
Version 1.4 | 96-00450-001 | Revision A7

IME
Developer Guide 



Important Information

96-00450-001 Rev. A7 IME 1.4 Developer Guide | 2

Information in this document is subject to change without notice and does not represent a commitment on
the part of DataDirect Networks, Inc. No part of this manual may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including photocopying and recording, for any purpose other than
the purchaser’s personal use without the written permission of DataDirect Networks, Inc.

© 2020 DataDirect Networks, Inc. All rights reserved. 

DataDirect Networks, the DataDirect Networks logo, DDN, DataFlow, AI200, AI200X, AI400, AI400X, AI7990,
AI7990X, A3I, DirectMon, Enterprise Fusion Architecture, EFA, ES7K, ES12K, ES14KX, ES18K, ES18KX, ES200NV,
ES200NVX, ES400NV, ES400NVX, ES7990, ES7990X, EXAScaler, GRIDScaler, GS7K, GS12K, GS14KX, GS18K,
GS18KX, GS200NV, GS200NVX, GS400NV, GS400NVX, GS7990, GS7990X, IME, IME140, IME14K, IME240, Infinite
Memory Engine, Information in Motion, In-Storage Processing, MEDIAScaler, NAS Scaler, NoFS, ObjectAssure,
ReACT, SFA, SFA 10000 Storage Fusion Architecture, SFA10K, SFA12K, SFA12KX, SFA14K, SFA14KX, SFA18K,
SFA18KX, SFA200NV, SFA200NVX, SFA400NV, SFA7700, SFA7700X, SFA7990, SFA7990X, SFX, Storage Fusion
Architecture, Storage Fusion Fabric, Storage Fusion Xcelerator, SwiftCluster, WOS, and the WOS logo are
registered trademarks or trademarks of DataDirect Networks, Inc. All other brand and product names are
trademarks of their respective holders. 

DataDirect Networks makes no warranties, express or implied, including without limitation the implied
warranties of merchantability and fitness for a particular purpose of any products or software. DataDirect
Networks does not warrant, guarantee or make any representations regarding the use or the results of the use
of any products or software in terms of correctness, accuracy, reliability, or otherwise. The entire risk as to the
results and performance of the product and software are assumed by you. The exclusion of implied warranties
is not permitted by some jurisdictions; this exclusion may not apply to you.

In no event will DataDirect Networks, their directors, officers, employees, or agents (collectively DataDirect
Networks) be liable to you for any consequential, incidental, or indirect damages, including damages for loss
of business profits, business interruption, loss of business information, and the like, arising out of the use or
inability to use any DataDirect product or software even if DataDirect Networks has been advised of the
possibility of such damages by you. Because some jurisdictions do not allow the exclusion or limitation of
liability for consequential or incidental damages, these limitations may not apply to you. DataDirect Networks
liability to you for actual damages from any cause whatsoever, and regardless of the form of the action
(whether in contract, tort including negligence, product liability or otherwise), is limited to the sum you paid
for the DataDirect product or software. 

All Products cited in this document are subject to the DDN Limited Warranty Statement and, where
applicable, the terms of the DDN End User Software License Agreement (EULA). 

The cited documents are available at: http://www.ddn.com/support/policies/ 

For archived versions of either document, please contact DDN. 

June 2020 

http://www.ddn.com/support/policies/


96-00450-001 Rev. A7 IME 1.4 Developer Guide | 3

Changes in this Revision

Section Description

Section 4 on page 18 Refactored ime-ctl. Updated to equivalent long options.

Appendix A on page 28 Refactored ime-ctl. Added equivalent long options.

Appendix C on page 40 Added IM_BULKDATA_POOL_TINY_MIN_MAX to specify the quantity of tiny-sized 
buffers that IME should use.
Added IM_CLIENT_JOB_TRACKING_ENABLED to control per-job monitoring 
feature.
Deprecated IM_NETWORK_STACK. Use the configuration file option 
network_stack instead.
Added IM_CLIENT_HANDSHAKE_ENABLED to control client-server handshake. 



96-00450-001 Rev. A7 IME 1.4 Developer Guide | 4

Preface 

Audience
This guide is intended for application developers porting legacy applications or developing new applications for 
use with the DataDirect Networks (DDN) Infinite Memory Engine software (IME®).

The level of content presented assumes that the developer is familiar with hierarchical storage systems and has 
expert knowledge of Portable Operating System Interface (POSIX) or Message Passing Interface-Input/Output 
(MPI-IO).

About this Guide
This guide provides information about porting your existing application or developing new applications for use 
with IME. It includes an overview of IME; details about IME Client including the I/O interfaces, utilities, and 
Application Programming Interface (API); information about the development environment; descriptions of 
typical use cases; and examples of integration with 3rd party system tools.

For details about supported configurations, refer to the IME Compatibility Guide.

Conventions

Throughout the document, links are provided in the format (See Section X on page y.), which provide additional 
or related details about the topic.

Related Documentation 
The following documents are additional sources of information for IME:

• IME Installation and Administration Guide

• IME Product Release Notes

• IME Compatibility Guide

The following documents describe the IME hardware platforms:

• IME240 Hardware Installation and Maintenance Guide

• IME140 Hardware Installation and Maintenance Guide

• IME14K Hardware Installation and Maintenance Guide for IME 1.0.0

The latest version of the documentation is available on the Customer Support Portal at: 

https://community.ddn.com/login

https://community.ddn.com/login


96-00450-001 Rev. A7 IME 1.4 Developer Guide | 5

Table of Contents

1. Getting Started  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

2. IME Software Architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7
2.1 Client-Server Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8
2.2 Data Consistency Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9
2.3 Simultaneous Access to File Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

3. IME Client  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11
3.1 I/O Interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11
3.1.1 POSIX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11
3.1.2 MPI-IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11
3.1.3 IME Native API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12
3.2 Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15
3.3 File Paths and URIs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16
3.4 Dockerized IME Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17
3.4.1 IME Client Inside Container  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17
3.4.2 IME Client On Host . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17

4. Data Residency Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18
4.1 Prestage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19
4.2 Synchronize  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20
4.3 Purge  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22
4.4 File Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23

5. Integrating with Job Schedulers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25
5.1 Data Stage-in Script  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26
5.2 Data Stage-out Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26
5.3 Traffic Monitor Script  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27

Appendix A IME Command Line Utilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28

Appendix B IME Native API Reference  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36

Appendix C IME Environment Variables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40



96-00450-001 Rev. A7 IME 1.4 Developer Guide | 6

1.    Getting Started

PREVIEW FEATURE: Capabilities listed in this document as “preview features” are disabled in IME
1.3 and later by default. To enable any one of these features, contact your DDN
Sales Representative or Field Support Engineer. Note that these “preview
features” are not supported for production use and that hot-fixes will not be
provided for issues found. For a complete list of “preview features”, refer to the
IME Release Notes.

This guide provides information about porting your existing application or developing new applications for use 
with Infinite Memory Engine (IME®). It includes the following sections:

• IME Software Architecture – Overview of the IME software architecture. (Section 2 on page 7.)

• IME Client – Description of IME Client, including I/O interfaces, file paths and URIs, and dockerized IME client. 
(Section 3 on page 11.)

• Data Residency Control – Explanation and examples of controlling data residency from the command line 
using IME utilities or from your application using IME Native API. (Section 4 on page 18.)

• Integrating with Job Schedulers – Definition of scripts for integration with job schedulers. (Section 5 on 
page 25.)

• IME Command-line Utilities – List of command-line utilities including IME Control, stand-alone, and 
general-use utilities. (Appendix A on page 28.)

• IME Native API Reference – List of IME Native API, which is a non-POSIX compliant, low-level I/O protocol 
that bypasses the kernel communicating directly with IME Client. (Appendix B on page 36.)

• IME Environment Variables – List of IME environment variables, generally used for IME Native API and MPI-
IO enabled applications. (Appendix C on page 40.)

Get started developing applications for IME by following these steps:

1. Become familiar with the IME software architecture. (Section 2 on page 7.)

2. Determine the IME Client I/O interface that best meets your needs and set up the appropriate development 
environment. (Section 3 on page 11.)

3. Implement data residency control using IME CLI utilities or IME Native API. (Section 4 on page 18.)

4. Use IME scripts to integrate with job schedulers. (Section 5 on page 25.)



2.    IME Software Architecture

Infinite Memory Engine (IME®) adds a fast data tier between the compute nodes and file system in a high-
performance computing environment, as shown in Figure 1. This software-defined storage appliance 
transparently integrates non-volatile memory with existing file systems used for long-term data storage. IME 
enables the fastest possible ingest of data to the non-volatile memory by allowing the data to be stored in an 
unstructured, dynamically load balance-able manner. It then performs the orderly, transfer of data from the non-
volatile memory to permanent storage. The result is accelerated I/O, reduced latency, consistent application 
performance, and greater operational and economic efficiency.

Figure 1. Infinite Memory Engine Cluster   

NOTE: For an overview of the IME cluster and a list of IME capabilities, refer to the IME Installation
and Administration Guide

For details about supported configurations, including operating system versions, firmware
versions, and network fabric interconnects, refer to the IME Compatibility Guide.
96-00450-001 Rev. A7 IME 1.4 Developer Guide | 7



IME Software Architecture
2.1    Client-Server Architecture
IME implements a client-server architecture, which consists of the IME Client and IME Server processes. Figure 2 
shows the IME software architecture.

Figure 2. Infinite Memory Engine Software Architecture

NOTE: For a complete list of the I/O interfaces supported, refer to the IME Compatibility Guide.

The IME Server process (ime-server) resides on the server nodes, which constitute the new fast data tier. The 
server process handles requests from IME Client and the BFS, in addition to managing data resident in IME. IME is 
a non-deterministic write system, which means that if a server becomes saturated IME Client will automatically re-
direct the data traffic to another server in the cluster. ime-server creates a tight coupling between the data 
devices and the traditional file system to leverage the scale-out capacity characteristics of these file systems.

IME Client is a library that manages connections and routes I/O requests to IME Server nodes. This library can be 
used directly (IME Native API), as part of a process that implements FUSE file system (POSIX), or as part of the MPI 
driver (MPI-IO). IME Client implements an advanced, non-blocking, low-level I/O protocol that allows applications 
to take full advantage of the performance of the underlying data devices. However, applications require no 
modification and behave as if they are accessing the file data in the same way that they would without IME.
96-00450-001 Rev. A7 IME 1.4 Developer Guide | 8



IME Software Architecture
2.2    Data Consistency Model 

Users must maintain close-to-open consistency when multiple clients access the same files. This requirement 
guarantees that any other client will see the latest changes made by one client as soon as the client opens the file. 
A client must synchronize all file data and metadata changes when it closes a file and unconditionally retrieve a 
file’s attributes when it opens a file, ignoring any information it may have cached about the file. IME implements 
an enhanced close-to-open consistency model, allowing IME to be lock free.

Unsynchronized data within an IME client's cache are not visible or retrievable by other clients. By default, files 
managed through the IME Native API are fsync'd within
close()/ime_client_native2_close() in a blocking manner. Synchronizing on close ensures that IME 
clients will provide close-to-open consistency. Errors from fsync-on-close are returned in close()/
ime_client_native2_close().

IME's client cache management should not affect distributed applications that perform shared file operations on 
write-only and read-only file descriptors. This holds true for write-only files where applications issue writes into 
adjacent (or overlapping), non-page aligned regions. IME provides byte-level granularity for all write operations - 
serializing input into any file region is not required. Overlapping writes originating from more than one client 
instance are applied in the order in which they are received.

Distributed applications performing read-write shared file operations must issue fsync() or a library equivalent 
before attempting to read data that may have been resident in another IME client’s write-back cache. To assure 
that no data resides in the IME clients' write-back caches, for those IME clients that are part of the job context, 
synchronize the cached data belonging to your files and do not write new data to those files. If another job is 
reading or writing those same files, unexpected results may occur. Note IME Client will synchronize all cached data 
for the respective file when fsync() or a library equivalent is called. Applications that do not explicitly 
synchronize may see inconsistent file views.

Applications that do not wish to wait for ime_client_native2_fsync() to complete may synchronize 
asynchronously by calling ime_client_native2_async_fd() on their respective IME file descriptors. 
Enabling asynchronous operation on the file descriptor will cause ime_client_native2_close() to return 
without acknowledgment from the IME storage service. ime_client_native2_finalize() will cause all 
asynchronous file descriptors to be simultaneously synchronized and an error from any synchronization failure 
will be returned here. 

For details about the IME Native API, Appendix B on page 36.
96-00450-001 Rev. A7 IME 1.4 Developer Guide | 9



IME Software Architecture
2.3    Simultaneous Access to File Data

In addition to accessing file data using IME, users are able to access their files directly through the BFS mount 
point. No guard exists to prevent this access. For read-only workloads applications, use either the IME or BFS 
mount point.

When writing to the IME service, applications and users should not expect the BFS to have intact files by default. 
IME will synchronize its storage with the BFS according to the internal scheduling and prioritization of 
ime-server, unless explicitly directed.  ime-server uses an algorithm for determining BFS synchronization 
order, which accounts for both data residency time and volume of data in the file. The order is not a strict FIFO.

To guarantee an up-to-date file view of the BFS, request a blocking operation when synchronizing IME file data. For 
details about manual synchronization, see Section 4.2 on page 20. IME provides the means to view 
synchronization status using the IME CLI utilities. If unsynchronized data is present, do not attempt direct access 
through the BFS. For details about data residency, see Section 4 on page 18. 

Users should not expect IME automatically to detect file changes done directly to the BFS if IME is accessing the 
same files. If applications write a file from IME and the BFS at the same time, unexpected results may occur. The 
application using IME will see the updates that it wrote to IME and may see updates made directly to the BFS if the 
IME application has not written the same file regions as the BFS application. The application using the BFS will not 
see any data resident in IME until that data is synchronized with the BFS. During synchronization, IME will assume 
that it has exclusive access to the BFS file and overwrite any changes that other users of that file made.

One general rule to keep in mind is that if IME has a metadata descriptor for a file chunk it will always read that file 
chunk from IME. The opposite is also true; any file region not represented by an IME metadata descriptor will be 
read from the BFS. File regions that are fetched from the BFS on behalf of application read() are not copied to 
the IME SSDs. Therefore, no metadata descriptors are made for them. Consider the scenario in which an 
application simultaneously executes random writes and sequential reads. For random writes, the write offset is 
generated randomly and is not sequential. As reads are occurring on a sequential offset, the application may come 
across a case where the write to IME has not occurred yet. In such cases, the data will be read from the BFS.

For additional details about parallel file system coherency, see Section 4.1 on page 19.
96-00450-001 Rev. A7 IME 1.4 Developer Guide | 10



3.    IME Client

IME Client is a library that manages connections and routes I/O requests to IME Server nodes. This library can be 
used directly (IME Native API), as part of a process that implements FUSE file system (POSIX), or as part of a driver 
(MPI-IO), as described in the following sections.

3.1    I/O Interface

3.1.1    POSIX

IME supports transparent access through a POSIX mount point, implementing one layer of abstraction between 
your application and IME Client. The functional chain

Application  POSIX mount point  IME Client  IME Server

can easily be implemented using FUSE (Filesystem in Userspace) via an IME FUSE client

Application  Kernel  IME FUSE  IME Client  IME Server

NOTE: IME includes a FUSE client to present a POSIX mount point to the userspace. For details
about the IME FUSE client, including how to start and stop the client, refer to the IME
Installation and Administration Guide.

Because POSIX does not bypass the kernel, it is less performant than using MPI-IO or IME Native API. IME imposes 
no performance penalty for using one file in your parallel job instead of many files. However, FUSE imposes a 
scaling limitation for a single client.

IME applications that use POSIX run without special code modifications. Nonetheless, you must ensure that the 
IME I/O semantics work with your application. IME is compatible with the POSIX API with the relaxed constraint 
that IME does not give visibility into unsynchronized cache content of clients.

3.1.2    MPI-IO

MPI-IO provides a way to bypass the kernel, improving performance over POSIX. In addition, MPI-IO is more 
performant with small I/O files than POSIX. IME implements the functional chain

Application  MPI-IO  IME Client  IME Server

using a modified version of ROMIO, which is a high-performance, portable implementation of the MPI-IO 
specification.

Although MPI-IO applications recognize IME as a mount point without code modifications, you must build and run 
your application using an MPI tool chain that includes the IME shared library dependencies, which enable the IME 
client library to handle files designated by the IME file prefix. (See Section 3.3 on page 16.) 

NOTE: If you need an IME-compatible version of MPI, download the source code and compile it, as
described in the IME Installation and Administration Guide.

NOTE: When using MPI-IO or IME Native API from any MPI context, you must explicitly export
RDMAV_FORK_SAFE=1 and RDMAV_HUGEPAGES_SAFE=1 in the mpirun command.
Example: mpirun -genv RDMAV_FORK_SAFE 1 -genv RDMAV_HUGEPAGES_SAFE 1
If these arguments are omitted, IME will report errors during initialization of the RPC layer.
96-00450-001 Rev. A7 IME 1.4 Developer Guide | 11



IME Client
3.1.3    IME Native API

IME Native API provides the best possible performance. This non-POSIX compliant, low-level I/O protocol 
bypasses the kernel, communicating directly with IME Client. IME Native API directly implements the functional 
chain

Application  IME Client  IME Server

To use the IME Native API I/O interfaces, you must link your applications with the DDN-supplied libraries, which 
enable the IME client library to handle files designated by the IME file prefix. (See Section 3.3 on page 16.) 

Table 1 lists IME Native API functions that have equivalent POSIX I/O functions. For details about these API, see 
Appendix B.2 on page 36 or refer to the Linux Programmer’s Manual. 

Table 2 lists IME Native API functions for asynchronous IO. For details about these API, see Appendix B.3 on 
page 37.

Table 1.  POSIX Equivalent IME Native API

IME Native API Function Equivalent POSIX I/O Function

ime_client_native2_close() close()

ime_client_native2_dup2() dup2()

ime_client_native2_fsync() fsync()

ime_client_native2_lseek() lseek()

ime_client_native2_open() open()

ime_client_native2_pread() pread()

ime_client_native2_pwrite() pwrite()

ime_client_native2_read() read()

ime_client_native2_stat() stat()

ime_client_native2_ftruncate() ftruncate()

ime_client_native2_unlink() unlink()

ime_client_native2_write() write()

Table 2.  IME Client Asynchronous Library

IME Native API Function

ime_client_native2_aio_read()

ime_client_native2_aio_write()
96-00450-001 Rev. A7 IME 1.4 Developer Guide | 12



IME Client
Table 3 lists IME Native API functions that do not have a POSIX equivalent. For details about these API, see 
Appendix B.4 on page 38.

Table 3.  Non-POSIX Equivalent IME Native API

IME Native API Function

ime_client_native2_async_fd()

ime_client_native2_bfs_sync()

ime_client_native2_config_ctl()

ime_client_native2_data_release()

ime_client_native2_finalize()

ime_client_native2_frag_fstat()

ime_client_native2_get_ime_fsize()

ime_client_native2_init()

ime_client_native2_prestage()

ime_client_native2_prestage_blocking()

ime_client_native2_sync_ctl()
96-00450-001 Rev. A7 IME 1.4 Developer Guide | 13



IME Client
Example Application

Figure 3 gives an example application to synchronize data to the BFS using IME Native API.

Figure 3. Example Application

/*  #gcc -I /opt/ddn/ime/include -L /opt/ddn/ime/lib  -Wall -O2 -o \
ime_native_example-small ime_native_example-small.c -lim_client
#IM_CLIENT_CFG_FILE=/opt/ddn/ime/config/ime.conf ./ime_native_example-small  */
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <fcntl.h>
#include <im_client_native2.h>

void my_exit(const char *msg, int ret)
{
    if (ret)
        fprintf(stderr, "%s : err=%s", msg, strerror(ret));
    ime_client_native2_finalize();
    exit(ret);
}

#define FILENAME "ime:///mnt/lustre_client/dir/testfile"
#define NUM_INTEGERS 255
#define IO_LENGTH (NUM_INTEGERS * sizeof(int))

int main(void)
{
    int fd;
    int buf[NUM_INTEGERS];
    ssize_t nbytes = 0, rc;

    /*  Initialize the IME native client.  */
    ime_client_native2_init();

    /*  Open a file via IME.  */
    fd = ime_client_native2_open(FILENAME, O_RDWR | O_CREAT, 0666);
    if (fd < 0)
        my_exit("open failed", errno);

    /*  Write a small amount of data to IME.  */
    while (nbytes < IO_LENGTH)
    {
        rc = ime_client_native2_write(fd, (const char *)buf, IO_LENGTH);
        if (rc < 0)
            my_exit("ime_client_native2_write failed", errno);
        nbytes += rc;
    }

    /*  Synchronize data to IME service.  */
    if (ime_client_native2_fsync(fd))
        my_exit("ime_client_native2_fsync failed", errno);

    /*  Initiate synchronization to the BFS. This operation is non-blocking.  */
    if (ime_client_native2_bfs_sync(fd))
        my_exit("ime_client_native2_bfs_sync failed", errno);
    if (ime_client_native2_close(fd))
        my_exit("ime_client_native2_close failed", errno);
    my_exit("done", 0);
}

96-00450-001 Rev. A7 IME 1.4 Developer Guide | 14



IME Client
3.2    Libraries

IME libraries are distributed with the RPMs, as listed in the IME Installation and Administration Guide.

When developing applications for use with IME ensure that you do the following:

• Include IME library directories in your path when building applications against IME.

• Use the library versions distributed with the IME RPMs and listed in the installation section of the IME 
Installation and Administration Guide. 

• Link your IME native application to the libim_client.so library. 
For example: using -lim_client 

• Use -I/opt/ddn/ime/include on the command line. The following is a typical setting:

-I /opt/ddn/ime/include -L /opt/ddn/ime/lib -lim_client

To link against installed libraries in a given directory, use one of the following methods: 

• Use libtool and specify the full pathname of the library.

• Use the -L/opt/ddn/ime/lib flag during linking and do at least one of the following:

❖ Add /opt/ddn/ime/lib to LD_LIBRARY_PATH during execution. 
For important details, see LD_LIBRARY_PATH / rpath on page 16.

❖ Add /opt/ddn/ime/lib to LD_RUN_PATH during linking.

❖ Use the -Wl,-rpath -Wl, or -L/opt/ddn/ime/lib linker flag.

❖ Have your system administrator add /opt/ddn/ime/lib to /etc/ld.so.conf.

Key Points

The following are key points with respect to the IME library RPMs:

• IME auto-detects the underlying network protocol and selects the correct network stack to use. Developers 
can change these defaults as follows:

ime-server -n <stack>
ime-fuse --network_stack=<stack>

• The preferred path to libcci and libfabric is encoded. 

• The libisal RPM provided in the IME distribution provides a static library only and no longer needs to be 
installed. This new libisal RPM can be seen as a transitional package and will be removed in future IME 
versions. However, existing software already compiled against IME 1.3 or older (such as MPI) might still need 
the shared libisal.so file. In this case, recompile that software, do not update or un-install the older 
libisal RPM, or contact DDN for the old version.

IMPORTANT: For additional details about IME libraries, refer to the IME Installation and
Administration Guide.

For additional fixed and known issues, refer to the latest IME Release Notes.
96-00450-001 Rev. A7 IME 1.4 Developer Guide | 15



IME Client
LD_LIBRARY_PATH / rpath

During compilation and linking of the IME project, the preferred path to libcci and libfabric is encoded into the IME 
libraries ime-net-libfabric and ime-net-cci, which are used by libim_common for network communication. It is 
important to note that, in general, the LD_LIBRARY_PATH environment variable has a higher path preference 
than the rpath encoded into the binaries.

System users and their application users that use the following are most likely affected: 

• IME Native API applications

• MPI applications, using MPI-IO and linked against an MPI stack that supports IME-MPIIO

If users of such applications set an LD_LIBRARY_PATH and that environmental variable also points to libfabric or, 
more unlikely, to libcci, network communication between the IME Client nodes and IME Server nodes might fail. 
In this case, contact DDN for assistance.

3.3    File Paths and URIs

Table 4 shows the file path formats for accessing file data in IME.

The IME file prefix designates file names for handling by the IME client library. IME supports relative and absolute 
paths, as follows:

• 3 slashes (ime:///) designate an absolute file rooted in the IME BFS top directory.
For example: ime:///fsmnt/bfs/dir/myfile

• 2 slashes (ime://) designate a file relative to the IME BFS top directory, which is defined in the IME 
Configuration file.
For example: ime://dir/myfile

The root or fixed dirpath to which the relative path will be concatenated is the value of mount_point 
specified in the ime_bfs section of the IME Configuration file
(/etc/ddn/ime/ime.conf). 

NOTE: For details about /etc/ddn/ime/ime.conf, refer to the IME Installation and
Administration Guide.

Table 4.  File Paths and URIs

Relative Absolute

IME client library ime://dir/myfile ime:///fsmnt/bfs/dir/myfile

Equivalent POSIX I/O 
function

dir/myfile /fsmnt/bfs/dir/myfile

IME FUSE n/a /imefusemnt/dir/myfile
96-00450-001 Rev. A7 IME 1.4 Developer Guide | 16



IME Client
Example

Assume the value of mount_point specified in /etc/ddn/ime/ime.conf is /fsmnt/bfs.

In the case of ime://dir/myfile, 

dir/myfile will be considered as a relative path in the BFS from the top directory /fsmnt/bfs.

Files not using the prefix are handled directly by the equivalent POSIX I/O function, as follows:

• 1 slash (/) designates an absolute path.
For example: /fsmnt/bfs/dir/myfile

• no slashes designate a relative path.
For example: dir/myfile

Key Points

• If a BFS is mounted, the IME file prefix (ime://) is not allowed with the FUSE path. The prefix is used for BFS 
path only.

• If a BFS is not mounted and FUSE is mounted, run the IME CLI utilities with the FUSE path.

3.4    Dockerized IME Client

IME supports the following uses of container with IME Client:

• IME Client inside container

• IME Client on host

3.4.1    IME Client Inside Container

To mount the IME FUSE client inside your container, install the binaries required for IME Client and the 
configuration files inside your container. For scripts to install and mount IME Client inside containers, refer to the 
README.md files located in the scripts folder.

3.4.2    IME Client On Host

To access "IME client mounted on host" inside container, mount IME client mountpoint inside container using 
docker volume feature, as shown by the following docker run parameter:

-v /<path_for_ime_client_on_host>:/<Path_inside_container>
96-00450-001 Rev. A7 IME 1.4 Developer Guide | 17



4.    Data Residency Control

PREVIEW FEATURE: Auto-prestage is a preview feature in IME 1.3 and later. To enable, contact your
DDN Sales Representative or Field Support Engineer.

IME acts as a high-performance burst buffer and write-back cache. Buffering refers to an intermediate staging area 
for data while it transits to more distant storage locations, whereas caching is a staging area for data that may 
likely be re-used, perhaps extensively, before arriving at its final destination. In both cases, movement of data is 
defined by the data residency within IME. 

It is important to understand the definitions of data movement used in this guide, in order to control data 
residency:

• Read – If the file data exists in IME, read from IME; otherwise, read from the BFS.

• Write – Write file data into IME. IME writes new or modified data, regardless of its original location, and marks 
it as unsynchronized.

• Prestage – Copy file data resident in the BFS into IME, prior to your job. IME marks pre-staged data as 
synchronized. By default, data read from the BFS is not prestaged in IME automatically.

PREVIEW FEATURE: When enabled, auto-prestage adds the capability to transparently promote file
data from the BFS to IME in the case of cache miss. 

• Synchronize – Copy file data resident in IME into the BFS, keeping the data in IME. IME marks data waiting 
for synchronization as pending and marks data as synchronized once the process is complete. 
Synchronized data can be removed safely from IME. Synchronizing refers to writing unsynchronized data to 
the BFS.

❖ Auto-Synchronize – IME automatically copies file data resident in IME into the BFS, based on the policy 
set by the IME synchronization engine.

• Purge – Remove file data resident in IME, which may or may not be synchronized to the BFS. IME marks 
purged data as deletable, and it is then freed from IME. If synchronized, the data resident in the BFS remains 
intact. If not synchronized, the data will be lost. 

❖ Auto-Purge – IME automatically removes synchronized file data resident in IME to free up capacity, based 
on the policy set by the IME synchronization engine. IME only automatically purges data that has been 
synchronized already, as opposed to manual purge in which applications can purge any data.

NOTE: For a detailed discussion of the IME synchronization engine, refer to the IME Installation and
Administration Guide.
96-00450-001 Rev. A7 IME 1.4 Developer Guide | 18



Data Residency Control
Control data residency from the command line using IME CLI utilities or from your application using IME Native 
API, as summarized in Table 5.  

4.1    Prestage

Prestage copies file data resident in the BFS into IME prior to your job, taking advantage of the IME device space 
as a cache. By pre-staging data in cache, a job can quickly retrieve and use the data it needs. Likewise, by reading 
large chunks of data from the BFS into IME, IME acts as a burst buffer, rapidly delivering smaller subsets of data to 
the application while reducing slower accesses to the BFS. The prestaged data is not removed from the BFS. It 
resides in IME and the BFS. To prestage data, use ime-prestage or ime-ctl --prestage.

Example

ime-prestage ime:///fsmnt/bfs/dir/myfile
or
ime-ctl --prestage /imefusemnt/dir/myfile

NOTE: By default, ime-prestage uses /etc/ddn/ime/ime.conf to establish communication
with ime-server. To specify a different configuration file, use the -c option. 

When the prestage command is issued for a file, IME will purge any existing synchronized IME file data prior to 
copying the file data resident in the BFS by default. To keep the existing synchronized IME file data on prestage, 
pass the -K option.

Example

ime-prestage -K ime:///fsmnt/bfs/dir/myfile
or
ime-ctl --prestage --keep /imefusemnt/dir/myfile

Table 5.  Data Residency Control Utilities and API

Data Residency Control IME CLI Utility note 1

1. The ime-ctl utility is for use only on hosts that present the IME client mount to applications. For details about 
ime-ctl, see Appendix A.1 on page 31.
For details about all other utilities, see Appendix A.2 on page 32.

IME Native API Function note 2

2. For details about the IME Native API, see Appendix B on page 36.

Prestage
(Section 4.1 on page 19)

ime-prestage
ime-ctl --prestage

ime_client_native2_prestage
ime_client_native2_prestage_blocking

Synchronize
(Section 4.2 on page 20)

ime-sync
ime-ctl --sync

ime_client_native2_bfs_sync

Purge
(Section 4.3 on page 22)

ime-release
ime-ctl --purge

ime_client_native2_data_release

File Pinning 
(Section 4.4 on page 23)

ime-pin -M/-m
ime-ctl --pin/--unpin

ime_client_native2_sync_ctl
96-00450-001 Rev. A7 IME 1.4 Developer Guide | 19



Data Residency Control
By default, these utilities are non-blocking. Passing the –-block option with ime-prestage or 
ime-ctl --prestage creates a blocking operation, which guarantees all data is prestaged before any other 
operation can begin.

Example

ime-ctl --prestage /imefusemnt/dir/myfile 
queues up data to be copied from the BFS and allows other operations to begin in parallel, while
ime-ctl --prestage --block /imefusemnt/dir/myfile 
waits for data to be copied before allowing other operations.

NOTE: To prestage data using IME Native API, use  ime_client_native2_prestage or 
ime_client_native2_prestage_blocking.  (See Appendix B.4 on page 38.)

Parallel File System Coherency 

File data that is prestaged from the BFS to IME will not be refreshed if that file data in the BFS are modified, unless 
explicitly requested by the user. Such a scenario may occur when the user first requests file pre-staging and then 
modifies the BFS file data afterwards. Applications using IME will see the version of the file that was originally 
prestaged. If you have file data cached in IME but know that the BFS file data is more recent or otherwise preferred, 
reissue the prestage command or purge the cached contents from IME. 

When the prestage command is reissued for a file, IME will purge any existing synchronized IME file data prior to 
issuing new read requests to the BFS for the more recent file data. If you choose to purge the cached contents, first 
close all open file descriptors on the IME clients, then purge the file data using ime-release or 
ime-ctl --purge. The second step causes IME to release all data belonging to the file without synchronizing to 
the BFS. After the purge step has completed, IME will default to the BFS for all future read or prestage requests. If 
such a workflow is desired, you will likely want to exempt that file data from being automatically synchronized (or 
“pin”) using ime-pin or ime-ctl --pin .

In addition, IME includes a stale file detector thread that checks periodically if there are any stale files in IME. Stale 
files are defined as files that have been deleted directly from the BFS without IME's knowledge. Such files will be 
removed by this stale file detector thread.

4.2    Synchronize

Typically, parallel file systems achieve only a fraction of the potential bandwidth due to random access patterns 
caused by unaligned, fragmented, or otherwise disjoint payloads. IME enables greater alignment, coalescence, 
and assembling of payload data, before the data is copied to the BFS. Synchronization can be performed 
automatically or manually. Data that are synchronized remains in IME until automatically or manually purged.

NOTE: For a detailed discussion about automatic data migration, which includes auto-
synchronization and auto-purge, and the IME synchronization engine configuration, refer
to the IME Installation and Administration Guide.
You can disable automatic data migration for specific file data. For details about file
pinning, see Section 4.4 on page 23.
96-00450-001 Rev. A7 IME 1.4 Developer Guide | 20



Data Residency Control
Manual synchronization enable applications to define which files can be synchronized to the BFS. To manually 
synchronize specific files, use ime-sync or ime-ctl --sync.

Example

ime-sync ime:///fsmnt/bfs/dir/myfile
or
ime-ctl --sync /imefusemnt/dir/myfile

NOTE: By default, ime-sync uses /etc/ddn/ime/ime.conf to establish communication with
ime-server. To specify a different configuration file, use the -c option. 

When ime-sync or ime-ctl --sync is issued, IME marks the unsynchronized file data as pending. After 
synchronization is complete, IME marks the file data as synchronized, unless there is a new write simultaneously 
occurring on the file. If there is an issue in writing to the BFS, such as no available space, IME reverts the fragments 
from pending to unsynchronized and pauses the synchronization. In this case, you must re-issue ime-sync  or 
ime-ctl --sync after the BFS issue has been resolved. 

View the fragment status of the data resident in IME using ime-frag-stat or ime-ctl --frag-stat. 
Note that the output is dynamic and might change at any time due to automatic data migration. After a restart of 
ime-server, IME persists the state of the file fragments, and ime-frag-stat or ime-ctl --frag-stat 
shows data that was synchronized before IME shutdown.

Comparing the file size reported by IME to the size reported by the BFS is not a reliable way to determine if the file 
data is synchronized completely to the BFS. To monitor synchronization completion, use ime-frag-stat or 
ime-ctl --frag-stat to show if there is unsynchronized or pending data.

By default, ime-sync and ime-ctl --sync are non-blocking. Passing the –-block option with these utilities 
creates a blocking operation, which guarantees all data synchronizes before any other operation can begin.

To guarantee that the data synchronizes to the BFS before it is manually purged from IME, use the sequence of 
commands shown in the following example.

Example

ime-ctl --sync --block /imefusemnt/dir/myfile
ime-ctl --purge-synced /imefusemnt/dir/myfile

NOTE: To synchronize data manually using IME Native API, use
ime_client_native2_bfs_sync.  (See Appendix B.4 on page 38.)

Checkpoint-Restart 

Checkpoint-restart is a specialized case of synchronization. A checkpoint operation involves the rapid writing of 
most or all of a computer systems’ memory to storage at points throughout the execution of very large and very 
long-running applications. If an application crashes for some reason during its execution, administrators may 
restart the application by reading the last checkpoint image from storage. This process is vital to high-
performance computing systems due to the frequent failure rates of both hardware and software.
96-00450-001 Rev. A7 IME 1.4 Developer Guide | 21



Data Residency Control
Figure 4 illustrates the relationship of checkpoints to IME versus checkpoints that are synchronize to the BFS.

Figure 4. Checkpoint Performance

IME is well suited to absorb the burst of rapid checkpoint writes. However, synchronizing data to the slower BFS 
requires time and bandwidth. The time required to write a full system checkpoint to the BFS is significantly greater 
than the time required to write to IME. To maximize the performance of your system, synchronize only the 
necessary data to the BFS. For details about explicitly managing (or “pinning”) the file data, see Section 4.4 on 
page 23.

4.3    Purge

Pro-active management of buffer capacity is of crucial importance to ensure consistent system-wide 
performance. If the IME data tier becomes full, applications must wait for IME to synchronize data to the BFS, if 
necessary, and subsequently purge the data. Removing file data resident in IME can be performed automatically 
or manually. Automatic purge removes synchronized data only, while manual purge removes data regardless of 
the synchronization state by default.

NOTE: For a detailed discussion about automatic data migration, which includes auto-
synchronization and auto-purge, and the IME synchronization engine configuration, refer
to the IME Installation and Administration Guide.
You can disable automatic data migration for specific file data. For details about file
pinning, see Section 4.4 on page 23.

In some cases, manually purging data from IME before it synchronizes to the BFS can increase system 
performance. Consider the scenario in which only 1 out of 10 large data sets written to IME every hour is needed 
to recover from system failure. In this case, the remaining 9 do not need to be synchronized and can be manually 
purged from IME.

To manually purge specific files, use ime-release or ime-ctl --purge. By default, these utilities purge file 
data from IME, regardless of its synchronization state. File data that is not synchronized to the BFS will be lost.

Example

ime-release ime:///fsmnt/bfs/dir/myfile
or
ime-ctl --purge /imefusemnt/dir/myfile
96-00450-001 Rev. A7 IME 1.4 Developer Guide | 22



Data Residency Control
NOTE: By default, ime-release uses /etc/ddn/ime/ime.conf to establish communication
with ime-server. To specify a different configuration file, use the -c option. 

Purging data occurs asynchronously. When the command is issued, it sends the request to purge IME data and 
returns. It does not wait for the data to be purged. Therefore, the data may not be removed from IME immediately.

To purge only synchronized data, use ime-release -k or ime-ctl --purge-synced.

Example

ime-ctl --purge /imefusemnt/dir/myfile purges data regardless of its synchronization state, while 
ime-ctl --purge-synced /imefusemnt/dir/myfile purges only synchronized data.

To guarantee that the data synchronizes to the BFS before it is manually purged from IME, use the sequence of 
commands shown in the following example.

Example

ime-ctl --sync --block /imefusemnt/dir/myfile
ime-ctl --purge-synced /imefusemnt/dir/myfile

NOTE: To purge data from IME manually using IME Native API, use
ime_client_native2_data_release. (See Appendix B.4 on page 38.)

4.4    File Pinning

Policies for the IME synchronization engine establish procedures to prevent IME from filling. These configuration 
settings determine the maximum percentage of used IME device space before IME automatically synchronizes 
data to the backing file system (BFS). If the configuration is set to use only a small percentage, you may want to 
explicitly manage (or “pin”) the file data that IME automatically synchronizes to prevent unnecessary data 
movement. Consider the scenario in which only 1 out of 10 large data sets written to IME every hour is needed to 
recover from system failure. In this case, the remaining 9 do not need to be synchronized.

Similarly, these configuration settings determine the minimum percentage of free IME device space before IME 
automatically purges synchronized data. If the configuration is set to keep a large percentage free, you may want 
to explicitly manage (or “pin”) the file data that IME automatically purges to prevent unwanted removal of data. 
Consider the scenario in which you prestage file data from the BFS, which will be marked as synchronized, and 
need to access the data often. In this case, the data should not be removed from IME.

To exempt specific files from automatic data migration, use ime-pin or ime-ctl --pin. The --pin option sets 
a flag to not auto-synchronize and auto-purge data for this file. 

Example

ime-pin ime:///fsmnt/bfs/dir/myfile
or
ime-ctl --pin /imefusemnt/dir/myfile

Note that you can manually synchronize or purge this file as described in Section 4.2 on page 20 and Section 4.3 
on page 22, respectively.
96-00450-001 Rev. A7 IME 1.4 Developer Guide | 23



Data Residency Control
Key Points

• By default, ime-pin uses /etc/ddn/ime/ime.conf to establish communication with ime-server. 
To specify a different configuration file, use the -c option. 

• The default option for ime-pin is -M (“pin the file”). 

• If a file is marked as pinned, this setting will not persist after a reboot.

• For additional details about file pinning, refer to the IME Installation and Administration Guide.

NOTE: To pin files using IME Native API, use ime_client_native2_sync_ctl. 
(See Appendix B.4 on page 38.)
96-00450-001 Rev. A7 IME 1.4 Developer Guide | 24



5.    Integrating with Job Schedulers

IME integrates with job schedulers at the user-level by job chaining or at the administrator-level using prologue 
and epilogue scripts. In both cases, the integration is expressed by scripts that implement native IME command 
line tools. The software distribution of IME includes ready-to-use examples, which can also be adapted to an 
administrator’s own tool set.

Considering that IME is by essence a hierarchical storage, the definition of a data policy is the important part of the 
job scheduler integration. For a given job, the administrator must determine what data should be prestaged prior 
to the execution of the job itself and what specific actions should be done for the data produced at the end of the 
job.

The scripts provided with IME propose a policy in five keywords:

• IN – Prestage the files in IME prior to job execution. This keyword is interpreted by the ime-stage-in.sh 
script only.

• SYNC – Copy the files to the BFS and retain in IME after job execution, which is equivalent to calling ime-
sync on the file. (Default behavior) This keyword is interpreted by the ime-stage-out.sh script only.

• PURGE – Copy the files to the BFS and remove the remaining version in IME after job execution. This keyword 
is interpreted by the ime-stage-out.sh script only.

• RETAIN – Keep the files in IME without explicit action, letting the automated synchronization engine of IME 
manage the status of the file. This keyword is interpreted by the ime-stage-out.sh script only.

• DISCARD – Remove the files from IME and the BFS after job execution, which means that no remaining copies 
of the file will exist. This is typically useful for temporary or intermediate data. This keyword is interpreted by 
the ime-stage-out.sh script only.

Figure 5 shows a policy example.

Figure 5. policy_example.ime

The following sections define the job scheduler scripts. Depending on the existence of an IME fuse mount point, 
the scripts will use the fastest possible method to perform stage-in and stage-out.

IN file1 file2 dir_input
SYNC file3
PURGE file4 file5
RETAIN file6
DISCARD file7 file8 file9
96-00450-001 Rev. A7 IME 1.4 Developer Guide | 25



Integrating with Job Schedulers
5.1    Data Stage-in Script

/opt/ddn/ime/bin/ime-stage-in.sh [options] <files and directories>

This script is a driver for stage-in capabilities of IME, which prepares IME for job execution. It prestages all files and 
directories passed as arguments. When calling the script, you must specify the list of files and directories in a 
space-separated format. The process is blocking; thus it will return once all data have been successfully staged in 
IME. 

Options include:

-c <file>, --config-file <file> Set absolute path to IME Configuration file. 
Default is /etc/ddn/ime/ime.conf. 

-f <file>, --policy-file <file> Set temporal locality of data policy file.
-h, --help Display help.
-v, --verbose Display verbose output.

Examples

./ime-stage-in.sh input_dir

./ime-stage-in.sh input_file1 input_file2 input_dir

5.2    Data Stage-out Script

/opt/ddn/ime/bin/ime-stage-out.sh [options] <files and directories>

This script is a driver for stage-out capabilities of IME, which defines the specific actions that should be done for 
the data produced at the end of the job. It will discard, synchronize, or purge all files and directories passed as 
arguments. When calling the script, you must specify the list of files and directories in a space-separated format. 
The process is blocking; thus it will return once all data have been successfully handled according to the requested 
action. 

Options include:

-c <file>, --config-file <file> Set absolute path to IME Configuration file. 
Default is /etc/ddn/ime/ime.conf. 

-d, --DISCARD Specify list of space-separated files or directories to remove from
IME and the BFS after job execution. 

-f <file>, --policy-file <file> Set temporal locality of data policy file.
-h, --help Display help.
-p, --PURGE Specify list of space-separated files or directories to copy to the

BFS and remove the remaining version in IME after job execution.
-s, --SYNC Specify list of space-separated files or directories to copy to the

BFS and keep within IME after job execution.
-v, --verbose Display verbose output.

Examples

./ime-stage-out.sh input_dir

./ime-stage-out.sh input_file1 input_file2 input_dir
96-00450-001 Rev. A7 IME 1.4 Developer Guide | 26



Integrating with Job Schedulers
5.3    Traffic Monitor Script

/opt/ddn/ime/sbin/ime-traffic-monitor.sh [options] -l <nodes>

This script tracks the amount of I/O traffic sent to IME for the specified nodes. When calling the script, you must 
specify the list of nodes in a comma-separated format. The nodes involved in a job can be extract from the job 
scheduler environment: 

• In PBS/Torque, $PBS_NODEFILE contains the nodes assigned to a job. 

• In Slurm, $SLURM_JOB_NODELIST contains similar information. 

Typically, this script is used to report the traffic that occurred during a job. At the beginning of the job, call this 
script with the -c option to reset the traffic count to zero and start monitoring the traffic. At the end of the job, the 
numbers gathered represent the total I/O activity emitted by the specified nodes during the lifetime of the job.

Options include:

-c, --clean Reset traffic count to 0. 
-d, --display Display current traffic.
-f <file>, --file <file> Set path and name of the output file in batch mode.

Default is /tmp/ime/ime_traffic.log.
-i, --interactive Interactive mode. Refresh every second and display updated traffic

information. If this option is not included, the script runs in batch mode.
-l, --list <list> Set list of nodes in comma-separated format.
-h, --help Display help.
-v, --verbose Display verbose output.

Example

./ime-traffic-monitor.sh -i -l imeclient1,imeclient2,imeclient3

Figure 6 shows example output for the interactive mode. The bandwidth will be updated dynamically depending 
on the connection speed between node. 

Figure 6. Example Output in Interactive Mode 

IMPORTANT: This script only reports the IME traffic that went through a fuse mount point. It does
not capture the IME MPI-IO traffic.

Monitored IME Traffic for node 
std0801,std0802,std0803,std0805,std0806,std0807,std0808,std0809,std0810,std0811,std0812,std0813,std0
814,std0815,std0816 in Byte and MiB
_____________________________________________________________________________
std0801: WRITE 7081214304 (6753 MiB) READ 0 (0 MiB)
std0802: WRITE 344 (0 MiB) READ 0 (0 MiB)
std0803: WRITE 344 (0 MiB) READ 0 (0 MiB)
std0805: WRITE 344 (0 MiB) READ 0 (0 MiB)
std0806: WRITE 0 (0 MiB) READ 0 (0 MiB)
std0807: WRITE 344 (0 MiB) READ 0 (0 MiB)
std0808: WRITE 344 (0 MiB) READ 0 (0 MiB)
std0809: WRITE 344 (0 MiB) READ 0 (0 MiB)
std0810: WRITE 344 (0 MiB) READ 0 (0 MiB)
std0811: WRITE 688 (0 MiB) READ 0 (0 MiB)
std0812: WRITE 344 (0 MiB) READ 0 (0 MiB)
std0813: WRITE 344 (0 MiB) READ 0 (0 MiB)
std0814: WRITE 344 (0 MiB) READ 0 (0 MiB)
std0815: WRITE 344 (0 MiB) READ 0 (0 MiB)
std0816: WRITE 344 (0 MiB) READ 0 (0 MiB)
96-00450-001 Rev. A7 IME 1.4 Developer Guide | 27



Appendix A     IME Command Line Utilities
IME provides a set of command line interface (CLI) utilities to control the movement of data between IME and the 
BFS and to manipulate files resident in the IME data tier, defined as follows:

• IME Control (ime-ctl) – Specifically designed for use on hosts that present the IME client mount to 
applications, such as clients that use FUSE. ime-ctl can only be used with the IME client mount point or 
FUSE path. By passing various options, it performs functions equivalent to the stand-alone utilities. This 
utility has the same functionality as its equivalent stand-alone utilities, yet its performance is better due to 
its use of already established server connections. (Appendix A.1 on page 31.) 

• Stand-alone – Functionality equivalent to ime-ctl but designed for use on hosts that do not present the 
IME client mount to applications. These utilities provide flexibility by not requiring a POSIX mount point at 
the cost of lower performance. (Section A.2 on page 32.)

• General-use – General functionality and can be used on all hosts, regardless of whether the IME client mount 
is presented. If IME client mount is present, the –c option is not needed. These utilities do not have an 
ime-ctl equivalent.(Section A.3 on page 34.)

The following sections give detailed descriptions of each utility, including all available options, as listed in Table 6 
and Table 7. 

NOTE: For the latest information, refer to the corresponding man page or use the –h option at the
command line.

Table 6.  IME CLI Utilities: IME Control versus Stand-alone Utilities

IME CLI Utilities Description

IME Control note1

1. For details about ime-ctl, see Appendix A.1 on page 31.

Stand-alone

ime-ctl --frag-stat ime-frag-stat
(Appendix A.2.1 on page 32)

Show file fragment status for IME file data.

ime-ctl --pin ime-pin -M
(Appendix A.2.2 on page 32)

Disable automatic data migration of IME file data.

ime-ctl --unpin ime-pin -m
(Appendix A.2.2 on page 32)

Enable automatic data migration of IME file data.

ime-ctl --prestage ime-prestage
(Appendix A.2.3 on page 33)

Prestage file data from the BFS to IME.

ime-ctl --purge ime-release
(Appendix A.2.4 on page 33)

Purge file data resident in IME, regardless of synchronization 
state.

ime-ctl --sync ime-sync
(Appendix A.2.5 on page 33)

Synchronize file data from IME to the BFS keeping the data in 
IME.
96-00450-001 Rev. A7 IME 1.4 Developer Guide | 28



IME Command Line Utilities
Common Options

Unless noted otherwise, the following options are available with all CLI utilities:

-c <file> Set absolute path to IME Configuration file. Default is /etc/ddn/ime/ime.conf. 
(Not valid with ime-ctl.)

-h, --help Display help. Use -hh for additional detail.

-L <level> Set detail level of data logged. (Not valid with ime-ctl.) 
Valid values are

0 = Trace (Most detail)
1 = Debug
2 = Information 
3 = Warning (Default)
4 = Error
5 = Fatal (Least detail)

-l <file> Set absolute path to log file, which will include a log of events.
(Not valid with ime-ctl.)

-v, --version Display version and then exit.

Table 7.  IME CLI Utilities: General-use

IME CLI Utilities Description

General-use

ime-cat
(Appendix A.3.1 on page 34)

Concatenate a file resident in IME and print on standard output.

ime-file-to-fid
(Appendix A.3.2 on page 34)

Print IME FID for a file specified in one or more IME file paths.

ime-lsfiles
(Appendix A.3.3 on page 34)

List all files resident in IME at a specific path.

ime-rm
(Appendix A.3.4 on page 34)

Delete file data resident in IME and its BFS file.

ime-stat
(Appendix A.3.5 on page 35)

Show file statistics for one or more files resident in IME.
96-00450-001 Rev. A7 IME 1.4 Developer Guide | 29



IME Command Line Utilities
Key Points

The following are key points to know about the IME CLI utilities:

• Unless noted otherwise, IME CLI utilities are called from the client-side.

• Unless noted otherwise, IME CLI utilities support use of wildcards for POSIX pathnames and those prefixed 
by the IME file prefix (ime:/// or ime://).  (See Section 3.3 on page 16.)

• For ime-ctl, the specified <path> must be the absolute path to the file on the client mount. It does not 
support relative paths. For example: /imefusemnt/dir/myfile

• When using the IME file prefix, the specified <path> can be the relative path or absolute path to the file. (See 
Section 3.3 on page 16.)

• Unless noted otherwise, the specified <path> must be the path to the file in IME.

• If a BFS is mounted, the IME file prefix (ime://) is not allowed with the FUSE path. The prefix is used for BFS 
path only.

• If a BFS is not mounted and FUSE is mounted, run the IME CLI utilities with the FUSE path.

• Unless noted otherwise, IME CLI utilities will resolve a symbolic link to retrieve the file to which it points and 
will then use the same file for further operations. The utility will work on the link only if the file it points to is 
present on the BFS. 

• If the -R or -r option is supported, file data can include all files in a specified directory and its subdirectories 
recursively.

• Unless noted otherwise, IME CLI utilities are non-blocking (by default). The -b option enables blocking mode.

• The –L and –l options for the IME CLI utilities override the detail level of data logged and the absolute path 
to the log file at run time, respectively. 

• The --server-log-level and --client-log-level options for ime-ctl override the detail level of 
data logged at run time. 

• If an IME file that contains all zeros is copied to a new file within IME, ime-stat/stat() displays a size of 0 
for the copied file.

IMPORTANT: Due to the operating system and the underlying network libraries and data devices
being used, there are limits to how many copies of the IME CLI utilities can run
simultaneously. This number will vary across IME clusters. If a utility reports that it
cannot start up due to lack of system resources, decrease the level of parallelism. In
general, limit the number to eight utility commands simultaneously running on a
single IME client.
96-00450-001 Rev. A7 IME 1.4 Developer Guide | 30



IME Command Line Utilities
A.1     IME Control Utility (ime-ctl)
The ime-ctl utility is a general-purpose, ioctl-based client tool and is specifically designed for use on hosts that 
present the IME client mount to applications, such as clients that use FUSE. The utility performs various operations 
on IME file data at the specified path, as described by the supported options:

ime-ctl [commands] [options] <path>

This utility has the same functionality as its equivalent stand-alone utilities, yet its performance is better due to its 
use of already established server connections.

For additional details, see Key Points on page 30 and Common Options on page 29.

One of the following commands is required:

--purge-stale <FID> <mount_point> Purge stale file data from IME.
--get-short-fid, --get-long-fid Obtain the IME FID for the specified file.
--prestage Prestage file data from the BFS to IME. IME will purge any existing synchronized IME file

data and then prestage data from the BFS file. 
--purge-synced Purge only synchronized IME file data. Unsynchronized data will be retained and only

synchronized data will be released. 
--pin Disable automatic data migration of file data (“pin the file”). If a file is marked as pinned,

this setting will not persist after a reboot.
--unpin Enable automatic data migration of file data (“un-pin the file”).
--purge Purge file data from IME, regardless of synchronization state.
--sync Synchronize file data from IME to the BFS keeping the data in IME.
--frag-stat Show file fragment status for IME file data.
--unmap Send unmap IOs on all devices for all freed blocks that need to be unmapped. 

Unmaps are sent even if there is read/write activity on the devices. May temporarily
slow down the devices.

--unmap-threshold Change threshold to trigger non-idle unmap commands based on the percentage of
modified device blocks, which is counted individually per device including commit log
device. Valid values are 0 to 100 percent. Default is 90%. If the value is negative, the
trigger is disabled.

Additional command options for use in data residency and data discovery include

--block Block on prestage or synchronize completion. For use with --prestage or --sync. 
Default is non-blocking.

-K, --keep Keep existing synchronized IME file data on prestage. For use with --prestage.
-R, --recursive Run command on files in subdirectories recursively.

Additional commands to change the log level include

--client-log-level=<level> Set detail level of data logged to the client log. Default is 3. 
--server-log-level=<level> Set detail level of data logged to the server log file. Default is 3.

Additional output options include

-H, --human Convert byte values to human-readable format.
--short Display short output mode.
-V, --verbose Display verbose output.

IMPORTANT: You must have root privileges to use the --purge-stale option. 
96-00450-001 Rev. A7 IME 1.4 Developer Guide | 31



IME Command Line Utilities
A.2     Stand-alone Utilities

The stand-alone utilities have functionality equivalent to ime-ctl but are designed for use on hosts that do not 
present the IME client mount to applications. These utilities provide flexibility by not requiring a POSIX mount 
point at the cost of lower performance. 

For additional details, see Key Points on page 30 and Common Options on page 29.

A.2.1     ime-frag-stat
ime-frag-stat [options] <path>

Show file fragment status for the specified file resident in IME. 

Functionality equivalent to ime-ctl --frag-stat but is used on hosts that do not present IME client mount to 
applications.

File fragments may be in one of four states:

• Dirty – New or modified data in IME without an exact copy on the BFS.

• Pending – Dirty data awaiting synchronization to the BFS.

• Clean – Data in IME has an exact copy on the BFS. It has either been synchronized or prestaged.

• Deletable – Data that may be freed from IME. Data can be manually marked as deletable regardless of its 
state.

Options include the Common Options on page 29 and the following:

-r Show file fragment status for all files in the specified directory and its subdirectories recursively. 

A.2.2     ime-pin
ime-pin {-M|-m} [options] <path>

Disable or enable automatic data migration for specified file data resident in IME.

Functionality equivalent to ime-ctl --pin and ime-ctl --unpin but is used on hosts that do not present 
IME client mount to applications. 

Commands include the following:

-M Disable automatic data migration of file data (“pin the file”). 
If no option is passed, defaults to -M.
If a file is marked as pinned, this setting will not persist after a reboot.

-m Enable automatic data migration of file data (“un-pin the file”).

Additional options include the Common Options on page 29 and the following:

-r Disable or enable automatic data migration for all files in the specified directory and its subdirectories
recursively.
96-00450-001 Rev. A7 IME 1.4 Developer Guide | 32



IME Command Line Utilities
A.2.3     ime-prestage
ime-prestage [options] <path>

Prestage specified file data from the BFS to IME. 

Functionality equivalent to ime-ctl --prestage but is used on hosts that do not present IME client mount to 
applications.

<path> must be path on the BFS, as it is used to bring file data from the BFS to IME. By default, this operation is 
non-blocking. 

Options include the Common Options on page 29 and the following:

-b Block until the prestage operation is complete. Default is non-blocking.
-K Keep existing synchronized IME file data on prestage.
-r Prestage all files in the specified directory and its subdirectories recursively. 
-V Display progress when blocking mode (–b) is specified.

NOTE: IME will purge any existing synchronized IME file data and then prestage the data from the
BFS file. To keep the existing synchronized data on prestage, pass the -K option.

A.2.4     ime-release
ime-release [options] <path>

Purge the specified file data resident in IME. 

Functionality equivalent to ime-ctl --purge but is used on hosts that do not present IME client mount to 
applications.

By default, ime-release removes all specified file data from IME regardless of its synchronization state. If 
synchronized, the file content resident in the BFS remains intact. File data that is not synchronized to the BFS will 
be lost. 

Options include the Common Options on page 29 and the following:

-k Purge only synchronized IME file data. Unsynchronized data will be retained and only synchronized data
will be released. 

-r Purge all files in the specified directory and its subdirectories recursively. 

A.2.5     ime-sync
ime-sync [options] <path>

Synchronize specified file data from IME to the BFS keeping the data in IME. 

Functionality equivalent to ime-ctl --sync but is used on hosts that do not present IME client mount to 
applications. By default, this operation is non-blocking.

Options include the Common Options on page 29 and the following:

-b Block until the synchronization operation is complete. Default is non-blocking.
-r Synchronize all files in the specified directory and its subdirectories recursively. 
-V Display progress when blocking mode (–b) is specified.
96-00450-001 Rev. A7 IME 1.4 Developer Guide | 33



IME Command Line Utilities
A.3     General-Use Utilities

Use the utilities listed in this section on all hosts, regardless of whether IME client mount is presented. If IME client 
mount is present, the –c option is not needed. These utilities do not have an ime-ctl equivalent. For additional 
details, see Key Points on page 30 and Common Options on page 29.

A.3.1     ime-cat

RECOMMENDED: Use the Linux alternative cat on the ime-fuse mount point instead of
ime-cat.

ime-cat [options] <path>

Concatenate a file resident in IME or the BFS and print to standard output. Provides similar functionality to Linux 
command cat() for data resident in IME. Options include the Common Options on page 29.

A.3.2     ime-file-to-fid
ime-file-to-fid [options] <path>

Print 128-byte IME FID for a file specified in one or more IME file paths. ime-file-to-fid does not support 
wildcard characters. All path arguments must be absolute or relative IME paths. Options include the Common 
Options on page 29.

A.3.3     ime-lsfiles

RECOMMENDED: Use the Linux alternative ls on the ime-fuse mount point instead of 
ime-lsfiles.

ime-lsfiles [options] <path>

List all files resident in IME for the specified path. Provides similar functionality to Linux command ls() for data 
resident in IME. Options include the Common Options on page 29.

A.3.4     ime-rm

RECOMMENDED: Use the Linux alternative rm on the ime-fuse mount point instead of
ime-rm.

ime-rm [options] <path>

Delete the specified file resident in IME and its BFS file. If the specified file is a symbolic link, ime-rm will delete 
the symbolic link only. The file to which the symbolic link points remains intact unless it is deleted explicitly. If 
<path> is a symbolic link pointing to a directory, ime-rm -r deletes all directory contents and the symbolic link. 

Options include the Common Options on page 29 and the following:

-r Delete all files, directories, and symbolic links in the specified directory and its subdirectories recursively. 
96-00450-001 Rev. A7 IME 1.4 Developer Guide | 34



IME Command Line Utilities
A.3.5     ime-stat

RECOMMENDED: Use the Linux alternative stat and ime-frag-stat on the ime-fuse
mount point instead of ime-stat.

ime-stat [options] <path>...

Show file statistics for one or more files resident in IME. Provides similar functionality to Linux command stat() 
for data resident in IME. Symbolic links are not de-referenced by default. If ime-stat is run on a directory with -
r and without -f option, it traverses its sub-directory even if it is a symbolic link. However for symbolic links 
pointing to file, it displays an error message to use the -f option. 

Options include the Common Options on page 29 and the following:

-f Show file statistics for the target file referenced by a symbolic link.
-r Show file statistics for all files in the specified directory and its subdirectories recursively. 
96-00450-001 Rev. A7 IME 1.4 Developer Guide | 35



Appendix B     IME Native API Reference
The following sections provide brief descriptions of the IME Native API. For the latest information, refer to the 
ime-native-api man page.

NOTE: On failure, the IME Native API functions return -1 and errno is set to indicate the error.

B.1     Initialization and Finalization

ime_client_native2_init

void ime_client_native2_init(void)

Prepare the IME native client interface for use. You must initialize the interface with a call to this function prior to 
any other IME Native API call.

ime_client_native2_finalize

int ime_client_native2_finalize(void)

Destroy the IME native client interface.

B.2     POSIX Equivalent Operations 

ime_client_native2_close

int ime_client_native2_close(int fd)

IME Native implementation of close()

ime_client_native2_dup2

int ime_client_native2_dup2(int oldfd, int newfd)

IME Native implementation of dup2()

ime_client_native2_fsync

int ime_client_native2_fsync(int fd)

IME Native implementation of fsync()

ime_client_native2_lseek

off_t ime_client_native2_lseek(int fd, off_t offset, int whence)

IME Native implementation of lseek()

ime_client_native2_open

int ime_client_native2_open(const char *user_path, int flags, mode_t mode)

IME Native implementation of open()

ime_client_native2_pread

ssize_t ime_client_native2_pread(int fd, char *buf, size_t count, off_t offset)

IME Native implementation of pread()
96-00450-001 Rev. A7 IME 1.4 Developer Guide | 36



IME Native API Reference
ime_client_native2_preadv

ssize_t ime_client_native2_preadv(int fd, const struct iovec *iov, int iovcnt, 
                                  off_t offset)

IME Native implementation of preadv(). This implementation is based on the IME aio_write implementation.

ime_client_native2_pwrite

ssize_t ime_client_native2_pwrite(int fd, const char *buf,  size_t count, off_t offset)

IME Native implementation of pwrite()

ime_client_native2_pwritev

ssize_t ime_client_native2_pwritev(int fd, const struct iovec *iov, int iovcnt, 
                                   off_t offset)

IME Native implementation of pwritev(). This implementation is based on the IME aio_write 
implementation.

ime_client_native2_read

ssize_t ime_client_native2_read(int fd, char *buf, size_t count)

IME Native implementation of read()

ime_client_native2_stat

int ime_client_native2_stat(const char **user_path, struct stat *buf)

IME Native implementation of stat()

ime_client_native2_ftruncate

int ime_client_native2_ftruncate(int fd, off_t off)

IME Native implementation of ftruncate()

ime_client_native2_unlink

int ime_client_native2_unlink(const char *pathname)

IME Native implementation of unlink()

ime_client_native2_write

ssize_t ime_client_native2_write(int fd, const char *buf, size_t count)

IME native implementation of write()

B.3     IME Client Asynchronous Library
The ime_client_native2_aio_read / ime_client_native2_aio_write functions queue the I/O 
requests described by the control block structure. They are the asynchronous analogs of 
ime_client_native2_preadv / ime_client_native2_pwritev, but the same arguments are passed in 
the control block. These functions are "asynchronous" in that the calls return as soon as the requests have been 
enqueued, and notification of I/O completion is signaled via call back to the user-specified function in the control 
block. 

The completion function would be called only if I/O enqueuing call returns success, as indicated by a value of 0. 
Note that the completion function may be called from a different thread and can even be called earlier than I/O 
enqueuing call returns. The control block must not be changed while the operation is in progress.
96-00450-001 Rev. A7 IME 1.4 Developer Guide | 37



IME Native API Reference
The completion callback has the following signature:

void  complete_cb(struct ime_aiocb *aiocb, int err, ssize_t bytes);

where 

aiocb is the same pointer to the control block that was used for enqueuing.
err is the error code of operation (0 if successful, non-zero error code otherwise).
bytes are actual number of bytes read or written as result of I/O (only valid when err=0).

The following structure is used to submit IO to the functions:

struct ime_aiocb
{
int fd;
int iovcnt;
uint32_t flags;
struct iovec *iov;
off_t file_offset;
void *complete_cb)(struct ime_aiocb *aiocb, int err, ssize_t bytes);
intptr_t user_context;

};

Fields of this struct are as follows:

fd File descriptor to which to read or write.
iovcnt Number of elements in the sgl.
flags Not used. Must be initialize to 0. 
iov Scatter gather elements.
file_offset File seek offset.
complete_cb Function pointer to call upon completion of IO. 
user_context Handle for the IO submitter to use, which can be used to reference its data structures.

ime_client_native2_aio_read

int ime_client_native2_aio_read(struct ime_aiocb *aiocb)

Submit a read from the IME client asynchronous library. Returns 0 if the IO was successfully submitted.

ime_client_native2_aio_write

int ime_client_native2_aio_write(struct ime_aiocb *aiocb)

Submit a write to the IME client asynchronous library. Returns 0 if the IO was successfully submitted.

B.4     Non-POSIX Equivalent Operations

ime_client_native2_async_fd

int ime_client_native2_async_fd(int fd, int async_on)

Set or unset an asynchronous file descriptor. Asynchronous file descriptors will not block in 
ime_client_native2_close() waiting for the synchronization of cached data to the IME storage service. All 
remaining unsynchronized data is synchronized in ime_client_native2_finalize().
96-00450-001 Rev. A7 IME 1.4 Developer Guide | 38



IME Native API Reference
ime_client_native2_bfs_sync

int ime_client_native2_bfs_sync(int fd, bool blocking)

Synchronize file data from IME to the BFS keeping the data in IME. This operation is blocking/non-blocking based 
on the value passed. The IME service copies the file content in parallel, using large chunk sizes when available.

ime_client_native2_config_ctl

int ime_client_native2_config_ctl(int ratio, uint32_t type)

Change the ratios that control auto-synchronization and auto-purge.

ime_client_native2_data_release

int ime_client_native2_data_release(int fd, int clean_data_only)

Purge file data in IME. Data will be purged regardless of its synchronization state, unless clean_data_only is 
passed. File data that is not synchronized to the BFS will be lost.

ime_client_native2_frag_fstat

int ime_client_native2_frag_fstat(int fd, size_t *nbytes_dirty, size_t *nbytes_syncing, size_t *nbytes_clean,
                                                                                                                                                                            size_t *nbytes_deletable)

Determine fragment status for IME file data. Returns the number of bytes in the dirty (unsynchronized), syncing 
(pending), clean (synchronized), and deletable states. This function determines if a synchronization or prestage 
operation has completed.

ime_client_native2_get_ime_fsize

ssize_t ime_client_native2_get_ime_fsize(int fd)

Get the file size of a file resident in IME. Note that this file size may have been affected by application calls to 
truncate() or ftruncate() and may not be consistent with the size reported by the BFS.

ime_client_native2_prestage

int ime_client_native2_prestage(int fd, bool keep_clean_data)

Prestage file data from the BFS to IME prior to your job. This operation is non-blocking. Similar to 
ime_client_native2_bfs_sync, prestage activities are parallelized across the IME data tier to achieve a 
high-performance interaction between IME and the BFS. 

ime_client_native2_prestage_blocking

int ime_client_native2_prestage_blocking(int fd, bool keep_clean_data)

Prestage file data from the BFS to IME prior to your job. Similar to ime_client_native2_prestage, except the 
call is blocking.

ime_client_native2_sync_ctl

int ime_client_native2_sync_ctl(int fd, int disable_auto_sync)

If auto-synchronization is enabled, exempt the file data from being automatically synchronized to the BFS when 
capacity reaches the sync_threshold.
96-00450-001 Rev. A7 IME 1.4 Developer Guide | 39



Appendix C     IME Environment Variables
The following sections provide brief descriptions of the IME environment variables that are generally used for IME 
Native API and MPI-IO enabled applications. For the latest information, refer to the 
ime-environment-variables man page.

IMPORTANT: Command line parameters take precedence over environment variables with the
same meaning.

IM_BULKDATA_POOL_LARGE_MIN_MAX=<num>

Specify the quantity of large-sized buffers that IME should use.

IM_BULKDATA_POOL_MEDIUM_MIN_MAX=<num>

Specify the quantity of medium-sized buffers that IME should use.

IM_BULKDATA_POOL_SMALL_MIN_MAX=<num>

Specify the quantity of small-sized buffers that IME should use.

IM_BULKDATA_POOL_STAGE_MIN_MAX=<num>

Specify the quantity of stage in/out buffers that IME should use.

IM_BULKDATA_POOL_TINY_MIN_MAX=<num>

Specify the quantity of tiny-sized buffers that IME should use.

IM_BULKDATA_POOL_TYPICAL_MIN_MAX=<num>

Specify the quantity of typical-sized buffers that IME should use.

IM_CLIENT_CATCH_SIGSEGV=[0|1]

Specify if IME is allowed to set its custom handler for SIGSEGV signal that improves the level of crash diagnostics. 
Default is 0 (not allowed).

IM_CLIENT_CFG_FILE=<string>

Specify the absolute path to IME Configuration file, which contains the configuration of the IME Server and IME 
Client nodes. This file is required to boot ime-server and is used by IME Client nodes to contact ime-server. 
Paths specified by command line parameters take precedence over this environment variable.

NOTE: For a detailed description of the IME Configuration file, refer to the IME Installation and
Administration Guide.

IM_CLIENT_COMMAND_TIMEOUT=<integer>

Specify integer value in seconds for time during which commands to the IME Server node will be retried in case of 
connection or storage space problems. Default is 1800 (30 min).

IM_CLIENT_DATA_PLACEMENT_TYPE=<string>

Set the server data placement policy. Valid values are DETERMINISTIC (default) and NONDETERMINISTIC. The 
non-deterministic mode allows for adaptive load balancing across an IME Server node pool.
96-00450-001 Rev. A7 IME 1.4 Developer Guide | 40



IME Environment Variables
IM_CLIENT_DEBUG_LEVEL=<level>

Set detail level of data logged to the client log. Valid values are

0 = Trace (Most detail)
1 = Debug
2 = Information 
3 = Warning (Default)
4 = Error
5 = Fatal (Least detail)

Levels specified by command line parameters take precedence over this environment variable.

IM_CLIENT_DISABLE_RA=[0|1]

Controls the read ahead mechanism of IME Client. Default is 0, which enables read ahead. To disable read ahead, 
set to 1.

IM_CLIENT_ENTRY_TIMEOUT=<float>

Specify a floating value for file entry cache entry timeout. Default is 0.0.

IM_CLIENT_HANDSHAKE_ENABLED=[0|1]

Disable or enable client-server handshake. Default is 1. 

IM_CLIENT_INIT_TIMEOUT=<integer>

Specify an integer value in seconds for the maximum time allowed to establish connections with IME Server nodes. 
Default is 3600.

IM_CLIENT_JOB_TRACKING_ENABLED=[0|1]

For use with IME Native API, enable or disable Slurm Job ID tracking. Default is 0. 

IM_CLIENT_LOG_FILE=<string>

Set absolute path to client log file, which is used to save a log of events. Paths specified by command line 
parameters take precedence over this environment variable.

IM_CLIENT_NET_IF=<device0>-<protocol>,<device1>-<protocol>,...

Specify the network devices and communication protocols for the IME Client nodes to use. 

For IB and Intel OPA, use ibx-verbs
For Ethernet, use ethx-tcp

For single-rail, IM_CLIENT_NET_IF specifies the name of one network device. 
For example: IM_CLIENT_NET_IF=ib0-verbs

For multi-rail, IM_CLIENT_NET_IF specifies a comma-separated list of devices. 
For example: IM_CLIENT_NET_IF=ib0-verbs,ib1-verbs

For IME applications that use the IME FUSE Client, the option

––network_device=<device0>-<protocol>,<device1>-<protocol>,... 

takes precedence over IM_CLIENT_NET_IF. In this case, typically, the network devices and communication 
protocols are specified in /etc/ddn/ime/ime-fuse.conf. 

For additional details, refer to the IME Installation and Administration Guide.

IM_CLIENT_MIN_CONNECTIONS=[0|1]

Enable or disable support for minimum RPC connections. Default is 0. 
96-00450-001 Rev. A7 IME 1.4 Developer Guide | 41



IME Environment Variables
IM_CLIENT_NO_BFS_MOUNT=[0|1]

Specify if IME can access the BFS mount point on the client. This environment variable can be used for certain 
operations such as locks. For MPI-IO and IME native API, the default is 0 (BFS mount point is not used). For ime-
fuse, the default is auto-detection. If the BFS mount point is passed as an option, the BFS mount point is used. If 
it is not passed, it will not be used. Explicitly setting IM_CLIENT_NO_BFS_MOUNT overrides that automatic 
decision.

IM_CLIENT_PGEOM=<N>+<K>

Enable erasure coding with a geometry of <K> redundant blocks per <N> data blocks. 

Applications that use MPI-IO or IME Native API can override the def_pgeom setting in 
/etc/ddn/ime/ime.conf by passing the IM_CLIENT_PGEOM environment variable. Applications that use the 
IME FUSE client can override the def_pgeom setting and IM_CLIENT_PGEOM environment variable by passing 
the ––pgeom=<N>+<K> option. For a detailed description of using erasure coding for data protection, refer to the 
IME Installation and Administration Guide.

IM_CLIENT_RD_BUFFERS=<integer>

Specify the maximum number of buffers for read caching. Values must be in the range of 32MB (minimum) to 
8192MB (maximum). Default is 32. 

IM_CLIENT_WR_BUFFERS=<integer>

Specify the maximum number of buffers for write-back caching. Values must be in the range of 32MB (minimum) 
to 8192MB (maximum). Default is 32.

IM_COREDUMP_DIR=<string>

Specify a destination directory for core dumps. For root user, default is the root of the BFS. For all other users, 
default is the current path, where the binary was executed.

The IM_COREDUMP_DIR environment variable is mainly for client purposes. If the directory was not specified 
using the ime-server ––coredump-dir option, the directory specified by the environment variable is used. 
For additional details, refer to the IME Installation and Administration Guide.

IM_LOG_MAX_LINES_PER_FILE=<num>

Specify the number of lines per log file before log rotation is initiated.

IM_LOG_ROTATION_DISABLE_LEVEL=<level>

Specify the log level that disables log rotation. Default is IM_LOG_DBG (1) in order to avoid rotating out debug 
data.

IM_MONITOR_FILE=<string>

Enable IME monitoring with the output to specified file. If the path contains "%p" it will be substituted by PID.

IM_NETWORK_STACK=[CCI|OFI] (DEPRECATED: Use configuration option instead.)

IM_RPC_CLIENT_TIMEOUT_SECONDS=<num>

Set the timeout in seconds IME will wait before considering an RPC request as failed (only relevant for client-server 
communications). A value of 0 disables the timeout. Default is 0 (disabled).

IM_RPC_CM_MIN_RETRY_SECONDS=<num>

Define the minimum number of seconds between consecutive connection attempts. Default is 5.
96-00450-001 Rev. A7 IME 1.4 Developer Guide | 42



IME Environment Variables
IM_RPC_CM_MAX_RETRY_SECONDS=<num>

Define the maximum number of seconds between consecutive connection attempts. Default is 640.

IM_RPC_CM_TIMEOUT_SECONDS=<num>

Set the timeout IME will wait for a response following a connection request or shutdown. If a timeout is detected 
during a connection establishment or shutdown, the connection state is reverted back to disconnected and a 
connection request is re-sent. The value for the timeout must be greater than the network timeout. Default is 120.

IM_RPC_CONN_NO_ACTIVITY_TIMEOUT_SECONDS=<num>

Set timeout without any activity (including keep-alive probes) in seconds after the connection is considered 
"dead" and the RPC initiates a tear-down. Must be equal to greater than twice the value of 
IM_RPC_KEEPALIVE_TIMEOUT_SECONDS. Default is 360.

IM_RPC_CONNS_CHECKER_SECONDS=<num>

Set time between two consecutive executions of the connection checker, which is responsible for detecting 
connection timeouts. Default is 360.

IM_RPC_KEEPALIVE_TIMEOUT_SECONDS=<num>

Set idle time in seconds before sending a keepalive probe. Default is 120.

IM_RPC_SERVER_TIMEOUT_SECONDS=<num>

Set the timeout in seconds IME will wait before considering an RPC request as failed (only relevant for server-
server communications). Value of 0 disables the timeout. Default is 300.

IM_SERVER_EJECT_NODE_ON_NET_DEV_FAILURE=[0|1]

Specify the behavior of the IME Server node when a network interface used by the node goes down or enters a 
critical error state.

If set to 1 or undeclared (Default), the node will be ejected if any network device fails. For example:

If a node has 4 network devices and any 1 network device fails, it will trigger node ejection.

If set to 0, node ejection will occur only when all network devices fail. For example:

If a node has 4 network devices and any 1 network device fails, it will not trigger node ejection. In this case, the 
server continues to run if any network device is available. All devices must fail before the node will be ejected. 

In both cases, a warning message will be included in the IME logs to indicate that a network device failed.

IMPORTANT: Node ejection for network device failures is only supported in CCI.

IM_SPATIAL_READ_OBJ_POOL_SIZE=<num>

Specify (in MB) the maximum memory footprint for objects used to speedup read operations on small IO blocks. 

IM_STOP_ON_EJECTED = <string>

Specify if an IME Server node is allowed to continue if it was marked as ejected at the last shutdown. 
Valid settings include

yes or YES = Node will continue to run without crashing, but it will not participate in any IME-related
communications. 

no or NO = Node will not boot and stop at bootup once it sees itself marked as failed by the IME cluster.
96-00450-001 Rev. A7 IME 1.4 Developer Guide | 43



96-00450-001 Rev. A7 IME 1.4 Developer Guide | 44

Contacting DDN Support

If you have questions or require assistance, contact DDN Support:

Web

Support Portal https://community.ddn.com/login 

Portal Assistance webportal.support@ddn.com 

Telephone

DDN Worldwide Directory https://www.ddn.com/support/global-services-overview/ 

Email

Support Email support@ddn.com 

Bulletins 

Support Bulletins http://www.ddn.com/support/technical-support-bulletins 

End-of-Life Notices http://www.ddn.com/support/end-of-life-notices 

Bulletin Subscription Request support-tsb@ddn.com 

https://community.ddn.com/login
webportal.support@ddn.com
https://www.ddn.com/support/global-services-overview/
http://www.ddn.com/support/technical-support-bulletins


Corporate Headquarters · 9351 Deering Avenue, Chatsworth, CA 91311 · ddn.com · +1.818.700.4000 · info@ddn.com


	Preface
	1. Getting Started
	2. IME Software Architecture
	2.1 Client-Server Architecture
	2.2 Data Consistency Model
	2.3 Simultaneous Access to File Data

	3. IME Client
	3.1 I/O Interface
	3.1.1 POSIX
	3.1.2 MPI-IO
	3.1.3 IME Native API

	3.2 Libraries
	3.3 File Paths and URIs
	3.4 Dockerized IME Client
	3.4.1 IME Client Inside Container
	3.4.2 IME Client On Host


	4. Data Residency Control
	4.1 Prestage
	4.2 Synchronize
	4.3 Purge
	4.4 File Pinning

	5. Integrating with Job Schedulers
	5.1 Data Stage-in Script
	5.2 Data Stage-out Script
	5.3 Traffic Monitor Script

	Appendix A IME Command Line Utilities
	A.1 IME Control Utility (ime-ctl)
	A.2 Stand-alone Utilities
	A.2.1 ime-frag-stat
	A.2.2 ime-pin
	A.2.3 ime-prestage
	A.2.4 ime-release
	A.2.5 ime-sync

	A.3 General-Use Utilities
	A.3.1 ime-cat
	A.3.2 ime-file-to-fid
	A.3.3 ime-lsfiles
	A.3.4 ime-rm
	A.3.5 ime-stat


	Appendix B IME Native API Reference
	B.1 Initialization and Finalization
	B.2 POSIX Equivalent Operations
	B.3 IME Client Asynchronous Library
	B.4 Non-POSIX Equivalent Operations

	Appendix C IME Environment Variables

