
1

Graph repartitioning with
Scotch and other
on-going work

23/11/2010

INRIA-UIUC joint laboratory

Sébastien Fourestier

2

Summary of the talk

• The Scotch project

• Parallel partitioning: weak scalability results

• Parallel static mapping: overview

• Dynamic repartitioning: early results

3

The Scotch project

• Devise robust parallel graph partitioning/mapping methods
• Initial roadmap: should handle graphs of more than a

billion vertices distributed across one thousand
processors

• Provide graph repartitioning methods

• Improve sequential graph partitioning methods if possible

• Investigate alternate graph models (meshes/hypergraphs)

• Provide a software toolbox for scientific applications
• Scotch sequential software tools
• PT-Scotch parallel software tools

DONE !

4

Parallel partitioning: weak scalability results

• Since version 5.1.10, Scotch is now fully 64-bit
• Can handle graphs above 2 billion vertices
• But less than 2 billion edges by processing element,

because of MPI interface limitations
– Not really a problem for us on many-core machines

• Several weak scalability experiments performed
• Up to 8192 processors on the Hera machine at LLNL,

with graphs above 2 billion edges
• Up to 30k cores on BG/L at LLNL

5

Architectural considerations matter

• Upcoming machines will comprise very large numbers of
processing units, and will possess NUMA/heterogeneous
architectures

• Impacts on our research:
• Target architecture has to be taken into account

– Static mapping and not only graph partitioning
– Reduces number of neighbors and improves

communication locality, at the expense of slight
increases in message sizes

• Dynamic repartitioning capabilities are mandatory

6

Static mapping

• • Compute a mapping of V(S) and E(S) of source graph S to
V(T) and E(T) of target architecture graph T, respectively

• Communication cost function accounts for distance

S

T

• Static mapping features
are already present in the
sequential Scotch library

• We have to go parallel

7

Parallel static mapping

• Recursive bi-mapping cannot be transposed in parallel
• All subgraphs at some level are supposed to be processed

simultaneously for parallel efficiency
• Yet, ignoring decisions in neighboring subgraphs can lead to

“twists”

• Sequential processing only!

1

2

4

3

8

New roadmap

• To be able to map graphs of about a trillion vertices spread
across a million processing elements

• Use direct k-way static mapping algorithms
• Focus on scalability problems related to the large

number of processors
• Asynchronous algorithms to reduce latency induced by

collective communication

• Parallel dynamic repartitioning capabilities is mandatory

9

Dynamic repartitioning

• Recompute a balanced partition while minimizing the
number of migrated vertices

• Modeling of migration costs by fictive edges that induce an
increase of the cut size when a vertex changes of part

• Use of fractional migration costs in graphs with integer
weights by multiplication of the original edge loads

• Adaptation of the existing algorithms to account for these
extra edges

• Recursive bipartitioning, k-way partitioning, multilevel
framework, FM heuristic, diffusion-based method

10

Dynamic repartitioning
• Multilevel framework adapted for repartitioning

• Coarsening mates only vertices belonging to the same part
• Initial mapping by sequential recursive bi-mapping (with

fictive edges)
• K-way mapping refinement (with fictive edges)

11

• Graphs considered during experimentation:

• Specificities:
• oilpan, bmw32 and coupole8000:

same characteristics, with increasing graph size
• audikw1: lots of edges, highest degree
• conesphere1m: 1 million vertices

Graph Vertex number Edge number Average degree

altr4 26089 163038 12.5

oilpan 73752 1761718 47.8

bmw32 227362 5030634 48.7

audikw1 943695 38354076 81.3

conesphere1m 1055039 8023236 15.2

coupole8000 1768161 41656975 47.1

Dynamic repartitioning – Test graphs

12

Dynamic repartitioning – Experimentation protocol

• Protocol:
• Original partition:

– 4 parts
– Vertex loads are equal to 1

• First vertex load changes from 1 to total vertex load / 10
• Scotch runs on 1 processor, ParMetis on 2 processors
• Migration cost from 0.01 to 50

 0.1 1 10 original partition

13

ParMetis vs Scotch: Percentage of migrated vertices

Dynamic repartitioning – Results with conesphere1m

• Scotch is more sensitive to the migration cost parameter

14

ParMetis vs Scotch: Average part imbalance percentage

Dynamic repartitioning – Results with conesphere1m

• Both give consistent results

• ParMetis keeps a better balance (with our configuration)

15

ParMetis vs Scotch: Cut size with fictive edges

Dynamic repartitioning – Results with conesphere1m

• Better cut with Scotch repartitioning

• This is consistent: lower constraint on part imbalance

16

ParMetis vs Scotch: Cut size

Dynamic repartitioning – Results with conesphere1m

• Scotch keeps a good cut with high migration costs

→ Better precision

17

Dynamic repartitioning – Results with mig. cost = 1

ParMetis vs Scotch: Average part imbalance

• In average (without bmw32), ParMetis brings a balance
36.6 % better than Scotch (st. deviation: 18.9 %)

18

ParMetis vs Scotch: Cut size

Dynamic repartitioning – Results with mig. cost = 1

• In average, Scotch brings a cut size 29.8 % better than
ParMetis (st. deviation: 22.8 %)

19

On-going work
• Next steps

• Efficient parallel methods to refine k-partitions
• Parallel dynamic repartitioning
• Dynamic repartitioning with fixed vertices
• Parallel hypergraph partitioning?

– Only if gains can be expected over existing works
• Move upwards to application mesh models
• Parallel adaptive remeshing [work with C. Dobrzynski]

• Take into account the numerical stability of the problem
being studied

• Take advantage of the work done in PT-Scotch on
distributed adaptive graphs

20

21

Parallel static mapping

• Recursive bi-mapping cannot be transposed in parallel
• All subgraphs at some level are supposed to be processed

simultaneously for parallel efficiency
• Yet, ignoring decisions in neighboring subgraphs can lead to

“twists”

• Sequential processing only!

1

2

4

3

22

Jug of the Danaides

• Sketch of the algorithm

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22

