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Abstract— As reported by many recent studies, the
mean time between failures of future post-petascale su-
percomputers is likely to reduce, compared to the current
situation. The most popular fault tolerance approach for
MPI applications on HPC Platforms relies on coordinated
checkpointing which raises two major issues: a) global
restart wastes energy since all processes are forced to
rollback even in the case of a single failure; b) checkpoint
coordination may slow down the application execution
because of congestions on I/O resources. Alternative ap-
proaches based on uncoordinated checkpointing and mes-
sage logging require logging all messages, imposing a high
memory/storage occupation and a significant overhead on
communications. It has recently been observed that many
MPI HPC applications are send-deterministic, allowing to
design new fault tolerance protocols. In this paper, we
propose an uncoordinated checkpointing protocol for send-
deterministic MPI HPC applications that (i) logs only a
subset of the application messages and (ii) does not require
to restart systematically all processes when a failure occurs.
We first describe our protocol and prove its correctness.
Through experimental evaluations, we show that its im-
plementation in MPICH2 has a negligible overhead on
application performance. Then we perform a quantitative
evaluation of the properties of our protocol using the NAS
Benchmarks. Using a clustering approach, we demonstrate
that this protocol actually succeeds to combine the two
expected properties: a) it logs only a small fraction of
the messages and b) it reduces by a factor approaching
2 the average number of processes to rollback compared
to coordinated checkpointing.

I. INTRODUCTION

Fault tolerance is becoming a major issue in very large
scale HPC systems [18], [7]. At exascale, some projec-
tions estimate a mean time between failures (MTBF)
between 1 day and a few hours [7]. This paper focuses
on fault tolerance for large scale HPC applications. We
consider MPI (Message Passing Interface) applications
since MPI is widely used in the HPC community. Fault
tolerance for MPI HPC applications relies on rollback-
recovery checkpointing protocols to ensure correct ex-

Supported by INRIA-Illinois Joint Laboratory on PetaScale Com-
puting. Supported in part by NSF grant 0833128

ecution termination despite failures. To design check-
pointing protocols adapted to the MTBF of very large
scale platforms, the main issues that have to be addressed
are: i) the cost of checkpointing because the checkpoint-
ing frequency should be high to ensure that applications
will progress, increasing the impact of checkpointing on
application performance; ii) the cost of recovery because
rolling back millions of cores after a failure would lead
to a massive waste of energy.

The two main families of checkpointing protocols
are coordinated and uncoordinated checkpointing. Co-
ordinated checkpointing is the most popular in HPC
production centers. Coordinating processes at checkpoint
time ensures that the saved global state is consistent. It
has two main advantages: i) recovery is simple since
after a failure every process is restarted from its last
checkpoint; ii) garbage collection is efficient since only
the last checkpoint of every process is needed. However
coordinated checkpointing also has major drawbacks.
First, coordinated checkpointing is expensive regarding
energy consumption because a single failure makes all
processes rollback to their last checkpoint [10]. Second,
having all processes writing their checkpoints at the same
time creates burst accesses to the I/O system that may
slow down the application execution [15].

Uncoordinated checkpointing does not require any
synchronization between the processes at checkpoint
time. Thus, it can be used to address the problem of burst
accesses to the I/O system by allowing to better schedule
checkpoints. However uncoordinated checkpointing has
a major drawback called the domino effect: if no set of
checkpoints form a consistent global state, the applica-
tion has to be restarted from the beginning in the event
of a failure. It makes recovery cost unacceptable and
garbage collection complex to implement [10].

By reducing the set of applications considered to
piecewise deterministic applications, other protocols im-
prove uncoordinated checkpointing. For these applica-
tions, uncoordinated checkpointing can be combined



with message logging to avoid the domino effect and
limit the number of processes to rollback in the event of
a failure [1]. However, this comes at the expense of log-
ging all application messages, which consumes storage
space and adds a significant overhead on communication
bandwidth.

A new property, called send-determinism, has recently
been shown to be common to many MPI HPC applica-
tions [8]. In a send-deterministic application, given a set
of input parameters, the sequence of message emissions,
for any process, is the same in any correct execution.
Reducing the set of applications to send-deterministic ap-
plications opens the opportunity to design new rollback-
recovery protocols.

In this paper, we present a new uncoordinated check-
pointing protocol for send-deterministic applications.
This protocol only requires to log a small subset of
application messages to avoid the domino effect. Fur-
thermore, as in message logging protocols, it does not
require all processes to rollback in the event of a failure.
Since it does not suffer from the domino effect, simple
and efficient garbage collection can be done. Finally, by
allowing checkpoint scheduling, this protocol appears to
be a good candidate to address the problem of burst
accesses to the I/O system.

We present the following contributions: in section III,
we introduce our protocol and describes its algorithms.
In section IV, we prove that these algorithms always
lead to a correct execution, despite the presence of
failures. Section V demonstrates experimentally that this
protocol has a low overhead on failure free execution. As
a last contribution, we show on the NAS benchmarks
that combining our protocol with process clustering
provides a unique set of properties: 1) it does not rely
on checkpoint coordination, 2) it does not suffer from
the domino effect, 3) on the considered applications, the
average number of processes to rollback in case of failure
is close to 50% and 4) it requires to log only a small
percentage of executions messages.

II. CONTEXT

In this section, we first define the system and appli-
cation models considered in this paper. Then we recall
the basic issues that any rollback-recovery protocol has
to solve and explain how send-determinism can help.

A. System and Application Model

We consider an asynchronous distributed system. We
model a parallel computation as consisting of a finite set
of processes and a finite set of channels connecting any
(ordered) pair of processes. Reliable FIFO channels are
assumed. There is no bound on message transmission

delay and no order between messages sent on different
channels. Message exchanges create dependencies be-
tween processes. Sending and receiving event (send()
and receive()) of application processes are partially
ordered by Lamport’s happened-before relation denoted
“→” [13]. In this paper, “m1 → m2” means that
receive(m1) → send(m2). Regarding failures, we
consider a fail-stop failure model for the processes and
assume that multiple concurrent failures can occur.

We consider send-deterministic applications. In a
send-deterministic application, each process sends the
same sequence of messages for a given set of input
parameters in any valid execution. Deterministic applica-
tions are a subset of the send-deterministic applications
for which, per process message receptions sequence is
also always the same. The protocol proposed in this
paper targets send-deterministic applications and so, also
applies to deterministic applications. Thus, it covers a
large fraction of the MPI HPC applications [8].

B. Reaching a Consistent Global State after a Failure

To deal with failures in message passing applications,
a rollback-recovery protocol is needed to manage causal
dependencies between processes and ensure that a con-
sistent global state will eventually be reached.

In a non send-deterministic application, when the
sender of a delivered message rolls back due to a
failure and not the receiver, the global state becomes
inconsistent because there is no guaranty that the same
message will be sent again during recovery. The receiver
becomes orphan because its state depends on a message
that is seen as not sent. By extension, we call this
message an orphan message. To deal with this problem,
protocols based on checkpointing force the orphan pro-
cess to rollback in a state preceding the orphan message
reception. If processes checkpoints are not coordinated,
this may lead to the domino effect.

Protocols combining checkpointing and message log-
ging limit the number of rolled back processes by
logging all the information that are needed to be able
to replay the sequence of messages that led to send
the orphan messages. These protocols consider that pro-
cesses are piecewise deterministic and so, a total order
in message delivery is required during recovery.

In a send-deterministic application, sequence of mes-
sage sendings are always the same in any correct exe-
cution, given a set of input parameters. It implies that
ensuring causal delivery order during recovery is enough
to ensure that orphan messages will be sent again. Thus
send-determinism allows us to design a protocol that
avoids the domino effect in uncoordinated checkpoint
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while logging less information than existing message
logging protocols.

III. AN UNCOORDINATED CHECKPOINTING
PROTOCOL FOR SEND-DETERMINISTIC

APPLICATIONS

We propose an uncoordinated checkpointing protocol
for send-deterministic applications that only logs a subset
of the application messages to avoid the domino effect.
Thanks to send-determinism, our protocol is able to
recover the execution from an inconsistent global state
and thus does not require every process to rollback after
a failure. Recovery is based on partial message logging
and partial re-execution. In this section, we first present
the main principles of our protocol and then provide a
complete description including pseudo-code.

A. Protocol Principles

1) Taking Advantage of Send-Determinism: Send-
deterministic processes send the same sequence of mes-
sages in any correct execution: the delivery order of
non causally dependent messages has no impact on the
processes execution. It allows us to design a protocol that
is able to replay orphan messages after a failure without
logging all messages during failure free execution.

To replay orphan messages, our protocol re-executes
the failed processes from their most recent checkpoint
to send the messages again. To provide the messages
needed by a failed process for its re-execution, processes
that sent it a message before the failure also have to
rollback to send these messages again.

On Figure 1, if process P1 fails, it rolls back to its
last checkpoint H2

1 (2 being the checkpoint number).
Processes P0 and P2 have to rollback to replay messages
m8 and m9. We call m8 and m9, rolled back messages.
When P1 rolls back, message m10 becomes orphan.
However, process p3 does not need to rollback because
m10 will always be replayed regardless of the reception
order of m8 and m9 during re-execution.

2) Avoiding the Domino Effect: Existing uncoordi-
nated protocols suffer from the domino effect because
orphan processes need to be rolled back and a cascading
effect may force some processes to restart from the
beginning of the execution. Since our protocol does not
rollback orphan processes, it does not suffer from this
domino effect.

However, since our protocol rolls back processes that
sent rolled back messages, it creates another risk of
domino effect: a rolled back message sent before a
checkpoint forces the sender to roll back to a previous
checkpoint. To identify these messages, our protocol
uses epochs. The process epoch is incremented when

Fig. 1: Execution Scenario

a checkpoint is taken. To avoid the domino effect,
messages sent at epoch Es and received at epoch Er
with Es < Er are logged: we log messages going
from the past to the future. On Figure 1, if process
P3 fails, logging message m7 avoids the domino effect
that would have made every process rolls back to epoch
1 or even before. Since m7 is logged, process P4 is
able to send it again without rolling back. Sender-based
message logging can be used as in other message logging
protocols [11].

3) Managing Causal Dependencies: During recovery,
causal delivery order must be ensured to guarantee that
orphan messages are re-sent. Since the protocol does not
rollback orphan processes and replays logged messages,
messages that are causally dependent could be sent at
the same time during recovery and delivered in an order
that does not respect causal precedence, leading to an
incorrect state. Figure 2 illustrates the problem. In this
example, process P2 fails and rolls back to its last
checkpoint. Our protocol also makes P4 rolls back to
its last checkpoint because of message m6. Messages
m0 and m2 are logged. We assume that m7 is the next
message that would have been sent to P2 if the failure
did not occur. When recovery starts, messages m0, m2,
m6 and m7 can be sent to P2. From P2 point of view,
it is a priori impossible to find the causal order between
them. This is why we need additional information to deal
with causal dependencies during recovery.

In our protocol, rollbacks follow causal dependency
paths since rolling back the receiver of a message makes
the sender roll back. Checkpoints and logged messages
are used to break these paths and avoid restarting every
process from the beginning. As a consequence, messages
depending on orphan messages can be replayed during
recovery. For example, it is because m2 is logged that
it could be re-sent by P3 before m0 is replayed, even if
m2 depends on orphan message m1.

To deal with this problem, we introduce execution
phases: all messages on a causality path that is not
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Fig. 2: Example of Causality Problem. Numbers show
the evolution of the phases.

interrupted by a break are in the same phase. The phase
is incremented every time the path is broken. For this,
we define three rules: (i) A process increments its phase
on a checkpoint; (ii) When a process receives a message,
its phase becomes the maximum between its phase and
the one of the message1; (iii) If the received message is
a logged message, the process updates its phase to the
maximum between the phase of the message plus one
and the phase of the process to show that the causality
path is broken.

During recovery, phases are used to ensure that a
message is sent only when the orphan messages it
depends on are replayed. A replayed message m (m6 on
Figure 2) is sent when all orphan messages in a phase
ρ < ρ′ are replayed, since all messages in phase ρ that m
depends on have been rolled back. Messages sent without
re-executing the code generating the message, i.e. logged
messages (m0 and m2 on Figure 2) and messages sent
by non rolled back processes (m7 on Figure 2), can be
sent when all orphan messages in a phase ρ′ ≤ ρ are
replayed.

Figure 2 shows processes and messages phases. At
the beginning only m0 can be sent. Message m2 can be
sent when orphan message m1 is replayed. Messages m6

and m7 can be replayed when message m3 and m4 are
replayed. This is enough to ensure causal delivery order
during recovery.

Note that phases are mandatory even if the applica-
tion is deterministic. The deterministic message delivery
order during failure free execution might be due to
causal precedence. In an MPI application, an anonymous
recv() call always matches the same message if it is the
only message that can be received at that time. Since
our protocol can make the application restart from an
inconsistent global state, it might not be true anymore
during recovery.

4) Garbage Collection: Since our protocol logs all
messages going from the past to the future, a process
rolling back in an epoch E cannot make another process

1The phase of a message is the phase of its sender.

roll back in an epoch less than E. Thus in case of
multiple concurrent failures, processes roll back at most
into the smallest epoch failed processes roll back to. On
Figure 1, for example, the protocol ensures that for any
failure, processes rollback at most in epoch 2.

This property makes garbage collection simple. If E is
the smallest current epoch in the application, checkpoints
in an epoch less than E can be deleted as well as logged
messages received in a epoch less than E. A periodic
global operation can be used to evaluate E.

B. Protocol Description

Figure 3 details the protocol executed by the applica-
tion processes. Figure 4 presents the dedicated process,
called recovery process, that we use to manage recovery.
For the sake of clarity, we consider here a single failure.

During failure free execution, every message has to
be acknowledged by the receiver (Line 27 of Figure 3)
so that the sender can decide which messages have to be
logged (Lines 36-37 of Figure 3). The process phase is
increased every time a checkpoint is taken (Line 44 of
Figure 3) and updated every time a message is received
(Lines 21-24 of Figure 3). A date, increased every time
a message is sent or received by a process, is used to
identify duplicate messages (Line 20 of Figure 3).

To be able to deal with failures, every process saves,
per communication channel, information during failure
free execution. For every channel (Pi,Pj):
• A structure called SPE (SentPerEpoch) is used

to save the reception epoch of last non logged
message sent by Pi to Pj for every epoch of Pi.
This information is used to know in which epoch
Pi has to rollback if Pj rolls back (Line 14 of Figure
4).

• A structure called RPP (ReceivedPerPhase) is used
to save the sending date of the last message received
by Pi from Pj for every phase of Pi. This informa-
tion is used to find the orphan messages between
Pi and Pj if Pi rolls back.

During recovery, the dedicated recovery process is
used to compute the recovery line, i.e. the set of pro-
cesses to rollback and their corresponding epoch, and
ensure the causal dependency order between replayed
messages. When a process fails, it rolls back to its most
recent checkpoint and broadcasts the epoch in which it
restarts to all other processes (Lines 47-52 of Figure
3). When a process receives a failure notification, it
suspends its execution and sends its SPE structure to
the recovery process (Lines 54-56 of Figure 3). When
the recovery process has received all processes SPE
structure, it can start the recovery line computation. This
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Local Variables:
1: Statusi ← Running // Status of the process, Running, Blocked or RolledBack
2: Datei ← 1; Epochi ← 1; Phasei ← 1 // Date of the current event, Epoch number and Phase number on process Pi

3: NonAcki ← ∅ // list of messages sent by process Pi and not yet acknowledged
4: Logsi ← ∅ // list of messages logged by Pi

5: SPEi ← [⊥, ...,⊥] // Data on the messages sent per epoch. SPEi[Epochsend].date is Pi’s date at the begining of Epochsend.
6: RPPi ← [⊥, ...,⊥] // Data on the messages received per phase
7: RLi ← [⊥, ...,⊥] // RLi[j].epoch is the epoch in which Pj has to rollback after a failure; RLi[j].date is the corresponding date
8: OrphCounti ← [⊥, ...,⊥] // OrphCounti[phase] is the number of process that will re-send an orphan message to Pi in phase phase
9: OrphPhasesi ← ∅ // Phases where an orphan message has been received by Pi

10: LogPhasesi ← ∅ // Phases in which Pi has logged messages to replay
11: ReplayLoggedi ← [⊥, ...,⊥] // ReplayLoggedi[phase] is the list messages logged by Pi to be replayed in phase phase
12:
13: Upon sending message msg to Pj

14: wait until Statusi = Running
15: Datei ← Datei + 1
16: NonAcki ← NonAcki∪ (Pj , Epochi, Datei,msg)
17: Send (msg, Datei, Epochi, Phasei) to process Pj

18:
19: Upon receiving (msg, Datesend, Epochsend, Phasesend) from Pj

20: if Datesend > RPPi[Phasei][j].date then // msg is received for the first time
21: if Epochsend < Epochi then // logged
22: Phasei ←Max(Phasei, Phasesend + 1)
23: else
24: Phasei ←Max(Phasei, Phasesend)
25: Datei ← Datei + 1
26: RPPi[Phasei][j].date← Datesend

27: Send (Ack, Epochi, Datesend) to Pj

28: Deliver msg to the application
29: else if ∃phase such that Datesend = RPPi[phase][j].date then // it is the last orphan msg of one phase
30: OrphCounti[phase]← OrphCounti[phase]− 1
31: if OrphCounti[phase] = 0 then // The process received all duplicated messages for this phase
32: Send (NoOrphanPhase, phase) to the recovery process
33:
34: Upon receiving (Ack, Epochrecv , Datesend) from Pj

35: Remove (Pj , Epochsend, Datesend, msg) from NonAcki

36: if Epochsend < Epochrecv then // logging
37: Logsi ← Logsi∪ (Pj , Epochsend, Datesend, Phasesend, Epochrecv , msg)
38: else
39: SPEi[Epochsend][Pj ].epochrecv ← Epochrecv

40:
41: Upon checkpoint
42: Save (Epochi, ImagePsi, ReceivedPerPhasei, SentPerEpochi, Logsi, Phasei, Datei) on stable storage
43: Epochi ← Epochi + 1
44: Phasei ← Phasei + 1
45: SPEi[Epochi].date← Datei
46:
47: Upon failure of process Pi

48: Get last (Epochi, ImagePsi, RPPi, SPEi, Logsi, Phasei, Datei) from stable storage
49: Restart from ImagePsi
50: Statusi ← RolledBack
51: Send (Rollback, Epochi, Datei) to all application processes and to the recovery process
52: Send SPEi to the recovery process
53:
54: Upon receiving (Rollback, Epochrb, Daterb) from Pj

55: Statusi ← Blocked
56: Send SPEi to the recovery process
57:
58: Upon receiving (RLrecov) from the recovery process
59: if RLrecov[i].epoch < Epochi then // we need to rollback
60: Get (RLrecov[i].epoch, ImagePsi, RPPi, SPPi, Logsi, Phasei, Datei) from stable storage
61: Statusi ← RolledBack
62: for all phase such that RPPi[phase][j].date > RLrecov[j].date do // Looking for phases with an orphan message
63: OrphPhasesi ← OrphPhasesi ∪ phase
64: OrphCounti[phase]← OrphCounti[phase] + 1
65: for all (Pj , Epochsend, Datesend, Phasesend, Epochrecv , msg) in Logsi such that Epochrecv ≥ RLrecov[j].epoch do //

Looking for logged messages to be replayed
66: LogPhasesi ← LogPhasesi ∪ Phasesend

67: ReplayLoggedi[Phasesend] ← ReplayLoggedi[Phasesend] ∪ (Pj , Epochsend,Datesend, Phasesend, Epochrecv , msg)
68: Send (Orphan, Statusi, Phasei, OrphPhasesi, LogPhasesi) to the recovery process
69:
70: Upon receiving (ReadyPhase, Phase) from the recovery process
71: if ReplayLoggedi[Phase] 6= ∅ then // Send the logged messages if any
72: Replay msgs ∈ ReplayLoggedi[Phase]
73: if (Statusi = RolledBack ∧ Phasei = Phase + 1) ∨ (Statusi = Blocked ∧ Phasei = Phase) then
74: Statusi = Running

Fig. 3: Protocol Algorithm for Application Processes
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Local Variables:
1: DependencyTable← [⊥, ...,⊥] // DependencyTable[j][Epochsend][k].epochrecv is the SPE of process j
2: RolledBackPhase← ∅ // RolledBackPhase[phase] contains the list of rolled-back processes blocked in phase phase
3: BlockedPhase← ∅ // BlockedPhase[phase] contains the list of non rolled-back processes and logged messages blocked in phase phase
4: NbOrphanPhase← ∅ // NbOrphanPhase[phase] is the number of processes having at least one orphan message in phase phase
5:
6: Upon receiving (Rollback, Epochrb, Daterb) from Pj

7: RLrecov[j].epoch← Epochrb

8: RLrecov[j].date← Daterb
9: wait until DependencyTable is complete

10: RLtmp ← [⊥, ...,⊥]
11: repeat
12: for all Pj such that RLtmp[j] 6= RLrecov[j] do
13: RLtmp[j]← RLrecov[j]
14: for all Pk such that DependencyTablei[k][Epochsend][j].Epochrecv ≥ RLrecov[j].epoch do
15: RLrecov[k].epoch← min(RLrecov[k].epoch,Epochsend) // If Epochsend is taken, RLrecov[k].date is udpated too
16: until RLrecov = RLtmp

17: Send RLrecov to all application processes
18:
19: Upon receiving SPEj from Pj

20: DependencyTable[j]← SPEj

21:
22: Upon receiving (OrphanNotification, Statusj ,Phasej ,OrphPhasesj , LogPhasesj ) from Pj

23: if Statusj = Rolled− back then
24: RolledBackPhase[Phasej ]← RolledBackPhase[Phasej ] ∪ Pj

25: else
26: BlockedPhase[Phasej ]← BlockedPhase[Phasej ] ∪ Pj

27: for all phase ∈ LogPhasesj do
28: BlockedPhase[phase]← BlockedPhase[phase] ∪ Pj

29: for all phase ∈ OrphPhasesj do
30: NbOrphanPhase[phase]← NbOrphanPhase[phase] + 1
31: if OrphanNotification has been received from all application processes then
32: Start NotifyPhases
33:
34: Upon receiving (NoOrphanPhase, Phase) from Pj

35: NbOrphanPhase[Phase]← NbOrphanPhase[Phase]− 1
36: Start NotifyPhases
37:
38: NotifyPhases
39: for all phase such that @phase′ ≤ phase ∧NbOrphanPhase[phase′] > 0 do // Notification for phases that do not depend on orhpan

messages
40: Send (ReadyPhase, phase) to all processes in BlockedPhase[phase]
41: Send (ReadyPhase, phase) to all processes in RolledBackPhase[phase + 1]

Fig. 4: Algorithm for the Recovery Process

computation finishes when the application state does not
include anymore non-logged messages that are seen as
sent and not received (Lines 10-16 of Figure 4). For
very large scale applications, computing the recovery
line could be expensive because it requires to scan the
table again every time a rollback is found. However the
table scanning could be easily parallelized for a better
scalability by dividing the table into sub-tables.

The recovery line, including the epoch in which every
process starts recovery and the date at the beginning of
this epoch, is then sent to all application processes (Line
17 of Figure 4). When a process receives the recovery
line from the recovery process, it computes its list of
phases containing an orphan message. For each phase,
the process calculates the number of processes that will
send him an orphan message, using the RPP structure
(Lines 62-64 of Figure 3). Then it computes the logged
messages it has to replay (Lines 65-67 of Figure 3).
Finally, every process sends to the recovery process its

actual phase, its status (rolled back or not), the phases
in which it has orphan messages and the phases of the
logged messages it has to send (Line 68 of Figure 3).
Then, the recovery starts.

When a process receives all orphan messages for one
phase, it notifies the recovery process (Lines 29-32 of
Figure 3). When all orphan messages in a phase less than
or equal to phase ρ are replayed, the recovery process
notifies that all non rolled back processes and all logged
messages blocked in a phase less than or equal to ρ, as
well as all rolled back processes blocked in a phase less
than ρ can be unblocked (Lines 38-41 of Figure 4).

IV. FORMAL PROOF

In this section, we prove that our protocol ensures a
valid application execution despite failures.

Definition 1: A valid execution under send determin-
istic assumption is an execution where:
• Each process sends its valid sequence of messages.
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• Causality is respected in message delivery.
To prove this, we consider the state an application

would restart from after a failure, i.e. the recovery line
computed by our algorithm described on Figure 4.

We first give some definitions we use in the proof.
A process is defined by a set of states, an initial state
(from this set), and an ordered set of events Vp. An
event can be a message sending, a message reception or
an internal computation. The events send(m) ∈ Vp and
receive(m) ∈ Vp respectively add and delete message
m from channel (p, q). Each process p takes a sequence
of checkpoints Hi

p, where i is the checkpoint number.
Definition 2 (Checkpoint interval and Epoch): A

checkpoint interval Iip is the set of event between Hi
p

and Hi+1
p . i is the epoch number of the checkpoint

interval.
Let’s consider a process p that rolls back to checkpoint

Hx
p .
Definition 3 (Rolled back message): Let R be the set

of rolled back messages of process p. m ∈ R if and only
if receive(m) ∈ Vp and receive(m) ∈ Iyp with y ≥ x.
We denote by R|(q, p) the subset of messages in R
received on channel (q, p).

Definition 4 (Logged messages): Let L be the set of
logged messages of a process q. m ∈ L if and only if for
a process p, Send(m) ∈ Ixq and Receive(m) ∈ Iyp with
y ≥ x. We denote by L |(q, p) the subset of messages
in L sent on channel (q, p).

Definition 5 (Replayed messages): Let S be the set
of replayed messages of process p. m ∈ S if and only
if send(m) ∈ Vp and send(m) ∈ Iyp with y ≥ x. We
denote by S |(p, q) the subset of messages in S sent on
channel (p, q). Note that L ∩S = ∅

The current date on a process p is noted datep(p).
The date of an event e ∈ Vp is datep(p) when e occurs.

Definition 6 (Orphan message): Let O be the set of
orphan messages, and m a message on channel (p, q).
m ∈ O if and only: date(send(m)) > datep(p) and
date(receive(m)) < datep(q). We denote by O|(p, q)
the subset of messages in O received on channel (p, q).

Note that O ∩R = ∅ and O ⊂ S . Now we introduce
definitions related to phases.

Definition 7 (Set of events in a phase): Let Ph(p)
be the phase of a process p. Let V i

p be the set of events
on a process p in phase i. An event e ∈ V i

p if and only
if Ph(p) = i when e occurs.

Definition 8 (Phase of a message): The phase of a
message Phm(m) = k where send(m) ∈ V k

p .
Definition 9 (Set of orphan messages in a phase):

Let O=k be the set of orphan messages in a phase k.
A message m ∈ O=k if and only if Phm(m) = k. We

define O≤k (or any other operator) as the set of orphan
processes in a phase lower than or equal to k.

Definition 10 (Set of rolled back messages in a phase):
Let R=k be the set of rolled back messages in a phase
k. m ∈ R=k if and only if receive(m) ∈ V k

p .
Note that sets of orphan messages are built according

to message sender’s phase and set of rolled back mes-
sages according to message receiver’s phase.

To prove that the valid sequence of messages is sent
by each process, we first prove that no message is lost in
a rollback. Then we prove that all rolled back messages
are eventually re-sent.

Lemma 1: Considering 2 processes p and q, p send-
ing message on channel (p, q). If process q rolls back,
R|(p, q) \S |(p, q) ∈ L |(p, q).

Proof: Let’s consider m ∈ R|(p, q) and Hi
q the

checkpoint q rolls back to. As m ∈ R|(p, q) then
receive(m) ∈ Ikq where k ≥ i. If m /∈ S |(p, q) then
send(m) ∈ Ijp where j < k. Then m ∈ L by definition
of a logged message.

We state now some properties of our algorithm.
Proposition 1: Let mi and mj be two messages. If

mi → mj then Phm(mi) ≤ Phm(mj). (lines 21-24
and line 44 of Figure 3)

Proposition 2 (Send replayed message condition):
Let mj ∈ S . mj is sent if and only if O<Phm(mj) = ∅.
(line 40 of Figure 4)

Proposition 3 (Send non replayed message condition):
Let mj /∈ S . mj is sent if and only if O≤Phm(mj) = ∅.
(line 41 of Figure 4)

We give now the condition to replay the rolled back
messages of a phase x:

Lemma 2: ∀mi ∈ R=x, mi is re-sent if and only if
O<x = ∅.

Proof: As mi ∈ R then mi ∈ S or mi ∈ L
according to Lemma 1.

1) If mi ∈ S , Phm(mi) ≤ x (Line 24 of Figure 3),
mi is sent if O<x = ∅ according to Proposition 2.

2) If mi ∈ L : mi is sent if O≤Phm(mi) = ∅
according to Proposition 3. Since mi ∈ L and
mi ∈ R=x then Phm(mi) < x (as the phase of
the receiver is always greater than the one of the
received logged message: lines 21-22 of figure 3).
Thus mi is sent if O<x = ∅.

Lemma 3: All rolled back messages are eventually
re-sent.

Proof: Let Omin_phase be the set of orphan mes-
sages with the lowest phase. So ∀mi ∈ R<min_phase,
mi is sent according to Lemma 2. And ∀mj ∈
O=min_phase, mj is sent according to Proposition 2.
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Then Omin_phase = ∅ and ∀mi ∈ R<min_phase+1, mi

is sent. And so on until R = ∅ and O = ∅.
We prove now that the causality is respected on mes-

sage delivery. Causality is broken if for two messages
mi and mj , mi → mj , mj is received before mi during
recovery. If all processes roll back in a state that does
not depend on mi, the condition is trivially ensured since
mj cannot be sent before mi is replayed. We first show
that, if the application is in a state where mi and mj can
both be sent, there is an orphan message in the causality
path between mi and mj .

Lemma 4: Let mi and mi+x, x ≥ 1 be two messages
such that mi → mi+1 . . .→ mi+x. If mi and mi+x can
both be sent, then ∃m ∈ O (that might be mi) such that
mi → . . .→ m→ . . .→ mi+x.

Proof: As mi and mi+x can both be sent then mi ∈
R∪O . mi+x can be sent if mi+(x−1) is received. Either
mi+(x−1)’s sender rolls back and then mi+(x−1) ∈ O
or not. If mi+(x−1) /∈ O , mi+(x−2) is received. Then
mi+(x−2) is either an orphan or not. And so on until:
mi+1 can be sent if mi is an orphan or not. As mi ∈
R∪O , and mi+1’s sender does not roll back (otherwise,
we would have stopped in mi+2), then mi ∈ O .

Let’s consider the relation between the phase of an
orphan message and a replayed one depending on it.

Lemma 5: Let mi and mj be two messages such that
mi → mj . If mi ∈ O and mj ∈ S then Phm(mi) <
Phm(mj).

Proof: As mi → mj then according to Propo-
sition 1, Phm(mi) ≤ Phm(mj). To prove that
Phm(mi) < Phm(mj) we prove that Phm(mi) =
Phm(mj) leads to a contradiction. So let’s assume that
Phm(mi) = Phm(mj). According to lines 21 and 44 of
Figure 3, there is no checkpoint and no logged messages
on the causality path from mi to mj (as these two events
are the only ones that increase a phase). Then according
to lines 10-16 of Figure 4, if mj ∈ S , mi ∈ R. This is
impossible since mi ∈ O and O ∩R = ∅.

We finally prove that a message depending on an or-
phan message cannot be sent before the orphan message
is sent.

Lemma 6: If mi and mj are two messages such that
mi → mj and mi ∈ O , mj cannot be sent until mi is
sent.

Proof: If mj ∈ S , mj is sent if and only if
O<Phm(mj) = ∅ (Proposition 2). If mj /∈ S , mj is sent
if and only if O≤Phm(mj) = ∅ (Proposition 3). mi ∈
O=Phm(mi). Since mi → mj , Phm(mj) ≥ Phm(mi)
according to Lemma 1.

1) If Phm(mi) = Phm(mj): then O≤Phm(mj) 6=
∅. According to Lemma 5, as Phm(mi) =
Phm(mj), mj /∈ S .

2) If Phm(mi) < Phm(mj): then m ∈
O<Phm(mj) 6= ∅.

Theorem 1: After a failure, the execution is valid
under the send deterministic assumption.

Proof: Lemmas 1 and 3 prove that after a failure,
all processes are able to send their valid sequence of
messages. Lemma 6 shows that our protocol enforces
causal order in messages delivery.

The proof for multiple simultaneous failures is the
same since a failed process and a rolled back one have
the same behavior: all the information needed is included
in the checkpoint.

V. EVALUATION

In this section, we first describe our prototype devel-
oped in MPICH2. Then we present experimental evalu-
ations. We first evaluate the performance on failure free
executions. Then we evaluate the number of processes to
rollback in case of failure and propose a solution based
on processes clustering to limit the number of rollbacks
while logging only a small percentage of the messages.

A. Prototype Description

We implemented our protocol in MPICH2, in the
Nemesis communication subsystem. The protocol can be
used over TCP and MX/Myrinet. We have integrated pro-
cess uncoordinated checkpointing to the Hydra process
manager. Process checkpointing is based on BLCR.

We have seen in Section III-B that the protocol
requires all messages to be acknowledged with the
reception epoch to control the logging. But sending an
additional message to acknowledge every application
message would impair the communication performance,
especially the latency of small messages on high perfor-
mance networks: a send operation cannot terminate until
the corresponding acknowledgment is received.

Our implementation relies on the FIFO channels to
limit the number of acknowledgments. This is illustrated
on Figure 5 and we focus on the messages sent by
process P1. Instead of waiting for an acknowledgment
for every message, small messages content is copied
by default. Thus a send() operation can return without
waiting for the acknowledgment. Each message is iden-
tified by a sender sequence number (ssn). Only the first
message per epoch and per channel that has to be logged
(m4) is acknowledged. For other messages, processes
piggyback on the messages they send, the ssn of the
last message they received. When P2 sends message m3
to process P1, it piggybacks ssn = 2 on it to make P1

aware that it can delete messages m1 and m2 from the
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logs. After the first logged message (m4) has been ac-
knowledged, we know that all messages sent to P2 have
to be logged until the epoch of P1 changes. We mark
these messages (m5) as already logged to avoid making
P2 send additional acknowledgments. If the number of
non-acknowledged messages becomes too large because
P2 never sends messages to P1, P1 can explicitly require
an acknowledgment from P2. For large messages, we
cannot afford an extra copy of every message content,
so these messages are always acknowledged except when
they are marked as already logged.

Fig. 5: Protocol Acknowledgment Management for
Small Messages on a Communication Channel

B. Experimental Setup

Our experiments were run on Grid’5000. Performance
evaluations were run on Lille cluster using 45 nodes
equipped with with 2 Intel Xeon E5440 QC (4 cores)
processors, 8 GB of memory and a 10G-PCIE-8A-C
Myri-10G NIC. Experiments evaluating the number of
messages logged and the number of processes to rollback
were run on Orsay cluster using 128 nodes equipped
with 2 AMD Opteron 246 processors. In both cases, the
operating system was Linux with kernel 2.6.26.

C. Ping-Pong Performance on Myrinet

To evaluate the overhead of our protocol on com-
munication performance, we run a ping-pong test using
Netpipe [19] on 2 nodes of the Lille Grid’5000. Results
are presented on Figure 6. In this experiment, the limit
for small messages, i.e. messages that do not require
an explicit acknowledgment, is set to 1 KB. The figure
compares the native performance of MPICH22 to the
performance of MPICH2 with our protocol when no
messages are logged, and when all messages are logged.
The measure of the protocol performance when no
message are logged evaluates our optimized manage-
ment of the acknowledgments. We observe that latency
overhead of our protocol with and without message
logging, compared to the native MPICH2 for small
messages is around 15% (0.5µs). This overhead is
due to the management of the data piggybacked on

2https://svn.mcs.anl.gov/repos/mpi/mpich2/trunk:r7262

messages to avoid sending acknowledgments. Regarding
large messages (from 64KB), the performance of the
protocol without logging show that acknowledging every
message has a negligible overhead compared to native
MPICH2. However, message logging has a significant
impact on bandwidth for these messages because of the
extra message content copy that is required.

D. NAS Parallel Benchmark Performance

We ran 3 of the NAS Parallel Benchmarks (BT,
CG and SP) on Lille cluster. Figure 7 presents the
overhead induced by our protocol when no messages
are logged and when all messages are logged, compared
to MPICH2 native performance. Results show that the
protocol induces no overhead when messages are not
logged and only a very small (less than 5%) overhead
when all messages are logged. However, the overhead
might be higher with communication-bound applications
using larger messages. Even if logging all messages has
little impact on applications performance, it consumes
extra storage, and so should be limited.

E. Quantitative Evaluation of Protocol Properties

In this section, we evaluate quantitatively, using the
NAS benchmarks, the proportion of logged messages
during the execution and the number of processes to roll
back when a failure occurs.

1) Methodology: To compute the number of pro-
cesses to roll back, the SPE table of all processes,
described in Section III-B, is saved every 30s during
the execution. We analyze these data offline and run the
recovery protocol: for each version of SPE, we compute
the rollbacks that would be induced by the failure of
each process. Then, we can compute an estimation of the
average number of processes to roll back in the event of
a failure during the execution.

2) Uncoordinated Checkpointing: We ran some ex-
periments with uncoordinated checkpoints and random
checkpoint time for each process and noticed that a small
number of messages need to be logged. However, in all
these experiments, all processes need to roll back in the
event of a failure: taking checkpoints randomly does not
create any consistent cut in causal dependency paths.

3) Process Clustering: To address this issue, mes-
sage logging should be forced according to the com-
munications patterns of the applications. The objective
is to isolate, as much as possible, the processes that
communicate frequently and form "clusters". Clustering
will limit the rollback propagations. In our protocol, a
message is logged if it is sent from an epoch to a larger
one. Different epochs can then be used over clusters
to log messages. This approach is not symmetrical: the
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messages sent from the cluster having the largest epoch
will never be logged. So processes of a cluster will
always need to restart if at least one process with a
smaller epoch rolls back. However, statistically, for a
large number of failures, we can assume that failures
will be distributed evenly between clusters.

Process clustering should minimize two factors : (i)
the number of logged messages (or the volume of
logged messages) and (ii) the number of processes to
rollback in the event of failure. While it is out of
the scope of this paper to present a detailed study on
how to optimize clustering, we present an example of
clustering demonstrating that our protocol can achieve
our initial objectives: log only a fraction of the appli-
cation messages while avoiding global restart. In the
following experiment, to find a good clustering, we favor
two parameters: a) locality: maximize the intra-cluster
communications and b) isolation: minimize the inter-
cluster communications. For every NAS benchmark, we
have analyzed the communication topology to maximize
locality and isolation. Figure 8 shows the communication
density between all processes for CG and MG for 64
processes. It also shows the clustering, in squares, and

the epochs at the beginning of the execution. Only
inter cluster messages from clusters in an epoch to
clusters with larger epoch are logged. Cluster epochs
are separated by a distance of 2 to ensure that when
processes of one cluster are checkpointed, they do not
reach the same epoch as another cluster. For the other
NAS benchmarks, we used the communication patterns
provided in [16]. The average number of clusters to roll
back can be computed theoretically. Let us consider p
clusters numbered from 1 to p and a pessimistic scenario
where the failure of a process leads all processes of the
same cluster to roll back. Assuming that Ei is the epoch
of cluster i, thanks to logged messages, if a cluster j
fails, all clusters with Ei < Ej do not need to roll
back. If the cluster with the smallest epoch Es fails,
p clusters will roll back. If the cluster with epoch Es+2

fails, only clusters with Ei > Es+2 roll back, i.e. (p−1)
clusters. If the cluster with the largest epoch fails, only
this cluster rolls back. Let us consider p executions, one
failure per execution, failures being evenly distributed
over clusters. The total number of clusters to roll back
over the p executions is p∗(p+1)/2, that is (p+1)/2 on
average. When p is large, this average approaches 50%.

We ran experiments to evaluate the percentage of
logged messages (%log) and processes to rollback (%rl),
for the 5 NAS kernels in class D for 64, 128 and 256 pro-
cesses, with 4, 8 and 16 clusters. The results are shown
in table I. We observe that the percentage of logged
messages decreases when the number of processes per
cluster increases. However, given a fixed number of
processes, using more and thus smaller clusters reduces
the number of processes to roll back in the event of
failure for all the NAS kernels. Thus there is a trade-off
to consider between the size of the storage space used
for message logging and the energy consumption for
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Size 64 128 256
Cluster 4 8 4 8 16 4 8 16

%log %rl %log %rl %log %rl %log %rl %log %rl %log %rl %log %rl %log %rl
MG 16.59 62.5 25 46.9 9.5 62.5 17.1 56.3 25.4 42.1 9.1 62.5 16.9 55.7 24.9 41.7
LU 10.72 62.5 25 56.2 10.35 62.5 24.14 56.3 25.9 42.1 5 62.5 11.7 56.1 25.03 53.1
FT 37.2 62.4 43.6 59 37.3 62.5 43.6 56 46.8 53 37.4 62.3 43.6 55.8 46.8 52.5
CG 3.8 62.5 4.4 56.3 2.9 62.5 3.4 56.3 15 43.8 2.9 62.5 3.4 56.3 3.6 53.1
BT 16.7 62.5 33.3 56.3 13 62.6 25.2 56.4 36.7 53.3 8.3 62.5 16.7 56.25 33.3 53.12

TABLE I: Number of Logged Messages and Rolled Back Processes According to Cluster Size

restart. If energy needs to be reduced, the best option is
to use many clusters. If storage space is to be minimized,
large clusters is the best option. The kernel illustrating
the most the effect of our protocol is CG: for 256
processes and 16 clusters, less than 4% of the messages
are logged while the number of processes to rollback in
the event of failure is about half of what a coordinated
checkpointing protocol requires. This is mostly due to
the clustered nature of the communications in CG. On
the other hand, FT uses many all-to-all communications
and so clustering has a limited effect on the reduction of
the number of messages to log. However, the percentage
of logged messages can always be limited to 50%. If we
consider a clustering configuration, 3 sets of messages
can be defined: A, the intra-cluster messages; B, the
logged inter-cluster messages; C, the non-logged inter-
cluster messages. If B includes more than 50% of the
messages, a simple reconfiguration of the epochs over
the clusters allows making C (less than 50%) being
logged instead of B.

VI. RELATED WORK

As mentioned in the introduction, many fault tolerant
protocols have been proposed in the past [10]. They are
divided in 4 classes: uncoordinated checkpointing [4],

coordinated checkpointing [9], [14], message logging [1]
and communication induced checkpoint [3].

In theory, coordinated checkpointing protocol allows
partial restart. In [12], the authors propose a block-
ing coordinated checkpointing protocol that coordinates
only dependent processes and thus may restart only a
subset of processes. However we have observed that
for most MPI HPC applications, the communication
patterns and the frequency of communications between
two consecutive checkpoints eventually lead to establish
a global dependency between processes: the failure of
any process would lead to a global restart.

Messages logging protocols need either to log recep-
tion orders on stable storage (pessimistic and optimistic)
or to piggyback them on application messages (causal) to
ensure a total delivery order. All these approaches have
a significant impact on communication and application
performance [5]. In [6], authors use determinism in MPI
applications to reduce the number of determinants to log.
In [17], the authors extend the optimistic assumption
made in optimistic message logging to improve perfor-
mance. However, all these protocols still log all message
contents during the execution.

Communication Induced Checkpoint (CIC) avoids the
domino effect in uncoordinated checkpointing. Processes
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take independent checkpoints. In addition, some check-
points are forced to guarantee the progress of the recov-
ery line. However, evaluations of this protocol has shown
that CIC protocols do not scale well with the number of
processes. They induce more checkpoints than needed
for a given meantime between failures [2].

VII. CONCLUSION

This paper presents a novel uncoordinated checkpoint-
ing protocol for send-deterministic HPC applications.
This protocol provides an alternative to coordinated
checkpointing and message logging protocols by fea-
turing a unique set of properties: 1) it does not rely
on checkpoint coordination nor synchronization, 2) it
does not suffer from the domino effect, 3) it logs only
a fraction of the execution messages. We provided a
detailed description of the protocol and proved that it
can tolerate multiple concurrent failures. Experimental
results show that the performance of our optimized
implementation of the protocol in the MPICH2 library
is very closed to the native performance of MPICH2 on
MX/Myrinet. Furthermore, we proposed a solution based
on clustering to adapt our protocol to the applications
communication patterns. Using 5 kernels of the NAS
Benchmarks, we demonstrated experimentally that this
solution logs only small percentages of the application
messages and reduces the number of processes to restart
in case of failure to a factor approaching 2 compared to
coordinated checkpointing.

As future work, we plan to explore further the as-
sociation of send-determinism and clustering to further
reduce the number of processes to rollback and the
number of messages to log. We also plan to study if
send-determinism can be used to improve other classes
of rollback-recovery protocols.
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