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ABSTRACT
Cloud computing has evolved in the commercial space to
support highly asynchronous web 2.0 applications. Scien-
tific computing has traditionally been supported by central-
ized federally funded supercomputing centers and grid re-
sources with a focus on bulk-synchronous compute and data-
intensive applications. The scientific computing community
has shown increasing interest in exploring cloud comput-
ing to serve e-Science applications, with the idea of taking
advantage of some of its features such as customizable en-
vironments and on-demand resources. Magellan, a recently
funded cloud computing project is investigating how cloud
computing can serve the needs of mid-range computing and
future data-intensive scientific workloads. This paper sum-
marizes the application requirements and business model
needed to support the requirements of both existing and
emerging science applications, as learned from the early ex-
periences on Magellan and commercial cloud environments.
We provide an overview of the capabilities of leading cloud
offerings and identify the existent gaps and challenges. Fi-
nally, we discuss how the existing cloud software stack may
be evolved to better meet e-Science needs, along with the
implications for resource providers and middleware develop-
ers.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Computer Com-
munication Networks—Distributed Systems; J.2 [Computer
Applications]: Physical Sciences and Engineering
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1. INTRODUCTION
Cloud computing provides a new resource model where

multiple virtual servers hosted in data centers are used by in-
dividuals or groups, usually through a pay-as-you-go model.
Cloud computing provides an illusion of infinite computing
resources available on demand, i.e. in current cloud systems
resources are accessible to the user almost instantly, with
startup time of the instance imposing the only delays.

Cloud computing platforms are primarily used to serve the
needs of web 2.0 applications, whereas their use in scientific
communities is still being evaluated [9]. Different e-Science
groups including those in bioinformatics [13], astronomy [5]
and high energy physics have experimented with Amazon’s
infrastructure-as-a-service model and have also investigated
the use of Hadoop for programming loosely coupled applica-
tions. Early results indicate some performance degradation
in comparison to conventional batch-scheduled clusters. But
this also promises to be an avenue to address new categories
of scientific applications including data intensive science ap-
plications, on-demand/surge computing, and applications
that require customized software environments. This new
resource model will have a substantial impact on the busi-
ness model for future High Performance Computing (HPC)
centers in terms of how they provide services to the scientific
community and the evolution of the software infrastructure
necessary to manage those resources.

Magellan is a recently funded project, through DOE ASCR,
to investigate how the cloud computing business model can
be used to serve the needs of midrange computing and future
data-intensive computing workloads for the Office of Science
that are not served through DOE data center facilities to-
day. The distributed testbed infrastructure has been de-
ployed at Argonne Leadership Computing Facility (ALCF)
and the National Energy Research Scientific Computing Fa-
cility (NERSC). At NERSC, the testbed will consist of 1,440
Intel Nehalem quad-core processors (5,760 cores total).

There has been intense discussion on the characteristics of
clouds, along with their benefits and comparisons with grid
environments [1, 7]. However, comparatively little attention
has been devoted to defining the workload requirements,
business model, user management, scheduling, application
tools and security in the context of e-Science applications.
The latter topics are central to defining the role of cloud
computing in existing supercomputing centers and DOE’s
investment strategy for future computing infrastructure.
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Cloud computing encompasses a wide scope of technolo-
gies and offerings. In this paper, we specifically address the
solutions that are pertinent to e-Science applications - use of
virtualized environments and software tools that are useful
in these environments.

Section 2 defines a taxonomy of key scientific workloads
that might be served well through cloud environments based
on their application characteristics and associated business
model. Section 3 describes examples of e-Science workloads
that could benefit from existing cloud technologies. Sec-
tion 4 identifies gaps in the current cloud computing offer-
ings for target workloads. Section 5 revisits the cloud ser-
vice model and outlines the opportunities of an improved
software stack that better meets the needs of e-Science ap-
plications.

2. E-SCIENCE ENVIRONMENTS
Scientific explorations consist of a broad spectrum of ap-

plication codes that run from user desktops to supercomput-
ing centers, in areas such as nuclear physics, bioinformatics,
environmental sciences, etc. These applications have a var-
ied set of requirements and often have a need for unlimited
compute cycles and data storage.

2.1 Application Classes
In this section, we provide a high-level classification of

workloads in the scientific space based on their resource re-
quirements and delve into the details of why cloud comput-
ing is attractive to these application spaces.

Bulk-Synchronous Large-Scale Computations. These
are complex scientific codes generally running on large-scale
supercomputing centers across the nation. These are MPI
codes using a large number of processors (often in the or-
der of thousands) and may have long running jobs. These
jobs are serviced at supercomputing centers through batch
queue systems. Users wait in a managed queue to access
the resources requested, and their jobs are run when the re-
quired resources are available and no other jobs are ahead
of them in the priority list. Most supercomputing centers
provide archival storage and parallel file system access for
the storage and I/O needs of these applications.

Bulk-Synchronous mid-range. These applications run
at a smaller scale than the above jobs. There are a number
of codes that need tens to hundreds of processors. Some of
these applications run at supercomputing centers and back-
fill the queues. More commonly, users rely on small compute
clusters that are managed by the scientific groups themselves
to satisfy these needs.

Asynchronous massively independent. Some scien-
tific explorations are performed on the desktop or local clus-
ters and have asynchronous, massively independent compu-
tations. Even in the case of large-scale science problems, a
number of the data pre- and post-processing steps, such as
visualization, are often performed on the scientist’s desktop.
However the increased scale of digital data due to low cost
sensors and other technology [10] has resulted in the need
for these applications to scale to environments such as cloud
environments. The requirements of such applications are
similar to those of the internet applications that currently
dominate the cloud computing space, but with far greater
data storage and throughput requirements.

The Integrated Microbial Genomes (IMG) system hosted
at the DOE Joint Genome Institute (JGI) fits this category.

It supports analysis of microbial community metagenomes
in the integrated context of all public reference isolate mi-
crobial genomes. The content maintenance cycle for data
involves running BLAST for identifying pair-wise gene sim-
ilarities between new metagenome and reference genomes
where the reference genome baseline is updated with new
(approximately 500) genomes every 4 months. This process-
ing takes about 3 weeks on a Linux cluster with 256 cores.
The size of the databases is growing, it is important that
the processing can still be accomplished in a timely manner.
The primary computation in the IMG pipeline is BLAST, a
data parallel application that does not require communica-
tion between tasks and thus has similarities with traditional
cloud applications.

2.2 Usage model
A central component of cloud computing is the underlying

usage or business model. Currently, midrange computing
infrastructure consists of a large number of departmental
or PI (Principle Investigator)-owned clusters that are dis-
tributed across the DOE – some placed in machine rooms
and many housed in closets. The virtualization technology
that enables the cloud computing business model to suc-
ceed for Web 2.0 applications, could be used to create vir-
tual ”private clusters” within a shared resource that look,
for all practical purposes, to be identical to privately man-
aged PI-owned clusters. The premise is that carving up
machines from large-scale data centers enables substantial
cost-savings due to economies of scale and improved energy
efficiency compared to running a number of smaller clusters,
while retaining all of the benefits of exclusive control of the
software configuration and availability that PIs desire.

The model thus facilitates the outsourcing of resource
needs to external providers on a pay-as-you-go model instead
of maintaining local infrastructure. A number of major ven-
dors including IBM and HP, and more recently Amazon and
Microsoft have embraced this service model of operating
large clusters on behalf of external clients. In the context of
the application classes discussed above we describe relevant
usage models.

Private cluster. Some scientific users prefer to run their
own private clusters for a number of reasons. They often
don’t need the concurrency levels achievable at supercom-
puting centers and need guaranteed access to resources for
specific periods of time. For these needs to be satisfied in
cloud environments, we need to be able to provide guaran-
teed access to the cluster when needed. This matches the
level of service that motivates them to operate their own
private cluster.

Personalized environment. A number of scientific ap-
plications have strong OS version dependencies and need
environments that are consistent with local cluster or desk-
top environments. In these cases while users might not care
where the resources are located, they desire the flexibility
associated with custom software environments. The instant-
availability of the resource is not as critical to this class of
users as the strict control of the entire software environment
(down to the sub-revisions of the OS kernel and libraries),
and the throughput of the solution.

Science Gateways Users of well-defined computational
workflows often prefer to have simple web-based interfaces to
their application workflow and data archives. Web interfaces
enable easier access to resources by non-experts, and enable
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wider availability of scientific data for communities of users
in a common application area (e.g. Virtual Organizations).
In this case the underlying infrastructure is decoupled from
the user interface - scientists interface directly with their
workflows through the web. Applications become available
to users using the Software-as-a-Service model.

2.3 Application Requirements
Each of the current computational modes available to e-

Science applications has certain disadvantages that cloud
computing promises to address. We provide a brief overview
here of the needs of the applications.

Scalable Computational Capacity The scientific ex-
ploration process often requires a large number of runs with
different parameters and configurations. Supercomputing
centers are shared resources that often have long queue wait
times and policies on how many jobs a user might have in the
queue. In addition, users often have bursts in their resource
needs (e.g. close to deadlines), that might be unpredictable.
Such special access needs often require out-of-band discus-
sions with resource providers and a number of such requests
are not accommodated due to over-subscription of the re-
sources. Cloud computing promises the ability to get access
to unlimited resources (albeit at a cost) which is very at-
tractive to scientific users who have periodic surges in their
resource needs that can’t be satisfied through local or high
performance computing centers.

Scalable Computational Performance. Many dis-
tributed memory scientific applications depend heavily on
message passing libraries (MPI or GasNET) for inter-processor
communication. In particular, bulk synchronous applica-
tions are very sensitive to messaging latency and bandwidth.
In order to reduce latency and improve bandwidth, MPI-
oriented HPC systems typically use high-performance fab-
rics like Infiniband and use messaging technology that by-
passes the operating system to give direct access to the hard-
ware. Collective constructs in MPI applications, such as
barriers and reductions, are highly sensitive to subtle load-
imbalances. Therefore reducing random sources of noise in
the operating system (OS jitter) is critical for maintaining
scalable performance.

Consistent Software Environments. HPC systems
and, often, local cluster resources are shared environments
where users are affected by any software upgrades that might
occur at the sites. Compiler and library upgrades can cause
many unproductive hours for the scientist. Currently, users
either have to spend hours upgrading their software envi-
ronments or must explicitly run only on resources where
the environment is compatible with their needs. Thus user
groups are often unable to use available idle resources during
periods of surge due to software incompatibility.

Software distributions. A number of large-scale multi-
institution collaborations have common shared software codes.
The source code for these applications are distributed today
and each group then individually installs them on local re-
sources. Due to the variability in the software supported at
each site, configuring and reproducing the exact execution
state requires hours to days of work and coordination. Some
groups are investigating the use of virtual machine images
for distribution of all required software [3]. This would en-
able sites to boot the virtual machines at different sites with
minimal or no work involved with software management.

Programming model. Scientific computing facilities

mostly serve the needs of high-end compute intensive sci-
entific codes. But as digital data becomes more readily
available, there is an increasing need for scaling data inten-
sive science that has traditionally run on desktop machines.
Cloud computing works well with the MapReduce program-
ming model that promises to be useful for some applications
with a large amount of parallel data processing. For ex-
ample, the JGI IMG pipeline mentioned earlier can benefit
from a MapReduce framework where a number of sequence
comparisons are processed in parallel.

Data Storage and Data Management HPC systems
typically provide high-performance parallel file systems that
enable parallel coordinated writes to a shared filesystem with
high bandwidth and capacity. The file system also needs
to allow for access patterns where multiple clients concur-
rently write to the same file, which is not supported by
NFS based solutions. Parallel file systems like GPFS, Lus-
tre and Panasas are usually employed to meet these needs
and are often layered on top of high-end storage systems or
use specially designed hardware. Even with these capabil-
ity focused file systems and storage systems, data storage
and movement remain one of the most challenging aspects
of high-performance computing. In addition to the high-
performance file systems, HPC centers typically provide an
archival storage system to archive critical output and results.
These systems are geared towards storing many petabytes
of data in a reliable fashion. Many of these systems still
use tape for storage. This is both for its cost effectiveness
per byte and reliability. Cloud computing models will need
similar data storage and management options for scientific
applications to effectively use these environments.

3. CURRENT CLOUD SYSTEMS
We have worked with a number of applications and ex-

perimented with different cloud providers and technologies
available. We have run a number of high performance bench-
mark [8] and application codes on Amazon web services
to understand the performance implications of virtual ma-
chines. In addition, we have used Hadoop to manage the
BLAST computations in the JGI IMG pipeline and com-
pared its performance on different platforms including tra-
ditional HPC platforms, Amazon EC2 and the Yahoo M45
clusters [2]. In these sections we detail our experiences with
using these technologies for these application studies.

3.1 Hadoop
The Apache Hadoop project is an open-source software

that provides capabilities to harness commodity clusters for
distributed processing of large data sets through the MapRe-
duce [4] model.

The Hadoop streaming model allows one to create map
and reduce jobs with any executable or script as the mapper
and/or the reducer. This is the most suitable model for sci-
entific applications that have years of code in place capturing
complex scientific processes. The Hadoop framework does,
however, make assumptions about the data model (e.g., sin-
gle line inputs per process) that are not valid for scientific
applications. This requires re-engineering of the application
data used with Hadoop jobs.

The Hadoop File System (HDFS) is the primary storage
model used in Hadoop. HDFS is modeled after the Google
File system and has several features that are specifically
suited to Hadoop / MapReduce. Those features include ex-
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posing data locality and data replication. Data locality is a
key aspect of how Hadoop achieves good scaling and perfor-
mance and Hadoop attempts to locate computation close to
the data. This is especially true in the Map phase which is
often the most I/O intensive phase. Data is replicated for
fault tolerance and to provide more opportunities to execute
computation near data. The data is transparently replicated
by the file system.

3.2 Amazon Web Services
Amazon Web Services is a very popular cloud comput-

ing platform today. Amazon provides a number of different
instance types in terms of its computational power for dif-
ferent pricing. We have run a number of benchmarks on the
platform and the high performance MPI applications tend
to experience a performance hit. Additionally, Amazon also
provides higher-level services such as Elastic Map reduce.
However our experience with elastic map reduce revealed
that applications that didn’t fit the traditional Hadoop data
model could not use the existing API.

The primary methods for data storage in Amazon EC2 are
S3 and Elastic Block Storage (EBS). S3 is a highly scalable
key based storage system that transparently handles fault
tolerance and data integrity. EBS provides a virtual storage
device that can be associated with an Elastic Computing
instance. S3 charges for space used per month, the volume of
data transferred and the number of metadata operations (in
1000 allotments). EBS charges for data stored per month.

Scientific experimentation often results in changes to code
and configuration, which may involve recreation of the vir-
tual machine image. To avoid that problem and to addition-
ally serve as the global file system needed for MPI jobs, we
used EBS on a single node containing our binary and input
data. This was then mounted through NFS on the rest of
the nodes.

3.3 Yahoo M45
The Yahoo M45 cluster is a shared Hadoop platform-as-a-

service cloud environment. The cluster resources are shared
amongst users using a fair-share scheduler. The goal of this
cluster is to provide a Hadoop MapReduce platform for data
parallel applications in the scientific research space. At the
time of writing, the cluster is comprised of 400 dual quad-
core Intel Xeon E5320 1.86GHz nodes with 6GB of memory
per node. Each node is configured to run 2 map tasks and
1 reduce task.

We did a performance analysis for the IMG metagenomics
computations using the BLAST application in this frame-
work and found that it was comparable to that of other tra-
ditional HPC platforms and Amazon EC2. Memory appears
to be the bounding factor for BLAST, since the genome
database must be loaded in memory. BLAST itself scales lin-
early with the size of the database but we hit a performance
cliff when the database size exceeds the available memory
size. Additionally, since our tests were run on a shared
Hadoop cluster, it was difficult to get consistent overall per-
formance numbers. The load on the system from other users
impacted our total time-to-solution.

The Yahoo! M45 system allowed us to identify impor-
tant bottlenecks and limitations in this problem space. In
order to make the M45 environment more suited to a cloud-
implementation of BLAST or similar memory intensive sci-
entific applications we would benefit from a) higher memory

limits in the software configuration, b) nodes with a large
amount of available physical memory (similar to the extra-
large instances on Amazon EC2 which have 15GB) c) ability
to perform reservations for on-demand computing giving us
more reliable throughput times for total time-to-solution.

4. GAP ANALYSIS
In the previous section, we detailed current cloud offer-

ings. Here we examine some of the gaps and challenges in
using existing cloud offerings directly for scientific comput-
ing.

4.1 Resource Provider Policies
Clouds promise an unlimited supply of resources on-demand.

While this was true in early days of cloud computing where
demand for resources was still ramping up, more recently
users have noticed that their requests have not been satis-
fied on providers such as Amazon EC2 due to insufficient
capacity. This situation is similar to current day super-
computing and grid resources that are often over-subscribed
and have long wait queues. Thus for the end-scientist cloud
computing as an unlimited supply of cycles tends to be less
promising. There is a need for differentiated levels of ser-
vice similar to Amazon’s current offerings but with advanced
resource request interfaces with specific QoS guarantees to
avoid users needing to periodically query to see if resources
have become available.

Portability. The vision of grid computing has been to
enable users to use resources from a diverse set of sites by
leveraging a common set of job submission and data man-
agement interfaces across all sites. However experiences re-
vealed that there were challenges due to different software
stacks and software compatibility issues. Virtualization fa-
cilitates software portability. Open source tools such as Eu-
calyptus [11] enable transition from local sites to Amazon
EC2, but cloud interfaces in general are diverse and spe-
cific to each site making it hard to easily use multiple sites.
In addition, cost of data movement to and especially from
the cloud tends to be very expensive, discouraging portabil-
ity. The data costs are also an issue for applications where
scientists would like to perform post-processing on their end-
desktop or local clusters, or would like to share their output
data with other colleagues.

Cost. Today’s cloud providers have a pay-as-you-go model
for cloud resources. Cloud computing essentially enables
anyone with a credit card to get access to resources. However
infrastructure needs for scientific computing are either ad-
dressed through large upfront grants for equipment and/or
through peer-reviewed allocations on supercomputing re-
sources. Credit card transactions for resources don’t fit into
the current budget model at research institutions. In addi-
tion, PIs often have to distribute or carve out some percent-
age of their entire allocation to different users which cannot
be accomplished in today’s cloud computing scenarios. In
addition, providers such as Amazon EC2 provide a plethora
of options (e.g., spot instances, reserved instances, etc). un-
der different pricing models. The diversity and unlimited
scope of the scientific processes necessitates a runtime cost-
benefit evaluation with respect to these offerings. Thus, we
need to revisit institutional policies and software frameworks
that can capture these policies to spearhead cloud comput-
ing adoption for e-Science.
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4.2 Application Performance
Scientific applications have fairly large memory, compute,

data and network needs. Our experiences with running Blast
on the Yahoo! M45 cluster pushed us against some of these
limits. For example, Blast performance scales linearly with
the size of data, and is bound by the available physical mem-
ory - once the search database can no longer fit into physical
memory we notice a sharp performance drop-off.

The traditional synchronous applications such as MPI per-
form poorly on virtual machines and have a huge perfor-
mance overhead. Application codes with minimal or no
synchronization, modest I/O requirements, with large mes-
sages or very little communication tend to perform well in
cloud virtual machines. Traditional cloud computing plat-
forms are designed for applications where there is little or
no communication between individual nodes and where ap-
plications are less affected by failures of individual nodes.
This assumption breaks down for large-scale synchronous
applications.

In general cloud providers need to build systems that can
meet the more intensive requirements of scientific comput-
ing. The standard commercial offerings might not be com-
pletely suitable for scientific needs out of the box, and at
the very least, seem to require a fair amount of initial setup
to meet the needs of science applications.

Cloud providers such as Amazon EC2 provide simple web
service APIs for access and setup of resources. However run-
ning on Amazon EC2 often requires creating customized im-
ages, determining how resources are managed, implementing
fault tolerance, etc. This requires a fair amount of system
administrator experience. Similarly Hadoop applications re-
quire a fair amount of development experience. Thus there
is a need for developing application tools that exist above
these current offerings that account for the needs of the sci-
ence and enable easier access to cloud resources.

Additionally in the cloud model, time-to-solution is a more
critical metric than individual node performance. Scalability
is achieved by throwing more nodes at the problem. How-
ever, in order for this approach to be successful for e-Science,
it is important to understand the setup and configuration
costs associated with porting a scientific application to the
cloud - this must be factored into the overall time-to-solution
metrics in resource selection and management decisions.

4.3 Data management
As discussed earlier, scientific applications have a number

of data and storage needs. Synchronized applications need
access to parallel file systems. There is also a need for long-
term data storage. None of the current cloud storage meth-
ods resemble the high-performance parallel file systems that
HPC applications typical need. Hadoop is optimized such
that applications can benefit from data locality in the under-
lying HDFS system. This requires that Hadoop applications
are written to be able to store and retrieve data from HDFS.
Thus while applications can leverage the features of Hadoop
for task farming and coordination of tasks, rewriting legacy
scientific applications for use in cloud environments is often
infeasible and impractical. File system modules have been
written for Linux that allow access to HDFS through the
standard VFS layer. The FUSE interface takes VFS request
from the kernel and executes them in user space and this
results in a performance overhead.

5. REVISITING THE CLOUD MODEL
The goal of the Magellan project is to evaluate possi-

ble solutions for cloud computing for science. In this sec-
tion, we revisit the challenges and opportunities facing re-
source providers and middleware developers in providing
next-generation services.

Resource Provider Model. Resource providers serv-
ing the e-Science community need to support a diverse set
of models to accommodate different user needs. For ex-
ample, synchronous applications often need access to non-
virtualized resources for the best performance. Similarly as
sites support more data intensive science, there is a need
for frameworks such as Hadoop. Magellan will support pro-
visioning through batch queue (MOAB) systems, cloud so-
lutions such as Hadoop, and Eucalyptus, as well as access
to Hadoop over batch queue systems using Hadoop On De-
mand(HOD).

Virtual machines do not have any persistent state or shared
file systems, requiring sites to develop solutions that meet
the storage needs of the end user. Resource provider sites
need a) shared file systems such as GPFS or NFS accessible
across all nodes allocated to the end user, that can be used
to store persistent information across virtual machines and
b) archival storage for long term storage of data.

Currently in supercomputing centers, the sites manage
the operating system and middleware that is needed across
multiple groups. Users compile and install their applications
on specific systems (often with help from site personnel).
As we move to the cloud computing model, sites must pro-
vide tooling and support for managing a diverse set of ker-
nels and operating systems that required by specific groups.
The clear separation of responsibilities for software upgrades
and operating system patches no longer exists, and sites will
need mechanisms to bridge the gap between supporting user-
supported images and site security policies.

A cloud system where users have complete control of their
images, has certain implications on site security policies.
Additional checks and mechanisms are needed to protect
critical infrastructure services (e.g. DNS, file servers) on
the sites, ensure isolation between different virtual machines,
and defend against malicious outgoing and incoming traffic.

We need monitoring and dynamic allocation policies that
can load-balance between clusters of different types and pro-
vide guaranteed Quality of Service to users of all resource
types. In addition to the performance needs of the appli-
cation, there is a need for tools to manage fault tolerance
and reliability of the virtual machines. Virtual machine mi-
gration [12] has been proposed as a way to provide higher
quality of service especially during planned upgrades and
maintenance cycles.

Software Stack. Software stacks supporting distributed
scientific applications has largely evolved in the context of
grid computing. The software stack can be categorized into
these primary layers a) End-user portal interfaces or science
gateways b) Coordination services layer that coordinates un-
derlying resources for efficient and reliable execution c) Re-
source management services that interface directly with the
underlying resources

Cloud computing addresses the portability of the software
stack, a known issue with current day grid systems. Cloud
computing for e-Science needs a similar set of software tools
to harness and coordinate underlying resources. Cloud com-
puting technologies provide additional features that greatly
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simplify some of the known challenges with existing soft-
ware stacks, and also provides additional challenges of re-
source coordination. Here we present a vision for a cloud
computing software stack for e-Science that mitigates some
of the known problems and builds on existing commercial
products.

Batch queue systems such as Moab, PBS, etc provide cus-
tomizable policy points and algorithms to control scheduling
of requests and resources. Similarly, there is a need for pol-
icy points in the cloud infrastructure and the ability to store
and service requests when resources cannot be allocated im-
mediately. On top of the basic resource management ser-
vices, there are a number of coordination services available
in cyber-infrastructure environments today. These include
grid services for job submission and data transfer, applica-
tion services that coordinate the application specific setup
and execution, data replication services, meta-scheduling
services etc. In cloud computing we need a number of similar
tools and services. These tools must manage the underlying
resource procurement, and apply any runtime customization
needed in the virtual machine (e.g. bringing up specific ser-
vices within the instance). We need monitoring services and
the ability to dynamically grow and shrink resource hold-
ings without impacting the application. Additionally, we
need tools to manage job and data coordination, execution
and monitoring.

Moving higher up in the software stack, a class of users
will expect to interface with their underlying applications
through web-based science gateways, so that they are re-
moved from the infrastructure level details. Applications
must then be accessed through a middleware layer that can
expose traditional science applications as web services.

In order to make scientific computing more accessible, and
to allow for a faster overall time-to-solution, it is impor-
tant to have simple and robust interfaces that are seam-
lessly integrated with the applications and cloud infrastruc-
ture. Given the nature of the cloud, and its close coupling
with web technologies, these interfaces must leverage exist-
ing http based protocols. REST [6] (Representational State
Transfer) is gaining wide adoption as the underlying mech-
anism for building these interfaces. REST allows one to
expose resources by using the existing http protocol layer.
It creates a very simple and powerful means to access un-
derlying resources using a combination of URIs and http
verbs.

Most cloud providers including Amazon, Microsoft, Google,
etc., are striving to make their interfaces RESTful. Grid
technologies, which are similar in spirit to the cloud have
been saddled by more heavyweight protocols and technolo-
gies like WSDL and SOAP, limiting overall usability. Using
simple REST based APIs makes it very easy to add powerful
web 2.0 functionality to science applications. Looking for-
ward, this will allow users to mash-up disparate data sources
across the cloud because everything is essentially just a URI.

6. CONCLUSIONS
Cloud computing promises to be an alternative approach

for midrange and data intensive e-Science applications. Scal-
able parallel performance is achievable on these platforms
for application codes with modest I/O requirements and
minimal or no synchronization and communication. How-
ever, existing cloud offerings in the commercial space do not
completely meet the needs of these applications. Currently,

running a particular application on the cloud requires sub-
stantial understanding and assembly of the cloud computing
technologies. This paper summarizes these gaps and revisits
the service model both in the context of providers as well as
the software stack. There is a need for differentiated service
levels, hardware platforms tailored to scientific applications,
and higher level software tools that can manage the com-
plexities of the underlying technology fabric.
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