platform_pre platform_pre platform_pre 

post_all 

platform_post platform_post platform_post 

remote_pre_declare 

remote_declare 

remote_pre 

remote_task 

remote_post 



Metronome Submit File 

 run_type = build 

 remote_task = hello 

 inputs = hello.input 

 platforms = x86_64_winnt_6.1, \ 

  x86_64_deb_6.0, x86_64_rhap_6.1 
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Metronome Input File 

 method = scp 

 scp_file = me@mymachine:/path/to/hello 
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Metronome Command Line 

 $ nmi_submit hello.submit 

 Global ID:  long_global_id 

 Run Directory:  /path/to/run/directory 

 All jobs submitted.  Waiting for monitor to get Run ID from 
database...... 

 Run ID:         16116 

 http://submit-1.batlab.org/nmi/results/details?runID=16116 
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Building CMake: Run Spec 

 run_type = build 

 remote_task = build.sh 

 inputs = build.scp, cmake.git 

 platforms = x86_64_deb_6.0, x86_64_rhap_6.1 
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Building CMake: Input Specs 

 method = scp 

 scp_file = /path/to/build.sh 

 

 method = git 

 git_repo = git://cmake.org/cmake.git 

 git_path = CMake 
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Building CMake: Build Script 

 cd Cmake 

 ./bootstrap --prefix=`pwd`/../install \ 
• && make \  

• && make install \  

• && cd .. \  

• && tar -c -z -f ./results.tar.gz ./install 

 exit $?  
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Building CMake: command line 

 nmi_submit /path/to/cmake.run-spec 
• Global ID 

• Run Directory 

• Run ID 

• Status URL 
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Experience 
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Condor Before Batlab 

 Either Windows or Linux on desktop 

 No Irix, AIX, oddball Linux, Solaris, etc. etc. 

 Weeks before release 
• Try to build by hand on each platform 

• Try to fix porting issues introduced weeks earlier 

• Run some tests by hand 

 Took weeks just to get a set of binaries 
• Time to fix a bug goes up 10x further away found 
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First steps 

 With Batlab, nightly build on all ports 

 Bugs found within 24 hours 
• Usually fixed within 24 – 72 hours 

• Still 24 hour latency on all platforms 

• Test failures much harder to debug than build 

 Test failures found within 24 hours 
• Unless masked by build failures (problem) 

 Developer one-off „workspace builds‟ 
• Much better than before, but still lots of steps 
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Web portal snapshot 

Green build/test here at 10 am 

What happened here? Click here to find out 
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What happened? 

Click here 
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Whom to blame? 
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Back in business  

Yell at Erik here 

Test fixed here 
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“Hourly builds” on three 

platforms 

 Builds and esp tests fall behind  

• Soln: JobPrio == Qdate 

 Dramatically improved # of green nightly 

builds – almost always, except for late 

pushes 

• Lesson learned – more build per day, better 

 

 



Average Condor month… 

•    Performed over 170 commits to the 

codebase  

•    Modified over 350 source code files  

•    Changed over 8,500 lines of code (Condor 

source code written at UW-Madison as of June 

2011 now sits at about 922,422 lines of code)  

•    Compiled about 2,500 builds of the code for 

testing purposes  

•    Ran about 930,000 regression tests (both 

functional and unit)  

          Release a new version  
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Usage by Project, last 90 days 
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Usage by Platform, last 90 days 
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58 Unique Platforms (all x86 64 bit unless noted) 
 

12 Platforms with more than 1000 builds and tests 

rhap_5, x86_rhas_3, x86_winnt_5.1, opensuse_11.4-updated, rhap_5.3-updated, deb_5.0, x86_deb_5.0, 

x86_rhap_5, rhas_3, rhap_6.1-updated, deb_6.0-updated, ubuntu_10.04, rhas_4 

 

29 Platforms with more than 100 builds and tests 

rhap_5.2, macos_10.5-updated, opensuse_11.3-updated, rhap_5.3, fedora_14-updated, x86_rhas_4, 

x86_ubuntu_10.04, freebsd_8.2-updated, sol_5.10, unmanaged-x86_rhap_5, sles_9, sol_5.11, fedora_12-

updated, x86_freebsd_7.4-updated, macos_10.6-updated, x86_macos_10.4, macos_10.6, fedora_13-

updated, fedora_13, fedora_11, sl_5.5, fedora_12, x86_suse_10.2, ia64_rhas_3, ia64_sles_9, 

x86_suse_10.0, ubuntu_8.04.3, rhap_6.0-updated, x86_deb_4.0 

 

6 Platforms with more than 10 builds and tests 

ppc64_sles_9, ppc_macos_10.4, x86_sles_9, ppc_aix_5.3, sun4u_sol_5.10, x86_macos_10.5-updated 

 

10 Platforms with less than 10 builds and tests 

sun4u_sol_5.9, x86_winnt_6.0, ppc_aix_5.2-pl5, ps3_fedora_9, winnt_5.1, x86_deb_6.0-updated, sl_6.0-

updated, opensuse_tumbleweed-u, x86_rhap_6.1-updated, fedora_14 



Coming “Real Soon Now”™ 

 New BaTLab. 

 Leveraging UCS. 

 Evolving to offer other tools. 

 Customized result presentation. 

33 



“RSN”™: New BaTLab 

 Following shift users‟ shift in focus to 
native packaging. 

 New hardware, new platforms. 
• Service level designations. 

• Regular, controlled update schedule. 

• Empirical but rigorous package selection, 
derived by building common software.  
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“RSN”™: UCS 

 A Cisco product that permits dynamic 
bare-metal provisioning, on-the-fly 
creation of virtual lans.  

 Will allow us to provide physical 
hardware for virtual machine testing 
without compromising our network or 
statically partitioning it. 
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“RSN”™: Tool Evolution  

 Metronome: continuous integration. 

 Koji & Mock: native (RPM) packaging. 
• Use Lab resources without using Metronome. 

• Testing this capability with the VDT. 

• Interface specific to packaging. 

• Can already run as root. 
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“RSN”™: Custom Dashboards 

 Custom dashboard loved by developers 
• Organized by source code branch 

• Visual representation of the continuous tests 

• Don‟t even see anything unrelated 

 but imposes its own maintenance costs, 
and can‟t be shared with other projects 

 Solution: collaborate with Metronome to 
rewrite and generate a toolkit. 
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What do YOU want? 



Getting Started 

 Fill out a form, get an account and get 
rollin! 
• http://nmi.cs.wisc.edu/ 

• Clink “How do I get started -> “Complete this form 
to request an account” 

 Mailing Lists 

• nmi-users@cs.wisc.edu 

• uw-nmi-announce@cs.wisc.edu 

 Additional Questions 

• nmi-support@cs.wisc.edu 
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