
Technical Report of the INRIA-Illinois Joint Laboratory on PetaScale Computing TR-JLPC-11-01

On the Use of Cluster-Based Partial Message Logging to Improve

Fault Tolerance for MPI HPC Applications

Thomas Ropars, Amina Guermouche, Bora Uçar, Esteban Meneses, Laxmikant V. Kalé,
Franck Cappello

Technical Report of the INRIA-Illinois Joint Laboratory on PetaScale Computing
TR-JLPC-11-01

1



Technical Report of the INRIA-Illinois Joint Laboratory on PetaScale Computing TR-JLPC-11-01

On the Use of Cluster-Based Partial Message Logging to Improve

Fault Tolerance for MPI HPC Applications

Thomas Ropars1, Amina Guermouche1,2, Bora Uçar3,
Esteban Meneses4, Laxmikant V. Kalé4 and Franck Cappello 1,4

1 INRIA Saclay-Île de France, F-91893, Orsay, France
2 Université Paris Sud, F-91405 Orsay, France

3 CNRS and ENS Lyon, France
4 University of Illinois at Urbana-Champaign - College of Engineering, Urbana, IL, USA

Abstract

With the growing scale of HPC systems, fault tolerance is becoming a major concern. The two tra-
ditional approaches for message passing applications, coordinated checkpointing and message logging,
have severe scalability issues. Coordinated checkpointing protocols make all processes roll back after a
failure. Message logging protocols log a huge amount of data and can induce an overhead on communi-
cations performance. Hierarchical rollback-recovery protocols based on the combination of coordinated
checkpointing and message logging are an alternative. These partial message logging protocols are based
on process clustering: only messages between clusters are logged to limit the consequence of a failure
to one cluster. These protocols would work e�ciently only if one can �nd clusters of processes in the
applications such that the ratio of logged messages is very low. We study the communication patterns
of message passing HPC applications to show that partial message logging is suitable in most cases. We
propose a partitioning algorithm to �nd suitable clusters of processes, given the application execution
communication pattern. Finally, we evaluate the e�ciency of partial message logging using two state of
the art protocols on a set of representative applications.

1 Introduction

The generation of HPC systems envisioned for 2018-2020 will reach Exascale from 100s of millions of cores.
At such scale, failures cannot be considered as rare anymore and fault tolerance mechanisms are needed to
ensure the successful termination of the applications. In this paper, we focus on message passing (MPI)
HPC applications. For such applications, fault tolerance is usually provided through rollback-recovery tech-
niques [7]: the state of the application processes is saved periodically in a checkpoint on a reliable storage
to avoid restarting from the beginning in the event of a failure. In most cases, rollback-recovery protocols
are used �at: the same protocol is executed for all processes.

Flat rollback-recovery protocols have several drawbacks limiting their applicability at Exascale. Coordi-
nated checkpointing requires to restart all processes in the event of a failure leading to a massive waste of
resources and energy. Message logging protocols need to log all messages contents and delivery order, which
leads to high storage resource occupation, high communication overhead and high energy consumption.

One way to cope with these limitations is to use hierarchical rollback-recovery protocols [9, 10, 13, 14,
19]. Clusters of processes are de�ned during the execution and di�erent protocols are used inside and
between clusters, giving a hierarchical aspect to the protocol. Typically, a partial message logging protocol
logs messages between clusters to con�ne the e�ects of a process failure to one cluster and a coordinated
checkpointing protocol is used within clusters [19, 13]. The e�ency of these protocols depends on two
con�icting requirements: i) the size of the clusters should be small to limit the rollbacks in the event of a

2



Technical Report of the INRIA-Illinois Joint Laboratory on PetaScale Computing TR-JLPC-11-01

failure; ii) the volume of inter-cluster messages should be low to limit the impact of logging on failure free
performance.

This paper tries to answer two questions. Can clusters of processes be found in MPI HPC applications
to apply a partial message logging protocol e�ciently? How can such clusters be found in an application
based on its execution communication pattern? To answer these questions, we detail in Section 2 the
context of this work, and present the related work on MPI applications communications analysis. Section 3
analyzes communication patterns in MPICH2. In Section 4, we propose an algorithm, designed to address
the partitioning problem for a partial message logging protocol. It �nds suitable clusters using a cost function
to model the performance of the target protocol. Using this tool, we evaluate the performance of two state
of the art partial message logging protocols [9, 13] on a set of representative MPI HPC applications. Our
results, presented in Section 5, show that: i) suitable process clustering can be found in most applications; ii)
partial message logging limits the amount of computing resources wasted for failure management compared
to �at rollback-recovery protocols.

2 Context

In this section, we �rst present existing hierarchical rollback-recovery protocols, focusing on the two protocols
we will use for evaluations. Then we present the applications studied in this paper. Finally, we detail the
related work on analyzing characteristics of MPI HPC applications.

2.0.1 Hierarchical Rollback-Recovery Protocols

Rollback-recovery techniques are based on saving information during the execution of an application to avoid
restarting it from the beginning in the event of a failure. One of the main concerns with these techniques is
the amount of resources wasted with respect to computing power or energy. Several factors are contributing
to this waste of resources: i) the overhead on performance during failure free execution; ii) the amount of
storage resources used to save data; iii) the amount of computation rolled back after a failure.

Rollback-recovery protocols are usually divided into two categories: checkpointing-based and logging-
based protocols [7]. In checkpointing protocols, processes checkpoints can be either coordinated at checkpoint
time, taken independently or induced by the communications. For all these protocols, a single failure implies
the rollback of all processes in most cases, which is a big waste of resources. On the other hand, message
logging protocols log the content as well as the delivery order (determinant) of the messages exchanged during
the execution of the application to be able to restart only the failed processes after a failure. However,
logging all messages during a failure free execution can be very wasteful regarding communications and
storage resources.

Hierarchical rollback-recovery protocols divide the processes of the applications into clusters and apply
di�erent protocols for the communications inside a cluster and for the communications among clusters. Our
work focuses on partial message logging protocols [9, 10, 13, 19] which apply a checkpointing protocol inside
the clusters and a message logging protocol among the clusters. They are attractive at large scale because
only one cluster has to rollback in the event of a single failure. These protocols can work e�ciently if the
ratio of inter-cluster messages is very low in which case the cost of message logging is small.

In this paper, we use two of these protocols for evaluations. Meneses et al. [13] use a coordinated
checkpointing protocol inside clusters. They also log intra-cluster messages determinants to be able to replay
these messages in the same order after the failure and reach a consistent state. Considering a single failure,
determinants can be logged in memory. Guermouche et al. [9] propose an uncoordinated checkpointing
protocol without domino e�ect, relying on the send-determinism of MPI HPC applications. Using this
protocol, an ordered set of p clusters can be de�ned. Only messages going from one cluster to a higher
cluster are logged, limiting the number of clusters to roll back after a failure to (p+1)/2 on average. Thanks
to send-determinism, this protocol does not require any determinant to be logged and can tolerate multiple
concurrent failures.

3



Technical Report of the INRIA-Illinois Joint Laboratory on PetaScale Computing TR-JLPC-11-01

Dense linear alge-
bra

Sparse linear alge-
bra

Spectral methods N-body simula-
tions

Structured grids Unstructured grids

BT, LU,
PARATEC

CG, MAESTRO FT, PARATEC GTC, LAMMPS,
Nbody

MG, GTC, MAE-
STRO, PARATEC

MAESTRO

Table 1: Dwarfs covered by the studied applications

2.0.2 Applications Studied

In this paper, we study the communication patterns of a representative set of MPI HPC applications to see if
partial message logging could be used. Thirteen dwarfs have been de�ned and seven of them represent seven
main classes of computation and communication patterns corresponding to numerical methods for high-
end simulation in the physical sciences [2]: dense linear algebra, sparse linear algebra, spectral methods,
N-body methods, structured grids, unstructured grids, and MapReduce. This paper does not consider
MapReduce applications because rollback-recovery is not adapted in this case. Our set of applications
includes �ve of the NAS Parallel Benchmarks [3](NPB) containing BT, LU, CG, FT, and MG; three of
NERSC-6 Benchmarks [1] (GTC, MAESTRO, and PARATEC); one of the Sequoia Benchmarks, http:
//asc.llnl.gov/sequoia/benchmarks/, (LAMMPS); and an Nbody kernel. Table 1 summarizes the dwarfs
covered.

2.0.3 HPC Applications Communications Characteristics

The communication patterns of most of the applications considered in this paper have already been pub-
lished [1, 16]. Previous studies highlighted properties of MPI HPC applications regarding communications.
First, most MPI applications make use of collective communications, but the payload size of the collective
operations is in general very small and remains invariant with respect to the problem size [18]. Second, the
communication graphs of many MPI HPC applications have a low degree of connectivity [11], which might
indicate that processes can be partitioned into clusters.

3 Communication Patterns

This section presents some of the communication patterns we collected by running applications with MPICH2.
To get the communication patterns of MPI applications execution, we modi�ed the code of MPICH21 to
collect data on communications. The applications run on Rennes Grid'5000 cluster over TCP.

We study the collective communications because they could generate communication patterns that are
hard to clusterize (they involve all processes in the application). Figure 1 presents the set of communication
patterns used for MPICH2 collective communications, for a power-of-two number of processes (64 processes)
and short messages (4 bytes). Details on the implementation of collective communications in MPICH2 can
be found in [17]. The recursive doubling algorithm, Fig. 1(a), is used to implement MPI_Allgather and
MPI_Allreduce operations. The recursive halving algorithm, used in MPI_Reduce_scatter, has the same
communication pattern. A binomial tree, Fig. 1(b), is used in MPI_Bcast, MPI_Reduce, MPI_Gather and
MPI_Scatter. These two patterns are easily clusterizable using for instance clusters of size 16. The last
pattern, corresponding to a store-and-forward algorithm, is the one used forMPI_Alltoall. This pattern is not
well adapted for a clustering approach, but the use ofMPI_Alltoall should be limited in applications targeting
very large scale. For large messages, many of the collective operations do involve communications between
all application processes. Clustering is also di�cult to apply to such patterns. However, as mentioned in
Section 2.0.3, the payload for collective communications is usually small: on the set of applications we tested,
we only found this pattern in NPB FT.

1http://svn.mcs.anl.gov/repos/mpi/mpich2/trunk:r7592

4

http://asc.llnl.gov/sequoia/benchmarks/
http://asc.llnl.gov/sequoia/benchmarks/


Technical Report of the INRIA-Illinois Joint Laboratory on PetaScale Computing TR-JLPC-11-01

0

16

32

48

64

0 16 32 48 64

R
e

c
e

iv
e

r 
R

a
n

k

Sender Rank 

 (a) Recursive Doubling

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

0

16

32

48

64

0 16 32 48 64
R

e
c
e

iv
e

r 
R

a
n

k
Sender Rank 

 (b) Binomial Tree

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

0

16

32

48

64

0 16 32 48 64

R
e

c
e

iv
e

r 
R

a
n

k

Sender Rank 

 (c) Store and Forward

 0

 20

 40

 60

 80

 100

 120

 140

B
y
te

s

Figure 1: Communication patterns inherent in collective communications of MPICH2

 0

 128

 256

 384

512

 0  128  256  384 512

R
e

c
e

iv
e

r 
R

a
n

k

Sender Rank 

 (a) MAESTRO

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

B
y
te

s

 0

 128

 256

 384

512

 0  128  256  384 512

R
e

c
e

iv
e

r 
R

a
n

k

Sender Rank 

 (b) GTC

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

B
y
te

s

Figure 2: Communications patterns of two applications

Although some of the collective communication patterns de�ne natural clusters that can be identi�ed by
human eye (see Fig. 1(a)), some others do not (see Fig. 1(c)). Furthermore, the point-to-point communica-
tions can render the patterns more sophisticated, so much so that the size or the number of clusters cannot
be known a priori. Figure 2 presents the communication pattern of MAESTRO and GTC executed on 512
processes. As exempli�ed by these two applications, an automated means of clustering is strictly necessary
to identify clusters of processes in an application.

4 Partitioning for partial message logging protocols

Here, we propose a bisection-based partitioning algorithm to automate clustering for partial message logging
protocols. The objectives of the clustering are to reduce the inter-cluster communication, to increase the
number of clusters, and to limit the maximum size of a cluster. We �rst illustrate the limits of existing tools
and then present our new method.

5



Technical Report of the INRIA-Illinois Joint Laboratory on PetaScale Computing TR-JLPC-11-01

4.1 Two possible approaches

A simpli�ed version of the partitioning problem in which the objectives are to minimize the size of the logged
messages and the maximum size of a part corresponds to the NP-complete graph partitioning problem (see
the problem ND14 in [8]). This can be easily seen by considering a graph whose vertices represent the
processes and whose edges represent the communication between the corresponding two processes. Using
heuristics for the graph partitioning problem would require knowing the maximum part size. This can be
done but requires an insight into the application and the target machine architecture.

A common variant of the above graph partitioning problem speci�es the number of parts (in other words,
speci�es the average size of a part) and requires parts to have similar sizes (thusly reducing the maximum
size of a partition). The problem remains NP-complete [4]. Tools such as MeTiS [12] and Scotch [15] can
be used to solve this problem. A possible but not an economical way to use those tools in our problem is
to partition the processes for di�erent number of parts (say 2, 4, 8, . . .) and try to select the best partition
encountered.

4.2 Bisection-Based Partitioning

Bisection based algorithms are used recursively in graph and hypergraph partitioning tools, including Pa-
ToH [5], MeTiS and Scotch, to partition the input graph or hypergraph into a given number of parts. Simply
put, for a given number K of parts, this approach divides the original graph or hypergraph into two almost
equally sized parts and then recursively partitions each of the two parts into K/2 parts until the desired
number of parts is obtained.

We adapt the bisection based approach and propose a few add-ons to address our partitioning problem.
The proposed algorithm is seen in Algorithm 1. The algorithm accepts a set of P processes and a matrix
M of size P × P representing the communications between the processes where M(u, v) is the volume of
messages sent from the process u to the process v. The algorithm returns the number of parts K? and the
partition Π? = 〈P1, P2, . . . , P

?
K〉. In the algorithm, the operation Π← Π	 Pk ⊕ Pk1

⊕ Pk2
removes the part

Pk from the partition Π and adds Pk1
and Pk2

as new parts, where Pk = Pk1
∪ Pk2

. We use M(U, V ) to
represent the messages from processes in the set U to those in the set V .

Algorithm 1 The proposed partitioning algorithm

Input: The set of P processes = {p1, p2, . . . , pP }; the P × P matrix M representing the communications
between the processes

Output: K?: the number of process parts; Π? = 〈P1, P2, . . . , P
?
K〉: a partition of processes

1: K? ← K ← 1; B? ← B ← 0
2: Π? ← Π← 〈P1 = {p1, p2, . . . , pP }〉 I a single part
3: while there is a part to consider do
4: Let Pk be the largest part
5: if ShouldPartition(Pk) then
6: 〈Pk1

, Pk2
〉 ←Bisect(Pk,M(Pk, Pk))

7: if AcceptBisection(Pk1
, Pk2

) then
8: K ← K + 1
9: Π← Π	 Pk ⊕ Pk1

⊕ Pk2
I replace Pk

10: B ← B +
∑
M(Pk1 , Pk2) I Update volume of inter-parts messages

11: if BestSoFar(Π) then
12: Π? ← Π; B? ← B; K? ← K I save for output
13: else

14: mark Pk in order to not to consider it again at lines 3 and 4.
15: return Π?

We �rst describe the main lines of the algorithm. The algorithm is not recursive, but it uses bisection

6



Technical Report of the INRIA-Illinois Joint Laboratory on PetaScale Computing TR-JLPC-11-01

to partition the given number of processes into an unknown number of parts. Initially, all the processes are
in a single part. At every step, the largest part is partitioned, if it should be, into two (by the subroutine
Bisect), and then if the bisection is acceptable (determined by the subroutine AcceptBisection), that
largest part is replaced by the two parts resulting from the bisection. If this new partition is the best one
seen so far (tested in subroutine BestSoFar), it is saved as a possible output. Then, the algorithm proceeds
to another step to pick the largest part. We now add a few details. Let Pk be the largest part, then if Pk

should be partitioned (tested in the subroutine ShouldPartition), it is bisected into two Pk1
and Pk2

and
tested for acceptance; if not accepted then the bisection is discarded and Pk remains as is throughout the
algorithm. Notice that when a bisection of Pk is accepted, then Pk is partitioned for good; if any BestSoFar
test after this bisection returns true, then Pk will not be in the output Π?.

The computational core of the algorithm is the Bisect routine. This routine accepts a set of processes
and the communication between them and tries to partition the given set of processes into two almost equally
sized parts by using existing tools straightforwardly. For this purpose one can use MeTiS or Scotch quite
e�ectively if the communications are bidirectional (M(u, v) 6= 0 =⇒ M(v, u) 6= 0), in which case M+MT

2
can be used; if the communications are not bidirectional, the same trick can be used but with less con�dence.
Alternatively one can use PaToH as each communication (bidirectional or not) can be uniquely represented
as an edge.

The three other routines ShouldPartition, AcceptBisection, and BestSoFar form the essence of
the algorithm. The routine BestSoFar requires a cost function to evaluate a partition. The cost function
should be de�ned based on the metric the user wants to optimize, e.g., the performance overhead, and the
characteristics of the targeted partial message logging protocol. It is function of the part sizes and of the
volume of inter-parts messages. We de�ne a cost function for both of the mentioned rollback protocols later
in Section 5.1.

The routine ShouldPartition is used to stop partitioning very small parts. That is, this routine returns
false if the size of the part in question is smaller than a threshold. Although we mostly used 1 as threshold
in our experiments, using a larger threshold will make the algorithm faster. One could select this threshold
based on a minimal part size considering the properties of the target machine architecture.

The routine AcceptBisection returns true in two cases. The �rst one is simply that for Π and Π′ =
Π	Pk⊕Pk1

⊕Pk2
, we have cost(Π′) ≤ cost(Π) according to the cost function (to be de�ned in Section 5.1). If

this does not hold, we may still get better partitions with further bisections. To this end, we have adapted the
graph strength formula [6]. For a partition Π = 〈P1, P2, . . . , PK〉, we use strength(Π) = B

K−1 as its strength,
again B being the size of the logged messages. We accept the bisection if strength(Π′) ≤ τ × strength(Π).
If the bisection reduces the strength, then that bisection can be bene�cial (even if it does not reduce the
actual cost function), as it increases the size of the logged messages only a little with respect to the number
of parts.

5 Evaluation

This section present our experimental results. For the evaluations, we consider the two partial message
logging protocols described in Section 2.0.1. To evaluate the protocols cost, we start by de�ning a cost
function for each of them. The metric we use is the amount of wasted computing resources. Then we
present the results obtained by running the proposed partitioning algorithm using these cost functions, on
the set of applications executions data we collected. We �rst show that these results overcome coordinated
checkpointing and message logging protocols. Then we validate our partitioning algorithm by comparing our
results to the results obtained by the existing graph partitioning tools.

5.1 De�ning a Cost Function

We de�ne a cost function to evaluate the amount of computing resources wasted by failure management,
for the two partial message logging protocols. We do not pretend that the cost functions we de�ne in this

7



Technical Report of the INRIA-Illinois Joint Laboratory on PetaScale Computing TR-JLPC-11-01

section gives a very precise evaluation of the protocols, because a lot of parameters would have to be taken
into account. Here we just consider some parameters, that we consider realistic, to provide an insight of the
protocols cost.

We model the cost of a partial message logging protocol for a given clustering con�guration as a function
of the total volume of logged messages and the size of the clusters. We use a formula of the form

cost(Π) = α× L+ β ×R (1)

where L is the ratio of logged data and R is the ratio of processes to restart after a failure. α and β are the
cost associated with message logging and with restarting processes after a failure respectively.

To evaluate the overhead of message logging, we use results from [9], where message logging impact on
communications (latency and bandwidth) on a high performance network is a 23% performance drop on
average. α = 23% can be considered as a maximum theoretical overhead induced by message logging for a
communication-bounded application. For the sake of simplicity, we do not consider in this study the cost of
logging intra-cluster messages reception order in Meneses et al. protocol [13].

To evaluate the amount of computing resources wasted when restarting processes after a failure, we
consider the global performance of the system. While a subset of the processes are recovering from a failure,
the other processes usually have to wait for them to progress. We assume that the resources of the hanging
processes could be temporarily allocated for other computations, until all application processes are ready to
resume normal execution. So β includes only the amount of resources wasted by rolling back processes after
a failure.

To compute β, we consider an execution scenario with the following parameters: a Mean Time Between
Failure (MTBF ) of 1 day; 30 minutes to checkpoint the whole application (C); 30 minutes to restart the
whole application (Rs). The optimum checkpoint interval (I) can be computed using Young's formula [20]:
I =

√
(2 × C × (MTBF + Rs)) = 297min. This formula originally applies to coordinated checkpointing

protocols, but we think we can safely apply it to our use-case. Assuming that failures are evenly distributed
over the execution time, a failure occurs at time I

2 on average. The total time lost per MTBF period can be
approximated by I

2 +Rs = 179min, that is 12, 4% of the period. So we choose β = 12.4%.
The two other parameters, L and R, are protocol dependent. In the protocol proposed by Meneses

et al. [13], all inter-cluster messages are logged and only the cluster where the failure occurs roll back.
Considering a partition Π = 〈P1, P2, . . . , PK〉 which entails a volume of B inter-cluster messages over a total
volume of messages D,

cost(Π) = 23%× B

D
+ 12.4%×

∑
k |Pk|2

P 2
(2)

where
∑

k |Pk|2
P 2 is the average number of processes restarting after a failure if the failures are evenly distributed

among the P application processes. As described in Section 2.0.1, the protocol proposed by Guermouche et
al. [9] only logs half of the inter-cluster messages but requires to roll back K+1

2 clusters on average after a
failure:

cost(Π) = 23%× B

2×D
+ 12.4%× K + 1

2
×

∑
k |Pk|2

P 2
(3)

5.2 Results

We �rst evaluate the cost of partial message logging. Table 2 presents the results obtained by running our
bisection-based partitioning algorithm with PaToH and cost function 2. The results �rst show that for all
applications except FT and MAESTRO, our tool was able to �nd a clustering con�guration where less than
15% of the processes have to roll back on average after a failure, while logging less than 20% of the data
exchanged during the execution.

8



Technical Report of the INRIA-Illinois Joint Laboratory on PetaScale Computing TR-JLPC-11-01

To get an insight on the quality of the costs obtained, they might be compared to the cost of a coordinated
checkpointing and a message logging protocol. With a coordinated checkpointing (L = 0, R = 1), the amount
of wasted resources would be 12.4%. With a message logging protocol (L = 1, R = 0), this amount would
be 23%. The results show that for all applications except FT, using the partial message logging protocol
minimizes the cost. For applications based on dense linear algebra (BT, LU, SP, and PARATEC) or N-body
methods (GTC, LAMMPS, and Nbody), the cost obtained is always below 5%.

Size
Nb

Clusters
Min/Max
cluster size

Processes to
roll back

Log/Total Amount
of data (in GB)

Cost

NPB BT 1024 8 123/133 12.5% 201/1635 (12.3%) 4.37

NPB CG 1024 32 32/32 3.1% 910/5606 (16.2%) 4.12

NPB FT 1024 2 502/522 50% 432/864 (50%) 17.7

NPB LU 1024 16 64/64 6.25% 67/700 (9.7%) 3.0

NPB MG 1024 8 128/128 12.5% 20/107 (18.5%) 5.8

NPB SP 1024 8 123/133 12.5% 366/2989 (12.2%) 4.4

GTC 512 16 32/32 6.25% 240/3654 (6.6%) 2.3

MAESTRO 1024 4 252/259 25% 55/309 (17.7%) 7.17

PARATEC 1024 13 64/128 8.5% 2262/23914 (9.4%) 3.23

LAMMPS 1024 8 127/129 12.5% 0.3/4 (7.6%) 3.3

Nbody 1024 30 31/61 3.5% 80/2733 (2.9%) 1.1

Table 2: Partitioning for the protocol of Meneses et al.

Table 3 presents the results obtained by running our bisection-based partitioning algorithm with PaToH
and cost function 3. We evaluate it only with the applications having a symmetric communication pattern,
because in this protocol, messages logging is not symmetric. But, since our bisection-based partitioning tool
is not able yet to handle directed graphs, it can only be applied to symmetric matrix in this case. In all the
tests except MAESTRO, we manage to �nd clusters such that the ratio of rolled back processes is around
55% while logging less than 5.3% of the messages. The cost function of the two partial message logging
protocols cannot be compared because the �rst one is only valid for a single failure case while the second
can handle multiple concurrent failures.

Size
Nb

Clusters
Min/Max
cluster size

Processes to
roll back

Log/Total Amount
of data (in GB)

Cost

NPB LU 1024 16 64/64 53.1% 34/700 (4.8%) 7.7

MAESTRO 1024 4 250/262 62.5% 27/309 (8.9%) 9.78

PARATEC 1024 16 61/68 53.1% 1285/23914 (5.3%) 7.8

LAMMPS 1024 8 127/129 56.2% 0.15/4 (3.8%) 7.9

Table 3: Partitioning for the protocol of Guermouche et al.

To validate our bisection-based partitioning algorithm, we used PaToH, MeTiS and Scotch as outlined
in Section 4.1. Table 4 presents the result of running the three tools for K = 2, 4, 8, 16, 32, 64 partitions
on PARATEC with the cost function (2). First, it has to be noticed that the number of clusters found by
our tool (13 clusters) is close to the number of clusters that minimizes the cost function with PaToH and
Scotch. But making them looking for 13 clusters does not improve the results. Second, only Scotch manages
to slightly improve the cost compared to our tool. However, if we use our tool with Scotch instead of PaToH,
we obtain exactly the same cost. This is mostly due to the fact that Scotch obtains well balanced partitions
for any given K, and that the β in (2) is relatively high. In cases where β is smaller, the partitioner has
a higher degree of freedom. Whereas the proposed method automatically exploits this leeway, it is hard

9



Technical Report of the INRIA-Illinois Joint Laboratory on PetaScale Computing TR-JLPC-11-01

to specify the imbalance parameter for the three existing tools we have used (we have not reported these
experiments, but this was observed for β around 5). We conclude from these results that the proposed
algorithm manages to �nd good clusters without taking a number of clusters as input. The row �run time�
below PaToH contains the running time of PaToH with the given K to that of the proposed algorithm (which
�nds K = 13). As is seen, two runs of PaToH take more time than a single run of the proposed algorithm
(despite the overheads associated with repeated calls to the library, including converting the data structure).

2 4 8 16 32 64
PaToH 7.07 4.52 3.42 3.36 3.95 5.04
run time 0.60 0.57 0.60 0.60 0.61 0.60
MeTiS 7.47 5.36 5.38 5.92 3.82 4.96
Scotch 7.09 4.56 3.44 3.22 3.67 4.94

Table 4: Evaluating three tools on PARATEC with the cost function (2).

6 Conclusion

Partial message logging protocols, combining a checkpointing and a message logging protocol, are an attrac-
tive rollback-recovery solution at very large scale because they can limit the impact of a failure to a subset
of the application processes by logging only a subset of the application messages during the execution. To
work e�ciently, such protocols require to form clusters of processes in the application, such that inter-cluster
communications are minimized. In this paper, we showed that such clustering can be done in many MPI
HPC applications. To do so, we analyzed the communication patterns we gathered from the execution of
a representative set of HPC MPI applications. To �nd clusters, we proposed a bisection-based partitioning
algorithm that makes use of a cost function evaluating the e�ciency of a partial message logging protocol
for a given clustering con�guration. Contrary to existing graph partitioning tools, this algorithm does not
require a number of clusters to look for as input. We de�ned a cost function for two state of the art protocols
and ran tests on our set of execution data. With both protocols, results show that we were able to get a good
trade-o� between the size of the clusters and the amount of inter-cluster messages. This result encourages
us to continue our work on partial message logging protocols.

Acknowledgments

The authors would like to thank Camille Coti, Sébastien Fourestier, and Ana Gainaru for their help. Exper-
iments presented in this paper were carried out using the Grid'5000 experimental testbed, being developed
under the INRIA ALADDIN development action with support from CNRS, RENATER and several Univer-
sities as well as other funding bodies (see https://www.grid5000.fr).

References

[1] K. Antypas, J. Shalf, and H. Wasserman. NERSC-6 Workload Analysis and Benchmark Selection
Process. Technical Report LBNL-1014E, Lawrence Berkeley National Laboratory, Berkeley, 2008.

[2] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A. Patterson, W. L.
Plishker, J. Shalf, S. W. Williams, and K. A. Yelick. The Landscape of Parallel Computing Research: A
View from Berkeley. Technical Report UCB/EECS-2006-183, University of California, Berkeley, 2006.

10



Technical Report of the INRIA-Illinois Joint Laboratory on PetaScale Computing TR-JLPC-11-01

[3] D. Bailey, T. Harris, W. Saphir, R. van der Wilngaart, A. Woo, and M. Yarrow. The NAS Parallel
Benchmarks 2.0. Technical Report NAS-95-020, NASA Ames Research Center, 1995.

[4] T. N. Bui and C. Jones. Finding good approximate vertex and edge partitions is NP-hard. Information
Processing Letters, 42:153�159, 1992.

[5] Ü. V. Çatalyürek and C. Aykanat. PaToH: A multilevel hypergraph partitioning tool, version 3.0.
Technical Report BU-CE-9915, Bilkent Univ., 1999.

[6] W. H. Cunningham. Optimal attack and reinforcement of a network. J. ACM, 32:549�561, July 1985.

[7] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A Survey of Rollback-Recovery Protocols
in Message-Passing Systems. ACM Computing Surveys, 34(3):375�408, 2002.

[8] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[9] A. Guermouche, T. Ropars, E. Brunet, M. Snir, and F. Cappello. Uncoordinated Checkpointing With-
out Domino E�ect for Send-Deterministic Message Passing Applications. In 25th IEEE International
Parallel & Distributed Processing Symposium (IPDPS2011), Anchorage, USA, 2011.

[10] J. C. Y. Ho, C.-L. Wang, and F. C. M. Lau. Scalable Group-Based Checkpoint/Restart for Large-Scale
Message-Passing Systems. In 22nd IEEE International Parallel and Distributed Processing Symposium,
Miami, USA, 2008.

[11] S. Kamil, J. Shalf, L. Oliker, and D. Skinner. Understanding ultra-scale application communication
requirements. In Proceedings of the 2005 IEEE International Symposium on Workload Characterization,
pages 178�187, 2005.

[12] G. Karypis and V. Kumar. MeTiS: A Software Package for Partitioning Unstructured Graphs, Partition-
ing Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices Version 4.0. Univ. Minnesota,
Minneapolis, 1998.

[13] E. Meneses, C. L. Mendes, and L. V. Kale. Team-based Message Logging: Preliminary Results. In 3rd
Workshop on Resiliency in High Performance Computing (Resilience) in Clusters, Clouds, and Grids
(CCGRID 2010)., May 2010.

[14] S. Monnet, C. Morin, and R. Badrinath. Hybrid Checkpointing for Parallel Applications in Cluster
Federations. In Proceedings of the 2004 IEEE International Symposium on Cluster Computing and the
Grid (CCGRID'04), pages 773�782, Washington, DC, USA, 2004. IEEE Computer Society.

[15] F. Pellegrini. SCOTCH 5.1 User's Guide. LaBRI, 2008.

[16] R. Riesen. Communication Patterns. InWorkshop on Communication Architecture for Clusters CAC'06,
Rhodes Island, Greece, Apr. 2006. IEEE.

[17] R. Thakur, R. Rabenseifner, and W. Gropp. Optimization of Collective Communication Operations in
MPICH. International Journal of High Performance Computing Applications, 19(1):49�66, 2005.

[18] J. S. Vetter and F. Mueller. Communication Characteristics of Large-Scale Scienti�c Applications
for Contemporary Cluster Architectures. Journal of Parallel and Distributed Computing, 63:853�865,
September 2003.

[19] J.-M. Yang, K. F. Li, W.-W. Li, and D.-F. Zhang. Trading O� Logging Overhead and Coordinat-
ing Overhead to Achieve E�cient Rollback Recovery. Concurrency and Computation : Practice and
Experience, 21:819�853, April 2009.

11



Technical Report of the INRIA-Illinois Joint Laboratory on PetaScale Computing TR-JLPC-11-01

[20] J. W. Young. A �rst order approximation to the optimum checkpoint interval. Commun. ACM, 17:530�
531, September 1974.

12


	Introduction
	Context
	Hierarchical Rollback-Recovery Protocols
	Applications Studied
	HPC Applications Communications Characteristics


	Communication Patterns
	Partitioning for partial message logging protocols
	Two possible approaches
	Bisection-Based Partitioning

	Evaluation
	Defining a Cost Function
	Results

	Conclusion

